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Coherent forward-scattering amplitude in transmission
and grazing incidence Mmsbauer spectroscopy
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The theory of both transmission and grazing incidencedibauer spectroscopy is reanalyzed. Starting with
the nuclear susceptibility tensor a common concise first-order perturbation formulation is given by introducing
the forward-scattering amplitude into an anisotropic optical scheme. Formulas of Blume and Kistner as well as
those of Andreeva are rederived for the forward-scattering and grazing incidence geometries, respectively.
Limitations of several previously intuitively introduced approximations are pointed out. The grazing incidence
integral propagation matrices are written in a form built up from2matrix exponentials which is particularly
suitable for numerical calculations and practical fitting of both energy dorfwainventional source experi-
mend and time domair(synchrotron radiation experimeri¥lossbauer spectra.

[. INTRODUCTION 3% 3 index of refraction matrix, they accepted Lax’s intui-
tive suggestiort,and used a complex>22 index of refrac-

A great majority of M@sbauer experiments are performedtion matrixn, corresponding to the two possible independent
on polycrystalline samples without applying an externalstates of polarization of the radiation.was then related to
magnetic field. In such cases, the polarization of heays  the coherent forward scattering amplitufde.
plays no role, the Mssbauer spectrum can be described in  Beside the conventional forward scattering case, grazing
terms of resonant and nonresonant absorption, and the resiacidence Masbauer spectroscofIMS) has gained con-
nant absorption cross section can be calculated from the paiderable recent attention in studying stratified media: sur-
rameters of the hyperfine interaction. This naive approactfaces, interfaces, and multilaye¥s. This method utilizes a
fails if the Mossbauer experiment is performed on a singlegeometry such that the rays are incident on the flat surface
crystal or a textured sample and/or in an external magnetiof the sample at glancing angles of a few mrad close to the
field. The resonant cross section in these latter cases deperctitical angle of the electronic total external reflection. The
on the polarization and the full polarization-dependent scateletected scattered particles are specularly reflegtguho-
tering problem has to be treated. The numerical difficulties otons, conversion electrons, conversion x rays, and incoher-
the scattering approach stem from the great number of rarently scatteredy photons. A general treatment of GIMS was
domly distributed scattering centers. These difficulties can bgublished by Andreevat al. in several papers:® Starting
circumvent if, akin to classical optics, a continuum modelfrom the nucleon current density expression of the suscepti-
rather than a microscopic scattering theory can be used. It isility tensor y given by Afanas’ev and Kagahand using a
by no means trivial, however, that such an optical approackovariant formalism of anisotropic optidsfirst introduced
for y rays in condensed matter is feasible since the meaby FedoroJ? these authors take into account that both the
distance of scattering centers is usually greater than thelements of the susceptibility tenspiand the glancing angle
wavelength of the scattered radiation. It has been showrg are small in GIMS and calculate the reflectivity. The
however, by Lak that, at least for scalar waves, a close tomethod of calculation, however, especially for the higher
unity index of refractiom can be defined and simply related multipolarity nuclear transitions, is rather cumbersome, since
to the coherent forward scattering lendthprovided that the the nucleon current densities are directly calculated resulting
momentum of the scatterers is small compared to that of then quite complex tensor expressions. In view of the extreme
incident wave. Since Lax’s papethe refraction index ap- requirements to beam divergence, GIMS is certainly more
proach has been used extensively in neutron and x-ray opsuited for synchrotron radiation than for conventional radio-
tics. The heuristic generalization of this approach to polaractive source experiments.
ized waves and for an anisotropic medium, although claimed Another general description of specular reflection of graz-
to be trivial by Lax is by no means straightforward and needsng incidence Mssbauer radiation was given by Hannon
further elucidation. et al1*~16 Starting from the quantum theory of radiation,

