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The theory of both transmission and grazing incidence Mo¨ssbauer spectroscopy is reanalyzed. Starting with
the nuclear susceptibility tensor a common concise first-order perturbation formulation is given by introducing
the forward-scattering amplitude into an anisotropic optical scheme. Formulas of Blume and Kistner as well as
those of Andreeva are rederived for the forward-scattering and grazing incidence geometries, respectively.
Limitations of several previously intuitively introduced approximations are pointed out. The grazing incidence
integral propagation matrices are written in a form built up from 232 matrix exponentials which is particularly
suitable for numerical calculations and practical fitting of both energy domain~conventional source experi-
ment! and time domain~synchrotron radiation experiment! Mössbauer spectra.

I. INTRODUCTION

A great majority of Mössbauer experiments are performed
on polycrystalline samples without applying an external
magnetic field. In such cases, the polarization of theg rays
plays no role, the Mo¨ssbauer spectrum can be described in
terms of resonant and nonresonant absorption, and the reso-
nant absorption cross section can be calculated from the pa-
rameters of the hyperfine interaction. This naive approach
fails if the Mössbauer experiment is performed on a single
crystal or a textured sample and/or in an external magnetic
field. The resonant cross section in these latter cases depends
on the polarization and the full polarization-dependent scat-
tering problem has to be treated. The numerical difficulties of
the scattering approach stem from the great number of ran-
domly distributed scattering centers. These difficulties can be
circumvent if, akin to classical optics, a continuum model
rather than a microscopic scattering theory can be used. It is
by no means trivial, however, that such an optical approach
for g rays in condensed matter is feasible since the mean
distance of scattering centers is usually greater than the
wavelength of the scattered radiation. It has been shown,
however, by Lax1 that, at least for scalar waves, a close to
unity index of refractionn can be defined and simply related
to the coherent forward scattering lengthf , provided that the
momentum of the scatterers is small compared to that of the
incident wave. Since Lax’s paper,1 the refraction index ap-
proach has been used extensively in neutron and x-ray op-
tics. The heuristic generalization of this approach to polar-
ized waves and for an anisotropic medium, although claimed
to be trivial by Lax is by no means straightforward and needs
further elucidation.

In the forward scattering geometry the polarization depen-
dence of the Mo¨ssbauer absorption ofg radiation was theo-
retically studied by Blume and Kistner.2 Instead of using a

333 index of refraction matrix, they accepted Lax’s intui-
tive suggestion,1 and used a complex 232 index of refrac-
tion matrixn, corresponding to the two possible independent
states of polarization of the radiation.n was then related to
the coherent forward scattering amplitude.2

Beside the conventional forward scattering case, grazing
incidence Mo¨ssbauer spectroscopy~GIMS! has gained con-
siderable recent attention in studying stratified media: sur-
faces, interfaces, and multilayers.3–7 This method utilizes a
geometry such that theg rays are incident on the flat surface
of the sample at glancing angles of a few mrad close to the
critical angle of the electronic total external reflection. The
detected scattered particles are specularly reflectedg pho-
tons, conversion electrons, conversion x rays, and incoher-
ently scatteredg photons. A general treatment of GIMS was
published by Andreevaet al. in several papers.6–9 Starting
from the nucleon current density expression of the suscepti-
bility tensorx given by Afanas’ev and Kagan10 and using a
covariant formalism of anisotropic optics11 first introduced
by Fedorov12 these authors take into account that both the
elements of the susceptibility tensorx and the glancing angle
u are small in GIMS and calculate theg reflectivity. The
method of calculation, however, especially for the higher
multipolarity nuclear transitions, is rather cumbersome, since
the nucleon current densities are directly calculated resulting
in quite complex tensor expressions. In view of the extreme
requirements to beam divergence, GIMS is certainly more
suited for synchrotron radiation than for conventional radio-
active source experiments.

