APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. E 53, 759–778 (1996)

[Issue 1 – January 1996 ]

Previous article | Next article | Issue 1 contents ]

Add to article collection View Page Images , Figure Images or PDF (4334 kB)


Continuum model for the growth of interfaces

Pawel Keblinski, Amos Maritan, Flavio Toigo, Russell Messier, and Jayanth R. Banavar
Department of Physics and Center for Material Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
International School for Advanced Studies, via Beirut 4, 34014 Trieste, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy
Istituto Nazionale per la Fisica della Materia, Unita di Trieste, Trieste, Italy
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia INFM, via Marzolo 8, 35100 Padova, Italy
Department of Engineering Science and Mechanics, 265 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Received 30 May 1995

A continuum model is presented for studying various growth processes. One of the model equations is used to define a growing interface with an arbitrary topology and captures the intrinsic dynamics of the aggregate with surface diffusion incorporated in a natural manner. With an appropriate local growth mechanism, this model represents a continuum version of the Eden growth model. The introduction of another field describing the dynamics of the vapor enables the modeling of phenomena ranging from ballistic deposition to diffusion-limited aggregation (DLA) within the framework of the same equations. Our equations capture nonlocal effects, such as shadowing or screening in a local way, and permit the monitoring of the interior structure of the growing film. Our results are benchmarked against those of experiments on sputter deposited films. Simple modifications of the model lead to patterns that are different from standard DLA structures but similar to those observed in electrochemical deposition. We also examine models that use the no-overhang approximation in the description of columnar morphology observed in thin films and discuss their validity in comparison with our model.

©1996 The American Physical Society

URL: http://link.aps.org/abstract/PRE/v53/p759
DOI: 10.1103/PhysRevE.53.759
PACS: 81.10.Aj, 05.40.+j, 64.60.Ht, 05.70.Ln


Add to article collection View Page Images , Figure Images or PDF (4334 kB)