In the forward scattering geometry the polarization depenthey formulated the dynamic theory of sbauer optics.
dence of the Mssbauer absorption of radiation was theo- Unfortunately, the dynamic theory provides rather slow algo-
retically studied by Blume and Kistnédnstead of using a rithms for calculating reflectivity spectra, therefore it is inef-
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ficient in spectrum fitting. In the grazing incidence limit, an Il. THE NUCLEAR SUSCEPTIBILITY

optical model was derived from the dynamical thethry? Let us consider the collective system of the nuclei and the

which has recently been implemented in numerlcalelectromr:lgneticfield.The effect of the electromagnetic field

calculations.” Without using a covariant formalism, how- ill be treated as a perturbation on the randomly distributed
ever, this latter approach also results in quite SOphiStic"’ue}r%’uclei The interactign HamiltoniaH between thg nucleus
algorithms since, in a layered medium, the eigenpolarizations '

vary from layer to layer. and the electromagnetic field may be written as
Our aim is to rigorously derive general formulas for the
transmittivity and the reflectivity ofy radiation in both the .
forward scattering and the grazing incidence case. Moreover, H=-— c Z J(ri)-A(ri), 2.
we shall try to obtain these formulas in such form that is
suitable for fast numerical calculations in order fib the . ) ) )
experimental data. Like Andreew al,®—°we start from the Wherej(ri) is the current density of théth nucleon and
Afanas’ev-Kagan nucleon current density expression of thé\(Ti) iS the vector potential of the electromagnetic field at
dielectric tensd® and use a covariant anisotropic optical the pointr;:
formalism!*?Instead of calculating the susceptibility tensor

from the current densities of the nucleons, however, we re- 2mhc) 12
duce the problem to the calculation of the transmittafice  A(r;)= ( VK ) {ck’pﬁk'pexp(i k-rj))+H.c}. (2.2
ward scattering cageand the reflectivity(grazing incidence k.p

casg from the coherent forward scattering amplitude. We

show that, in the case of forward scattering, this approach if this formula,c, , denotes a photon annihilation operator
equivalent to the theory of Blume and KistrfeFhe present and Gk,p a unit polarization vector.

treatment is based on no intuitive assumption and represents, The matrix elements of the interaction Hamiltonidrare
thereby, a firm basis of the Blume-Kistner theband of the  scalar products of the current density matrix elements
Andreeva approximatiofr.® Jim,m, and the polarization vector

] i Cc Vk

2mhic\1? 1\ R .
H&a%;( ko ) <'9”‘9"'°‘2 (‘E)‘“”'uk,pcl,pexrr—lk-m

1/(2mhc\¥2,
leMe)=— = uk,p'\]mgmea 2.3

with 4r N Ingms (K)o T (K)
XK ==z 571 2 = (@7
. . g MeMy
‘]mgme(k):<|gmg Z J(ri)exq_lk'ri) Ieme>y (2-4) Ek_Ememg"'?

wherel ; andl, are the nuclear spin quantum numbers in the
excited and ground state with the corresponding magnetiwhereN is the number of resonant nuclei per unit volume,
quantum numbersng and mg, respectively.J(k) is the k E, is the energy of they phOtonaEmemngme_ Emg is the

representation of the current density produced by a singlgnergy difference between the nuclear excited and ground
nucleus.(Throughout the calculations we shall use the SaMiatesT is the natural width of the excited state, anis the

letters for physical quantities inandk representation letting dvadi - S
. i S adic vector product sign. The susceptibility tenggk
the argument make evident which representation is m)eant.d)éIoends on tr?e propaggtion vectorof pthe gnperﬁbéd
In first order perturbation of the electromagnetic field the 1
wave. Instead of Eg. (25 a (IW(k))

average nucleon current density"is =3ko(k,k+K)E(k+K) expression is obtained for nonran-
o dom distribution of the scatteret8with (277) “'K being a
(IY(k))=a(K)E(k)=—oa(k)A(k), (2.5 reciprocal lattice vector. Only the random scatterer case will
¢ be further considered here.
with o(k) being the conductivity tensor, which in turn de-  Equation(2.7) is the starting equation of Andreeva in cal-

fines the susceptibility tensor of the medium by culating grazing incidence Mwsbauer spectfaln order to
calculatex(k) for an arbitrary orientation of the hyperfine

