Article Collection: View Collection Help (Click on the to add an article.)
Phys. Rev. Lett. 77, 13821385 (1996)
[Issue 7 12 August 1996 ]
[ Previous article | Next article | Issue 7 contents ]
View PDF (146 kB)
Spin-Density-Wave Antiferromagnetism of Cr in Fe /Cr(001) Superlattices
- Eric E. Fullerton and S. D. Bader
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4845
- J. L. Robertson
- Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393
Received 22 November 1995The antiferromagnetic spin-density-wave (SDW) order of Cr layers in Fe/Cr(001) superlattices was investigated by neutron scattering. For Cr thicknesses from 51 to 190 Å, a transverse SDW is formed for all temperatures below the Néel temperature with a single wave vector Q normal to the layers. A coherent magnetic structure forms with the nodes of the SDW near the Fe-Cr interfaces, and the magnetic coherence length greater than the Cr layer thickness. The results and modeling provide a direct confirmation of the persistence of bulklike antiferromagnetic SDW order in the Cr.
©1996 The American Physical Society
URL: http://link.aps.org/abstract/PRL/v77/p1382
DOI: 10.1103/PhysRevLett.77.1382
PACS: 75.70.Cn, 75.25.+z, 75.50.Ee
View PDF (146 kB)[ Previous article | Next article | Issue 7 contents ]
References
(Reference links marked with may require a separate subscription.)
- E. Fawcett, Mod. Phys. 60, 209 (1988).
- J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 69, 1125 (1992).
- D. T. Pierce, R. J. Celotta, and J. Unguris, J. Appl. Phys. 73, 6201 (1993).
- T. G. Walker et al., Phys. Rev. Lett. 69, 1121 (1992).
- F. U. Hillebrecht et al., Europhys. Lett. 19, 711 (1992).
- Y. U. Idzerda et al., Phys. Rev. B 48, 4144 (1993).
- C. Turtur and G. Bayreuther, Phys. Rev. Lett. 72, 15 571 (1994).
- A. Vega et al., Phys. Rev. B 51, 11 546 (1995).
- D. Stoeffler and F. Gautier, J. Magn. Magn. Mater. 147, 260 (1995).
- P. Grünberg et al., Phys. Rev. Lett. 57, 2442 (1986).
- B. Heinrich and J. F. Cochran, Adv. Phys. 42, 523 (1993).
- J. C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991); J. Magn. Magn. Mater. 150, 13 (1995).
- E. E. Fullerton et al., Phys. Rev. Lett. 75, 330 (1995).
- J. Meersschaut et al., Phys. Rev. Lett. 75, 1638 (1995).
- D. Venus and B. Heinrich, Phys. Rev. B 53, R1733 (1996).
- E. E. Fullerton et al., Phys. Rev. B 48, 15 755 (1993); Appl. Phys. Lett. 63, 1699 (1993).
- J. P. Hill, G. Helgesen, and D. Gibbs, Phys. Rev. B 51, 10 336 (1995).
- C. J. Majkrzak et al., Adv. Phys. 40, 99 (1991).
- E. E. Fullerton et al., Phys. Rev. B 45, 9292 (1992).
- J. A. Borchers et al., Phys. Rev. B 51, 8276 (1995).
- A. J. Freeman and R. E. Watson, Acta Crystallogr. 14, 234 (1961).
- P. Ponntag et al., Phys. Rev. B 52, 7363 (1995).
- For a Cr thickness of 51 Å it is not possible to have both the Cr SDW symmetrically ordered and the nodes located near the interface. In addition to the fits shown in Fig. 3, local minimum in the least-squares fitting procedure are possible in which the Cr layers order asymetrically. In Fig. 3 we show the symmetric solutions.
- M. E. Filipkowski et al., Phys. Rev. Lett. 75, 1847 (1995).
- M. J. Pechan et al., J. Appl. Phys. 75, 6178 (1994).
View PDF (146 kB)
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 7 contents ]
[ Home
| Browse
| Search
| Subscriptions
| Help
]
E-mail: prola@aps.org