Another general description of specular reflection of graz-
ing incidence Mo¨ssbauer radiation was given by Hannon
et al.13–16 Starting from the quantum theory ofg radiation,
they formulated the dynamic theory of Mo¨ssbauer optics.
Unfortunately, the dynamic theory provides rather slow algo-
rithms for calculating reflectivity spectra, therefore it is inef-
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ficient in spectrum fitting. In the grazing incidence limit, an
optical model was derived from the dynamical theory,14,16

which has recently been implemented in numerical
calculations.17 Without using a covariant formalism, how-
ever, this latter approach also results in quite sophisticated
algorithms since, in a layered medium, the eigenpolarizations
vary from layer to layer.

Our aim is to rigorously derive general formulas for the
transmittivity and the reflectivity ofg radiation in both the
forward scattering and the grazing incidence case. Moreover,
we shall try to obtain these formulas in such form that is
suitable for fast numerical calculations in order tofit the
experimental data. Like Andreevaet al.,6–9 we start from the
Afanas’ev-Kagan nucleon current density expression of the
dielectric tensor10 and use a covariant anisotropic optical
formalism.11,12Instead of calculating the susceptibility tensor
from the current densities of the nucleons, however, we re-
duce the problem to the calculation of the transmittance~for-
ward scattering case! and the reflectivity~grazing incidence
case! from the coherent forward scattering amplitude. We
show that, in the case of forward scattering, this approach is
equivalent to the theory of Blume and Kistner.2 The present
treatment is based on no intuitive assumption and represents,
thereby, a firm basis of the Blume-Kistner theory2 and of the
Andreeva approximation.6–9

II. THE NUCLEAR SUSCEPTIBILITY

Let us consider the collective system of the nuclei and the
electromagnetic field. The effect of the electromagnetic field
will be treated as a perturbation on the randomly distributed
nuclei. The interaction HamiltonianH between the nucleus
and the electromagnetic field may be written as

H52
1

c (
i
j ~r i !•A~r i !, ~2.1!

where j (r i) is the current density of thei th nucleon and
A(r i) is the vector potential of the electromagnetic field at
the pointr i :

A~r i !5(
k,p

S 2p\c

Vk D 1/2$ck,pûk,pexp~ ik–r i !1H.c.%. ~2.2!

In this formula,ck,p denotes a photon annihilation operator
and ûk,p a unit polarization vector.

The matrix elements of the interaction HamiltonianH are
scalar products of the current density matrix elements
Jmgme

and the polarization vectorsûk,p :

Hmgme

k,p 5S 2p\c

Vk D 1/2K I gmgkpU(
i

S 2
1

cD j ~r i !•ûk,pck,p† exp~2 ik–r i !UI emeL 52
1

c S 2p\c

Vk D 1/2ûk,p•Jmgme
, ~2.3!

with

Jmgme
~k!5K I gmgU(

i
j ~r i !exp~2 ik–r i !UI emeL , ~2.4!

whereI g andI e are the nuclear spin quantum numbers in the
excited and ground state with the corresponding magnetic
quantum numbersmg andme , respectively.J(k) is the k
representation of the current density produced by a single
nucleus.~Throughout the calculations we shall use the same
letters for physical quantities inr andk representation letting
the argument make evident which representation is meant.!

In first order perturbation of the electromagnetic field the
average nucleon current density is10

^J~1!~k!&5s~k!E~k!5
iv

c
s~k!A~k!, ~2.5!

with s(k) being the conductivity tensor, which in turn de-
fines the susceptibility tensor of the medium by

x~k!5
4p i

v
s~k!. ~2.6!

Afanas’ev and Kagan10 calculated the susceptibility ten-
sor in first order of the vector potential for randomly distrib-
uted nuclei in terms of the change of the average nucleon
current density:

x~k!52
4p

c2k2
N

2I g11 (
memg

Jmgme
~k!+Jmemg

* ~k!

Ek2Ememg
1
iG

2

, ~2.7!

whereN is the number of resonant nuclei per unit volume,
Ek is the energy of theg photon,Ememg

5Eme
2Emg

is the

energy difference between the nuclear excited and ground
states,G is the natural width of the excited state, and+ is the
dyadic vector product sign. The susceptibility tensorx(k)
depends on the propagation vectork of the unperturbed
wave. Instead of Eq. ~2.5! a ^J(1)(k)&
5(Ks(k,k1K )E(k1K ) expression is obtained for nonran-
dom distribution of the scatterers,10 with (2p)21K being a
reciprocal lattice vector. Only the random scatterer case will
be further considered here.