fields with respect tk , the currents]mgme are expanded in

terms of irreducible tensors resulting in a sophisticated
formalism® For cases like transitions of higher multipolarity,
Afanas’ev and Kagaf calculated the susceptibility ten- mixed multipole transitions, variation of hyperfine fields
sor in first order of the vector potential for randomly distrib- within the medium, texture, etc., the formalism therefore be-
uted nuclei in terms of the change of the average nucleonomes cumbersome and numerically intractable. Having cal-
current density: culated the dielectric tensor of the g&bauer medium, An-

4i
x(k)= T"(k)' (2.6)
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dreevaet al. apply a very elegant covariant formaliShand
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reduce to X 2 ones both in forward scattering and in graz-

solve the problem of grazing incidence nuclear scattering byng incidence geometry.

stratified media.
The numerical difficulties of the higher multipolarity

terms, hyperfine field distributions, texture, etc. have been

overcome years ago by Spierffign treating the thick ab-
sorber case in the Blume-Kistner formaliénThe Hamil-
tonian, the scalar product of the current denslj,t;gme and the
polarization vectou]k,p have simpler transformation proper-
ties thanngme, therefore, unlike Andreevat al.® the for-

ward scattering amplitude

k,p’ k,
fk.p—k.p’ kv 1 ngpmeH mfr;r‘g 28
T 2mhe 21+ 1 i r 29
¢ B Emgmy T 5

rather thanly,  is calculated for an arbitrary direction?®

In what follows we shall show that foy quanta in the
physically relevant representation thex3 properties of the
dielectric tensor are not fully used by the optical theory.
Since thek directions involved in the scattering problem are
either equivalen{forward scatteringor extremely close to
each othefgrazing incidence cagethe relevant block of the

A. The Borzdov-Barskovskii-Lavrukovich formalism

We may write the basic equation for the tangential com-
ponents of the electric and magnetic fie@s E(q-r) and
H(q-r)=—qXx[qxH(qg-r)] at the pointr as follows!

):ikM(a-r)

were(q represents the unit normal vector of the surface. The
material parameters are allowed to vary only in éhdirec-
tion (stratified medium and the fields depend only on the
g-r scalar productM is the differential propagation matrix
defined by

Hy(q-r)
axE(q-r)

Hy(q-r)
axE(q-r)

(9-V)

| o

(3.2

with

dielectric tensor is fully described by the four components of

the forward scattering amplitude. This latter ensures that the
present theory remains valid for nuclear transitions of any
multipolarity. Indeed, expressing the susceptibility tensor in

the polarization vector system?=(e, ,=U, ,,&=k/|k|) of

the unperturbed incident radiation the significant matrix ele-

ments are

A=(g-2G) "9 eGoa— (- ud) 'boqul,
(6.6l — (8. nE) -1
B=(q-sq el —(§- uG)~ toeb,

C=—(q-£q) *aea—(q-pd) 'q*nq"~,

47N ,
Xpp (K) = =7~ fP7*Pp.p' =0, am; (2.9 D=(§-£G) ‘acqeq” — (G- u@) "l udeb.
o and 7 being arbitrary polarizations. Once the susceptibil-
ity (the refractive index or the dielectjitensor of the me- Heree=1+ y is the dielectric tensow* denotes the dual
dium is defined the problem of calculating the propagation okansor of an arbitrary vector, and the tilde sign stands for
electromagnetic field in the medium becomes an opticaj,e transpose of a tensor. The — (§°)2operator projects a
problem. Since the nuclear dielectrics is anisotropic, &ector into the plane of the sample surface. The tangential
polarization-dependent optical formalism will be used. component of the incident wave vector s=1k/k, and
a:=bXxq is a vector perpendicular to the reflection plane,
s=det(e)e 1, u=det(u)u 1. Strictly speaking, A, B, C,
andD are three-dimensional tensors acting only, as it can be
seen, in thea,b plane. Consequentlyy! can be properly
represented by ¥4 matrices. The permeability tensgr
will play no further role® The solution of Eq.(3.1) relates
H, and X E to each other at the lower and upper surfaces of
the layered medium. In a homogeneous film of thickraiss
the solution is given by the so-called integral propagation