Previous article | Next article | Issue 1 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. Dynamics of Fractal Surfaces, edited by F. Family and T. Vicsek (World Scientific, Singapore, 1991), and references therein; L. A. Barabasi and H. E. Stanley, Fractal Concepts in Interface Growth (Cambridge University Press, Cambridge, 1995) and references therein; T. Halpin Healy and Y. C. Zhang, Phys. Rep. 254, 415 (1995).
  2. For a review of growth involving nonlocal effects, see G. S. Bales, R. Bruinsma, E. A. Eklund, R. P. U. Karunasiri, J. Rudnick and A. Zangwill, Science 249, 264 (1990), and references therein [dot INSPEC].
  3. B. A. Movchan and A. V. Demchishin, Fiz. Met. Metall. 28, 653 (1969) [Phys Met. Metall. (USSR) 28, 83 (1969)].
  4. L. R. Gilbert, R. Messier and R. Roy, Thin Solid Films 54, 149 (1978) [dot INSPEC]; R. Messier, S. V. Krishnaswamy, L. R. Gilbert and P. Swab, J. Appl. Phys. 51, 1611 (1980) [dot SPIN][dot INSPEC].
  5. R. Messier and J. E. Yehoda, J. Appl. Phys. 58, 3739 (1985) [dot SPIN][dot INSPEC].
  6. R. Messier, J. Vac. Sci. Technol. A 4, 490 (1986) [dot INSPEC].
  7. K. H. Muller, Surf. Sci. Lett. 184, L375 (1987) [dot INSPEC].
  8. J. Bartholomeusz, K. H. Muller and M. R. Jacobson, Proc. SPIE 821, 2 (1987) [dot INSPEC].
  9. J. E. Yehoda, B. Yang, K. Vedam and R. Messier, J. Vac. Sci. Technol. A 6, 1631 (1988) [dot INSPEC].
  10. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).
  11. For a review see, e.g., Fractals in Physics, edited by L. Pietronero and E. Tosatti (North-Holland, Amsterdam, 1985).
  12. L. M. Sander, Nature 332, 789 (1986).
  13. J. Nittamann and H. E. Stanley, Nature 321, 663 (1986) [dot INSPEC].
  14. L. Paterson, Phys. Rev. Lett. 52, 1621 (1984).
  15. J. Nittamann, G. Daccord and H. E. Stanley, Nature 314, 141 (1985) [dot INSPEC]; T. Maxworthy, Phys. Rev. A 39, 5863 (1989).
  16. E. Ben-Jacob et al., Phys. Rev. Lett. 55, 1315 (1985).
  17. L. Neimeyer, L. Pietronero and H. Weisman, Phys. Rev. Lett. 52, 1033 (1984).
  18. G. L. M. K. S. Kahanda, X. Zou, R. Farrel and P. Wong, Phys. Rev. Lett. 68, 3741 (1992).
  19. P. Meakin, CRC Crit. Rev. Solid State Sci. 13, 143 (1987), and references therein.
  20. See, e.g., G. H. Gilmer and M. Grabow, Proc. SPIE 821, 56 (1987) [dot INSPEC].
  21. P. Keblinski, A. Maritan, F. Toigo, J. Koplik and J. R. Banavar, Phys. Rev. E 49, R937 (1994).
  22. P. Keblinski, A. Maritan, F. Toigo and J. R. Banavar, Phys. Rev. E 49, R4795 (1994).
  23. P. Keblinski, A. Maritan, F. Toigo and J. R. Banavar, Phys. Rev. Lett. 40, 1783 (1995).
  24. M. Kardar, G. Parisi and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986) [SPIRES].
  25. L. Golubovic and R. P. U. Karunasiri, Phys. Rev. Lett. 66, 3156 (1991).
  26. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977) [SPIRES].
  27. T. M. Rogers, K. R. Elder and R. C. Desai, Phys. Rev. B 37, 9638 (1988).
  28. J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989); J. M. Kim, J. M. Kosterlitz and T. Ala-Nissila, J. Phys. A 24, 5569 (1991) [dot INSPEC]; K. Moser, J. Kertesz and D. E. Wolf, Physica A 178, 215 (1991), obtain beta = 0.24 +- 0.005 in d = 2 + 1 by a direct numerical integration of the KPZ equation [dot INSPEC].
  29. D. Y. K. Ko and F. Seno, Phys. Rev. E 50, R1741 (1994).
  30. A. Mazor, D. J. Srolovitz, P. S. Hagan and B. G. Bukiet, Phys. Rev. Lett. 60, 424 (1988); D. J. Srolovitz, A. Mazor and B. G. Bukiet, J. Vac. Sci. Technol. A 6, 2371 (1988) [dot INSPEC].
  31. D. J. Eaglesham, H. J. Gossman and M. Cerullo, Phys. Rev. Lett. 65, 1227 (1990).
  32. R. S. Williams, R. Bruinsma and J. Rudnik, in Surface Disordering Growth, Roughening and Phase Transitions, edited by R. Jullien, J. Kertesz, P. Meakin, and D. E. Wolf (Nova, New York, 1993).
  33. R. Messier and A. Roy, J. Vac. Sci. Technol. 13, 1060 (1976) [dot SPIN]; J. R. Blanco, R. Messier, K. Vedam and P. J. McMarr, in Plasma Synthesis and Etching of Electronic Materials, edited by R. P. H. Chang and P. Abeles, MRS Symposia Proceedings No. 38 (Materials Research Society, Pittsburgh, 1985), p. 301.
  34. C. Tang and S. Liang, Phys. Rev. Lett. 71, 2769 (1993); S. Redner (unpublished)has carried out lattice simulations analogous to our two-rain case at grazing incidence, and has found patterns of independent growing trees that do not show any coalescence. These results suggest that there may be essential differences between the lattice and continuum models in this limit. We are grateful to Sid Redner for bringing his work to our attention.
  35. Y. Kuramoto, Suppl. Prog. Theor. Phys. 64, 346 (1978); G. Sivashinsky, Acta Austronautica 4, 1177 (1977) [dot INSPEC].
  36. M. Marsili, A. Maritan, F. Toigo, and J. R. Banavar (unpublished).
  37. T. Ihle and H. Muller-Krumbhaar, Phys. Rev. Lett. 70, 3083 (1993).
  38. The interaction term is similar to that studied in annihilation chemical reactions; see, e.g., K. Kang and S. Redner, Phys. Rev. A 32, 435 (1985), and references therein.
  39. J. S. Langer, in Directions in Condensed Matter Physics, edited by G. Grinstein and G. Mazenko (World Scientific, Singapore, 1986), pp. 164–186; J. B. Collins and H. Levine, Phys. Rev. B 31, 6119 (1985); G. Caginalp, Phys. Rev. A 39, 887 (1989).
  40. For numerical work on the phase field model, see A. A. Wheeler, B. T. Murray and R. J. Schaefer, Physica D 66, 143 (1993) [dot INSPEC]; R. Kobayashi, 63, 410 (1993) [dot INSPEC].
  41. M. Nauenberg, R. Richter and L. M. Sander, Phys. Rev. B 28, R1649 (1983); G. Parisi and Y. C. Zhang, J. Stat. Phys. 41, 1 (1985) [dot SPIN][dot INSPEC]; D. Elderfield, J. Phys. A 18, L773 (1985) [dot INSPEC]; Y. Shapir, L970 (1985); H. Levine and Y. Tu, Phys. Rev. E 48, R4207 (1993).
  42. L. M. Sander, in Fractals In Physics (Ref. 11), especially Fig. 2 on p. 245.
  43. W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964); J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
  44. P. Z. Wong, Phys. Today 41, (12), 24 (1988); D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman and C. Tang, Rev. Mod. Phys. 58, 997 (1986).
  45. E. Brener, H. Muller-Krumbhaar and D. Temkin, Europhys. Lett. 17, 535 (1992) [dot INSPEC].
  46. O. Shochet, K. Kasser, E. Ben-Jacob, S. G. Lipson and H. Muller-Krumbhaar, Physica A 181, 136 (1992) [dot INSPEC].
  47. R. Bausch, V. Dohm, H. K. Janssen, and R. K. P. Zia, Phys. Rev. Lett. 47, 1837 (1981).
  48. A. Maritan, F. Toigo, J. Koplik and J. R. Banavar, Phys. Rev. Lett. 69, 3193 (1992).


Add to article collection View Page Images , Figure Images or PDF (4334 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 1 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org