Equation~2.7! is the starting equation of Andreeva in cal-
culating grazing incidence Mo¨ssbauer spectra.8 In order to
calculatex(k) for an arbitrary orientation of the hyperfine
fields with respect tok , the currentsJmgme

are expanded in
terms of irreducible tensors resulting in a sophisticated
formalism.8 For cases like transitions of higher multipolarity,
mixed multipole transitions, variation of hyperfine fields
within the medium, texture, etc., the formalism therefore be-
comes cumbersome and numerically intractable. Having cal-
culated the dielectric tensor of the Mo¨ssbauer medium, An-
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dreevaet al. apply a very elegant covariant formalism11 and
solve the problem of grazing incidence nuclear scattering by
stratified media.

The numerical difficulties of the higher multipolarity
terms, hyperfine field distributions, texture, etc. have been
overcome years ago by Spiering18 in treating the thick ab-
sorber case in the Blume-Kistner formalism.2 The Hamil-
tonian, the scalar product of the current densityJmgme

and the

polarization vectorûk,p have simpler transformation proper-
ties thanJmgme

, therefore, unlike Andreevaet al.,8 the for-
ward scattering amplitude

f k,p→k,p852
kV

2p\c

1

2I g11 (
memg

Hmgme

k,p8 Hmemg

k,p†

Ek2Ememg
1
iG

2

~2.8!

rather thanJmgme
is calculated for an arbitraryk direction.18

In what follows we shall show that forg quanta in the
physically relevant representation the 333 properties of the
dielectric tensor are not fully used by the optical theory.
Since thek directions involved in the scattering problem are
either equivalent~forward scattering! or extremely close to
each other~grazing incidence case!, the relevant block of the
dielectric tensor is fully described by the four components of
the forward scattering amplitude. This latter ensures that the
present theory remains valid for nuclear transitions of any
multipolarity. Indeed, expressing the susceptibility tensor in
the polarization vector systemP=(ês,p5ûs,p ,ê35k/uku) of
the unperturbed incident radiation the significant matrix ele-
ments are

xpp8~k!5
4pN

k2
f k,p→k,p8p,p85s,p; ~2.9!

s andp being arbitrary polarizations. Once the susceptibil-
ity ~the refractive index or the dielectric! tensor of the me-
dium is defined the problem of calculating the propagation of
electromagnetic field in the medium becomes an optical
problem. Since the nuclear dielectrics is anisotropic, a
polarization-dependent optical formalism will be used.

III. COVARIANT ANISOTROPIC OPTICS OF A NUCLEAR
DIELECTRICS

The covariant optical formalism of stratified anisotropic me-
dia developed by Borzdov, Barskovskii, and Lavrukovich11

and applied by Andreevaet al.6–9will be introduced here for
three reasons.

~1! Approximations made by Andreevaet al.are based on
the assumption that the square of the scattering angle is of
the order of the susceptibility tensor elements. The border-
line of the Andreeva approximation will be specified here.

~2! The Blume-Kistner theory2 will be derived from the
covariant optical formalism.

~3! In a practical application of the Blume-Kistner theory
one calculates the exponentials of 232 complex matrices.
The covariant optics uses 434 matrices in the exponentials
leading to rather time-consuming calculations. It will be
shown that in a suitably chosen basis, the 434 matrices

reduce to 232 ones both in forward scattering and in graz-
ing incidence geometry.

A. The Borzdov-Barskovskii-Lavrukovich formalism

We may write the basic equation for the tangential com-
ponents of the electric and magnetic fieldsq̂3E(q̂•r ) and
Ht(q̂•r )52q̂3@ q̂3H(q̂•r )# at the pointr as follows:11

~ q̂•“ ! S Ht~ q̂•r !

q̂3E~ q̂•r ! D 5 ikM ~ q̂•r !S Ht~ q̂•r !

q̂3E~ q̂•r ! D , ~3.1!

were q̂ represents the unit normal vector of the surface. The
material parameters are allowed to vary only in theq̂ direc-
tion ~stratified medium! and the fields depend only on the
q̂•r scalar product.M is the differential propagation matrix
defined by

M5S A B

C DD , ~3.2!

with

A5~ q̂•«q̂!21q̂3«q̂+a2~ q̂•mq̂!21b+q̂mI ,

B5~ q̂•«q̂21I «̄I2~ q̂•mq̂!21b+b,

C52~ q̂•«q̂!21a+a2~ q̂•mq̂!21q̂3m̄q̂3,

D5~ q̂•«q̂!21a+q«q̂32~ q̂•mq̂!21Imq̂+b.