(1) Approximations made by Andreew al. are based on matrix_ L= expdde), by the matrix exponential of the dif-
the assumption that the square of the scattering angle is &:renhal propagation matr_lx._For anlayer system, t_he_tc_)tal
the order of the susceptibility tensor elements. The border!—ntegral propagat]on matr.|x is the product of the individual
line of the Andreeva approximation will be specified here. integral propagation matricasy, of layerl, thus

(2) The Blume-Kistner theofywill be derived from the
covariant optical formalism.

(3) In a practical application of the Blume-Kistner theory
one calculates the exponentials 0k2 complex matrices.
The covariant optics usesx44 matrices in the exponentials The expression of the planar reflectivity, defined by
leading to rather time-consuming calculations. It will be H{=rH?, whereH{ and H? are the tangential amplitudes of
shown that in a suitably chosen basis, the 44 matrices the reflected and incident waves, respectively, writes as

Ill. COVARIANT ANISOTROPIC OPTICS OF A NUCLEAR
DIELECTRICS

The covariant optical formalism of stratified anisotropic me-
dia developed by Borzdov, Barskovskii, and Lavrukovich
and applied by Andreevet al®~° will be introduced here for
three reasons.
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L\t I,
('}’t,_lz)l-( r” o) .
Y Y

Here |, is the 2<2 unity matrix and they?, 7", and '
tensors are the impedance tensors for the incident, specularly
reflected, and transmitted waves, respectively,

7=(1,2,3,4), viz..%"=(2,3,4,1), shall also be used. The
34 differential and integral propagation matricks andL will
be denoted byM’ andL’, respectively, in theZZ” system.

r= (=741

defined by theB. The forward scattering case: The Blume-Kistner equation

YOI tHOM = G EOT L (3.5 The (3.2) differential propagation matrix for the case of

normal incidencgin the.’ system has the following simple
equation. Since the tensors act in the plane perpendicular form:

to g, they can be represented b2 matrices'

The elements of the reflectivity matriR are geometri- 0 0 &y —&y
cally related to the elements of the planar reflectiwvityi.e.,
M = O 0 — €12 €11 (3 7)
R(r(r: — 22, R(rw: - erSinilov 10 0 0 .
i 01 O 0
R,s=r1s8IN0, R_.=Trqq, (3.6
whereo and 7 are polarizations corresponding Eoperpen- The transmittivity may be expressed in terms of the inte-
dicular and parallel to the plane of incidence, respectivelygral propagation matrix. =exp(kdM) as
For numerical calculations we shall choose different appro- .
priate coordinate systems. The laboratory systemwill be ol (1o 1Lt I2 38
defined so that thg, y, andz axes are parallel te, b, and t=2/(12.12) Iy (3.9

g, respectively. The field components in E8.1) define a

natural permutation. %2=(1,2,3,4) basis of the four- defined byH{=tH? can be explicitly elaborated to obtain the
component field vectorfsH, ,H, J(GXE)y, (g% E)y] withre-  Blume-Kistner formulag.Indeed, using the identitywhich
spect to the.”” system. A convenient permutation of can easily be proved by expanding the exponentials

0, B cosiBC)*?2 B(CB) YZsinh(CB)? .
ex = . , .
C 0,/ \C(BC) Y%sinh(BC)? cosiCB)? 3.9
|
with 0, being the 2X2 zero matrix, the matrix exponential 27N bkop’
of M can be expressed in terms of ax2 submatrix Nppr = dppr + K2 frp=py, (3.13
— (%22 ~é&21 v
B (*621 €11 ) 0f Bq. (3.7) so that the(3.8) transmittivity where § is the Kronecker symbol and,p’ = o, 7.
1 -1 C. The grazing incidence case: The Andreeva approximation
_ : U2\ Cainhi 12\ (Rl24 p—1/2
t=| coshikdB™) zsmmkdB 2)(8 +B )} ’ 1. The differential propagation matrix
(3.10 In order to see which elements in E§.6) are of the same

order of magnitude, we eliminate the expli¢itdependence
bt R by applying a linear transformatioh (in the . 72" sys-
tem) of the form:

