Your access to PROLA is provided through the subscription of Central Research Institute
MyArticles: View Collection Help (Click on the to add an article.)
Phys. Rev. E 53, R4271R4274 (1996)
[Issue 5 May 1996 ]
[ Previous article | Next article | Issue 5 contents ]
[ Only search result ]
View PDF (150 kB)
Domain formation in transitions with noise and a time-dependent bifurcation parameter
- G. D. Lythe
- Optique Nonlinéaire Théorique, Université Libre de Bruxelles, C.P. 231, Bruxelles 1050, Belgium
Received 20 March 1995; revised 12 February 1996The characteristic size for spatial structure, that emerges when the bifurcation parameter in model partial differential equations is slowly increased through its critical value, depends logarithmically on the size of added noise. Numerics and analysis are presented for the real Ginzburg-Landau and Swift-Hohenberg equations.
©1996 The American Physical Society
URL: http://link.aps.org/abstract/PRE/v53/pR4271
DOI: 10.1103/PhysRevE.53.R4271
PACS: 02.50.-r, 64.60.Ht, 05.70.Fh, 47.54.+r
View PDF (150 kB)[ Only search result ]
[ Previous article | Next article | Issue 5 contents ]
References
(Reference links marked with may require a separate subscription.)
- D.J. Scalapino, M. Sears, and R.A. Ferrell, Phys. Rev. B 6, 3409 (1972) ; Robert Graham, Phys. Rev. A 10, 1762 (1974) ; M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 92, 851 (1993) .
- C.W. Meyer, G. Ahlers, and D.S. Cannell, Phys. Rev. A 44, 2514 (1991) ; Jorge Viñals, Hao-Wen Xi, and J.D. Gunton, 46, 918 (1992) ; P.C. Hohenberg and J.B. Swift, , 4773 (1992) ; Walter Zimmermann, Markus Seesselberg, and Francesco Petruccione, 48, 2699 (1993).
- J.B. Walsh, in Ecole d'été de probabilités de St-Flour XIV, edited by P.L. Hennequin (Springer, Berlin, 1986), pp. 266-439; G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions (Cambridge University Press, Cambridge, 1992).
- Omitted endnote
- C.R. Doering, Phys. Lett. A 122, 133 (1987) [ INSPEC]; A. Becker and Lorenz Kramer, Phys. Rev. Lett. 73, 955 (1994) .
- J. García-Ojalvo and J.M. Sancho, Phys. Rev. E 49, 2769 (1994) ; L. Ramírez-Piscina, A. Hernández-Machado, and J.M. Sancho, Phys. Rev. B 48, 119 (1994) ; J. García-Ojalvo, A. Hernández-Machado, and J.M. Sancho, Phys. Rev. Lett. 71, 1542 (1994) .
- G.D. Lythe, in Stochastic Partial Differential Equations, edited by Alison Etheridge (Cambridge University Pess, Cambridge, 1994).
- M.C. Torrent and M. San Miguel, Phys. Rev. A 38, 245 (1988) ; N.G. Stocks, R. Mannella, and P.V.E. McClintock, 40, 5361 (1989) ; J.W. Swift, P.C. Hohenberg, and Guenter Ahlers, 43, 6572 (1991) ; G.D. Lythe and M.R.E. Proctor, Phys. Rev. E 47, 3122 (1993) ; Kalvis Jansons and Grant Lythe (unpublished).
- J. Carr and R. Pego, Proc. R. Soc. London Ser. A 436, 569 (1992); J. Carr and R.L. Pego, Comm. Pure Appl. Math. 42, 523 (1989).
- K. Ito, J. Math. Kyoto Univ. 3-2, 207 (1964); R.J. Adler, The Geometry of Random Fields (Wiley, Chichester, 1981).
- T. Funaki, Nagoya Math. J. 89, 129 (1983); I. Gyöngy and E. Pardoux, Probab. Theory Relat. Fields 94, 413 (1993).
- C.R. Doering, Commun. Math. Phys. 109, 537 (1987).
- Grant Lythe, Ph.D. thesis, University of Cambridge, 1994 (unpublished); Peter E. Kloeden and Eckhard Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992).
View PDF (150 kB)[ Only search result ]
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 5 contents ]
E-mail: prola@aps.org