Here «511x is the dielectric tensor,v3 denotes the dual
tensor of an arbitrary vectorv, and the tilde sign stands for
the transpose of a tensor. TheI52(q̂3)2operator projects a
vector into the plane of the sample surface. The tangential
component of the incident wave vector isb5Ik/k, and
a:5b3q̂ is a vector perpendicular to the reflection plane,
«̄5det(«)«21, m̄5det(m)m21. Strictly speaking, A, B, C,
andD are three-dimensional tensors acting only, as it can be
seen, in thea,b plane. Consequently,M can be properly
represented by 434 matrices. The permeability tensorm
will play no further role.8 The solution of Eq.~3.1! relates
Ht and q̂3E to each other at the lower and upper surfaces of
the layered medium. In a homogeneous film of thicknessd,
the solution is given by the so-called integral propagation
matrix L5exp(ikdM), by the matrix exponential of the dif-
ferential propagation matrix. For ann-layer system, the total
integral propagation matrix is the product of the individual
integral propagation matricesL ( l ) of layer l , thus

L5L ~n! . . .L ~2!L ~1!. ~3.3!

The expression of the planar reflectivity,r defined by
Ht
r5rHt

0 , whereHt
r and Ht

0 are the tangential amplitudes of
the reflected and incident waves, respectively, writes as
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r5F ~g t,2I 2!LS I 2g r D G21F ~2g t,I 2!LS I 2g0D G . ~3.4!

Here I 2 is the 232 unity matrix and theg0, g r , and g t

tensors are the impedance tensors for the incident, specularly
reflected, and transmitted waves, respectively, defined by the

g0,r ,tHt
0,r ,t5q̂3E0,r ,t ~3.5!

equation. Since theg tensors act in the plane perpendicular
to q̂, they can be represented by 232 matrices.11

The elements of the reflectivity matrixR are geometri-
cally related to the elements of the planar reflectivity,r , i.e.,

Rss52r 22, Rsp52r 21sin
21u,

Rps5r 12sinu, Rpp5r 11, ~3.6!

wheres andp are polarizations corresponding toE perpen-
dicular and parallel to the plane of incidence, respectively.
For numerical calculations we shall choose different appro-
priate coordinate systems. The laboratory systemS will be
defined so that thex, y, andz axes are parallel toa, b, and
q̂, respectively. The field components in Eq.~3.1! define a
natural permutationK5(1,2,3,4) basis of the four-
component field vectors@Hx ,Hy ,(q̂3E)x ,(q̂3E)y# with re-
spect to the S system. A convenient permutation of

K5(1,2,3,4), viz.K 85(2,3,4,1), shall also be used. The
differential and integral propagation matricesM andL will
be denoted byM 8 andL8, respectively, in theK 8 system.

B. The forward scattering case: The Blume-Kistner equation

The ~3.2! differential propagation matrix for the case of
normal incidence2 in theK system has the following simple
form:

M5S 0 0 «22 2«21

0 0 2«12 «11

1 0 0 0

0 1 0 0

D . ~3.7!

The transmittivity may be expressed in terms of the inte-
gral propagation matrix,L5exp(ikdM) as11

t52F ~ I 2 ,I 2!L
21S I 2I 2D G

21

~3.8!

defined byHt
t5tHt

0 can be explicitly elaborated to obtain the
Blume-Kistner formulas.2 Indeed, using the identity~which
can easily be proved by expanding the exponentials!

expS 02 B

C 02
D 5S cosh~BC!1/2 B~CB!21/2sinh~CB!1/2

C~BC!21/2sinh~BC!1/2 cosh~CB!1/2
D , ~3.9!

with 02 being the 232 zero matrix, the matrix exponential
of M can be expressed in terms of a 232 submatrix
B5(

2«21

«22
«11

2«21) of Eq. ~3.7! so that the~3.8! transmittivity

t5Fcosh~ ikdB1/2!2
1

2
sinh~ ikdB1/2!~B1/21B21/2!G21

.