Making use of the smallness of the susceptibility one ca
easily writeBY?+B~Y?~2l|, and the transmittivity:

t~exp(ikdBY?). (3.12 sin'¢ 0 00
0 sinlsd 0O
In order to compare the resu.11) with those of Blume and T= 0 0 1 0 (3.14
Kistner? now we define the transmission coefficient for the
electric field byE'=tE°. ExpressingH with E we obtain 0 0 01
the Blume-Kistner equatidn It can be easily seen that only the integral propagation matrix
te= — 5t5% ~exgikdn), (3.12 H=TLHT (3.19

depends ond, and the reflectivity matrix depends on the
wheren=\1+ y. Comparing Eq(2.9 with Eq. (3.12 we  €lements oL’(’l) only. The transform of the differential propa
obtain the Lax formufa as generalized by Blume and gation matrixMg,=TM, T~ of layerl is obtained with the
Kistner same similarity transformation:
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0 010 0 0 xmur Xxas 0 —Xxm 0 0
0 0 0 1 1[0 0 yx X 0 —x 0
M{),=sing + — st A3 .. ’ (3.16
1 0 o] sinblo 0 O 0 0 0 0 0
01 00 0 0 O 0 0 Xx1)28IN0  —xm21 —Xa)23

X (i,J=1,2,3) being the matrix elements of the susceptibility tensor of layer

The three matrices in Eg3.16 are of the order of magnitude of, x/6, and y, respectively. Without a rigorous
explanation, Andreevat al® intuitively drop the third term containing only those elements of theensor which are not
related to the forward scattering amplitude. This approximation is obviously validsifsmall compared t@ and /. Since
typically y~10"° the interval fore in order for the third term to remain below 1% of the first two is $& <102 which
is, indeed, the typical region of a grazing incidence experiment. Fror(Btté form of M it is clearly seen what conditions
have to be fulfilled for the Andreeva approximation to be valid. Note that there is not only an upper but also a lower bound for
0.

Returning to the covariant notation, the differential propagation matix of layer| with a 1% accuracy in thez’ system
is of the form

(a-xq)q)bea | =beb[1-(a-xna)]
M= N - - : (3.17
I —aea[1-(q-xhd)] (@-xnaab

which is identical to the form suggested by Andreeval? In the grazing incidence case ta@ndb vectors are approximate
unit vectors|a| = |b| = cos#~1. This approximation is equivalent to neglecting terms of the order & sis compared to 1. In
this limit k[b . We can choose the two polarization vectors so thata andl,~q. Transforming they matrix given in the
polarization vector systerwr by Eq.(2.9) into the.”” system and substituting into ER.17) the differential propagation matrix
can be expressed in terms of the forward scattering amplitude:

0 0 1 0
A47NW) ok 4mN() ok g
— a7 0 0 —7fg +sinfo
My~ , (3.18
( 47TN(|)f k,m—k 7T+Sin29 0 0 47TN(|)f kwak(r
k2 O k?
0 1 0 0

which, as we shall see, is a particularly suitable form forwherex(|)—|kd(,)5m0 with d;y being the thickness of layer
numerical calculationsNj, is the number of resonant nuclei |. ¢,=— 477N(,)d(|)f(|) is proportional to the forward scat-
per unit volume and {;°~*?" is the coherent forward scat- tering amplitudef , .

tering amplitude in layet). Starting with Eq.(3.18 a time- To evaluate the integral propagation mat(&19 one
effective numerical algorithm is derived in the following May notice that the differential propagation matrix is block-
subsection. antidiagonal. We show that the problem, like in the Blume-
Kistner case in Sec. Ill B reduces to the calculation of a
2. Numerical calculations single 2<2 matrix exponential of a small quantity. Indeed,

using again the identity3.9), with B(y=xl 2+ (1/Xq)) by
andC(,)—x(|)I > the mtegral propagation matrix of E(8.19