~3.10!

Making use of the smallness of the susceptibility one can
easily writeB1/21B21/2'2I 2 and the transmittivity:

t'exp~ ikdB1/2!. ~3.11!

In order to compare the result~3.11! with those of Blume and
Kistner,2 now we define the transmission coefficient for the
electric field byEt5tEE

0. ExpressingH with E we obtain
the Blume-Kistner equation2

tE52q̂3tq̂3'exp~ ikdn!, ~3.12!

wheren5A11x. Comparing Eq.~2.9! with Eq. ~3.12! we
obtain the Lax formula1 as generalized by Blume and
Kistner2

npp85dpp81
2pN

k2
f k,p→k,p8, ~3.13!

whered is the Kronecker symbol andp,p85s,p.

C. The grazing incidence case: The Andreeva approximation

1. The differential propagation matrix

In order to see which elements in Eq.~3.6! are of the same
order of magnitude, we eliminate the explicitu dependence
of R by applying a linear transformationT ~in theK 8 sys-
tem! of the form:

T5S sin21u 0 0 0

0 sin21u 0 0

0 0 1 0

0 0 0 1

D . ~3.14!

It can be easily seen that only the integral propagation matrix

L ~ l !9 5TL~ l !8 T21 ~3.15!

depends onu, and the reflectivity matrix depends on the
elements ofL ( l )9 only. The transform of the differential propa
gation matrixM ( l )9 5TM( l )8 T21 of layer l is obtained with the
same similarity transformation:
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M ~ l !9 5sinuS 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D 1
1

sinu S 0 0 x~ l !11 x~ l !13

0 0 x~ l !31 x~ l !33

0 0 0 0

0 0 0 0

D 1S 0 2x~ l !12 0 0

0 2x~ l !32 0 0

0 0 0 0

0 x~ l !22sinu 2x~ l !21 2x~ l !23

D , ~3.16!

x ( l ) i j ( i , j51,2,3) being the matrix elements of the susceptibility tensor of layerl .
The three matrices in Eq.~3.16! are of the order of magnitude ofu, x/u, and x, respectively. Without a rigorous

explanation, Andreevaet al.9 intuitively drop the third term containing only those elements of thex tensor which are not
related to the forward scattering amplitude. This approximation is obviously valid ifx is small compared tou andx/u. Since
typically x'1025 the interval foru in order for the third term to remain below 1% of the first two is 1023,u<1022 which
is, indeed, the typical region of a grazing incidence experiment. From the~3.16! form of M it is clearly seen what conditions
have to be fulfilled for the Andreeva approximation to be valid. Note that there is not only an upper but also a lower bound for
u .

Returning to the covariant notation, the differential propagation matrixM ( l ) of layer l with a 1% accuracy in theK system
is of the form

M ~ l !5S ~a–x~ l !q̂!b+a I2b+b@12~a–x~ l !a!#

I2a+a@12~ q̂•x~ l !q̂!# ~ q̂•x~ l !a!a+b D , ~3.17!

which is identical to the form suggested by Andreevaet al.9 In the grazing incidence case thea andb vectors are approximate
unit vectorsuau5ubu5cosu'1. This approximation is equivalent to neglecting terms of the order of sin2u as compared to 1. In
this limit kib .We can choose the two polarization vectors so thatû1'a and û2'q̂. Transforming thex matrix given in the
polarization vector systemP by Eq.~2.9! into theS system and substituting into Eq.~3.17! the differential propagation matrix
can be expressed in terms of the forward scattering amplitude:

M ~ l !'S 0 0 1 0

4pN~ l !

k2
f ~ l !
k,s→k,p 0 0

4pN~ l !

k2
f ~ l !
k,s→k,s1sin2u

4pN~ l !

k2
f ~ l !
k,p→k,p1sin2u 0 0

4pN~ l !

k2
f ~ l !
k,p→k,s

0 1 0 0

D , ~3.18!

which, as we shall see, is a particularly suitable form for
numerical calculations (N( l ) is the number of resonant nuclei

per unit volume andf ( l )
k,p→k,p8 is the coherent forward scat-

tering amplitude in layerl !. Starting with Eq.~3.18! a time-
effective numerical algorithm is derived in the following
subsection.