The matrix(3.18 contains small quantities of the order of
sirf#< 10~ % and the much larger number unity. The calcu- with F)= (xBy)™* is given by
lation of the exponential oM to a sufficient accuracy is 1
rather time consuming. For each energy channel the expo- , cosliF ), —F)sinkF ),
nential ofM should be calculated thus typically%@imes per Liy= X . (3.20
Mossbauer spectrum. x“)F(_l)lsinH:“) costF )
The corresponding transformed integral propagation ma-
trix in the . %" system[cf. Eq. (3.16] can be written as Equation (3.20 is well suited for numerical calculations

since it contains only the 22 matrix exponential exfy, .
By the present method the large matrix elements are sepa-
rated from the small ones. If the argument of the exponential
1 is of the order of 104 the exgy~(1+y/2")2" approximation
B 0, Xylo+ X—¢><|) gives a sufficient accuracy with as small as 2.
—ExXp o ' (3.19 Using Eqgs(3.4), (3.6), (3.3, and(3.20) the reflectivity in
Xyl2 02 the o, 7 basis is given by

() =exp(ikd ) TM(, T~



53 COHERENT FORWARD-SCATTERING AMPLITUDE IN ... 6163

R=(L{1~L{1g~ L{2gF L{zz)  H(L{1y+ L{1g— L2y~ L{22). (3.21

where theL,[’ab]S (a,b=1,2) are 2<2 submatrices of the APPENDIX: DERIVATION OF THE REFLECTIVITY
integral propagation matrix” (see Appendix Since Eq. FORMULA

(3.2]) gives the reflected_amplltlude rather than the rt_eflected The integral propagation matrik of Eq. (3.4) is ex-
intensity it is equally applicable in calculating spectra in Con'pressed by” of Eq. (3.15:

ventional source(i.e., energy domajnand in synchrotron I

radiation(i.e., time domaih experiments. Using the present 1,\]°2
method a computer program was developed capaHigtiof r=| (¥, -1 2)V‘1T‘1L”TV( r”
experimental spectra both in the energy and in the time do- Y
main. I,
X| (= yt,IZ)V_lT_lL”TV( O” (A1)
IV. SUMMARY Y

The goal of the present paper was twofold. First, to establisihereT is given in Eq.(3.14; y""° are the impedance ten-

a working theory of Mssbauer spectroscopy by specularly SO'S for_the transmitted, rgflected, and |nC|dent'rad|at|on as
reflectedy rays for both the conventional source and for thedefined in Eq(3.5). Assuming vacuum on both sides of the
synchrotron radiation experiment, and second, deriving thétratified sampléwhich — by allowing for a thick enough
corresponding formulas in a computationally tractable form.SUbsltlrate — imposes no further restrictione y's are of the
Starting from the nucleon current density expression of thdorm

susceptibility tensor of Kagan and Afanas‘®we use a co- )

variant formalism! of anisotropic optics. Both in the trans- o 1, (Sn& 0 (A2)
mission and in the grazing incidence geometry the suscepti- B 0 sinte)’

bility is expressed in terms of the coherent forward scatterin%/ ) ) ) .
amplitude. The Blume-Kistner formifi@f the perpendicular Vv is the matrix of the (1,2,3,4)- (2,3,4,1), (Z—.7")
transmittivity and the Andreeva approximatidior the graz-  transformation of the form

ing incidence reflectivity are rederived in a rigorous manner.

In the grazing incidence case a concisg 2 block-matrix

exponential expression for the differential propagation ma-

trix is obtained for transitions of arbitrary multipolarity and V=
in a computationally convenient way. This latter allows for

fast numerical calculation and practical fitting of Sbauer

spectra both in energy and in time domain.

(A3)

=, O O O
o O O -
o O » O
S »r O O

Performing the calculations in E¢A1) with the above ma-
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