2. Numerical calculations

The matrix ~3.18! contains small quantities of the order of
sin2u, 1024 and the much larger number unity. The calcu-
lation of the exponential ofM ( l ) to a sufficient accuracy is
rather time consuming. For each energy channel the expo-
nential ofM should be calculated thus typically 210 times per
Mössbauer spectrum.

The corresponding transformed integral propagation ma-
trix in theK 8 system@cf. Eq. ~3.16!# can be written as

L ~ l !9 5exp~ ikd~ l !TM~ l !8 T21!

5expS 02 x~ l !I 21
1

x~ l !
f~ l !

x~ l !I 2 02
D , ~3.19!

wherex( l )5 ikd( l )sinu, with d( l ) being the thickness of layer
l . f ( l )524pN( l )d( l )

2 f ( l ) is proportional to the forward scat-
tering amplitudef ( l ) .

To evaluate the integral propagation matrix~3.19! one
may notice that the differential propagation matrix is block-
antidiagonal. We show that the problem, like in the Blume-
Kistner case in Sec. III B reduces to the calculation of a
single 232 matrix exponential of a small quantity. Indeed,
using again the identity~3.9!, with B( l )5x( l )I 21(1/x( l ))f ( l )
andC( l )5x( l )I 2 the integral propagation matrix of Eq.~3.19!
with F ( l )5 (x( l )B( l ))

1/2 is given by

L ~ l !9 5S coshF ~ l !
1

x~ l !
F ~ l !sinhF ~ l !

x~ l !F ~ l !
21sinhF ~ l ! coshF ~ l !

D . ~3.20!

Equation ~3.20! is well suited for numerical calculations
since it contains only the 232 matrix exponential expF(l) .

By the present method the large matrix elements are sepa-
rated from the small ones. If the argument of the exponential
is of the order of 1024 the expy'(11y/2n)2

n
approximation

gives a sufficient accuracy withn as small as 2.
Using Eqs.~3.4!, ~3.6!, ~3.3!, and~3.20! the reflectivity in

thes,p basis is given by
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R5~L @11#9 2L @12#9 2L @21#9 1L @22#9 !21~L @11#9 1L @12#9 2L @21#9 2L @22#9 !, ~3.21!

where theL @ab#9 s (a,b51,2) are 232 submatrices of the
integral propagation matrixL9 ~see Appendix!. Since Eq.
~3.21! gives the reflected amplitude rather than the reflected
intensity it is equally applicable in calculating spectra in con-
ventional source~i.e., energy domain! and in synchrotron
radiation~i.e., time domain! experiments. Using the present
method a computer program was developed capable offitting
experimental spectra both in the energy and in the time do-
main.

IV. SUMMARY

The goal of the present paper was twofold. First, to establish
a working theory of Mo¨ssbauer spectroscopy by specularly
reflectedg rays for both the conventional source and for the
synchrotron radiation experiment, and second, deriving the
corresponding formulas in a computationally tractable form.
Starting from the nucleon current density expression of the
susceptibility tensor of Kagan and Afanas’ev10 we use a co-
variant formalism11 of anisotropic optics. Both in the trans-
mission and in the grazing incidence geometry the suscepti-
bility is expressed in terms of the coherent forward scattering
amplitude. The Blume-Kistner formula2 of the perpendicular
transmittivity and the Andreeva approximation9 for the graz-
ing incidence reflectivity are rederived in a rigorous manner.
In the grazing incidence case a concise 232 block-matrix
exponential expression for the differential propagation ma-
trix is obtained for transitions of arbitrary multipolarity and
in a computationally convenient way. This latter allows for
fast numerical calculation and practical fitting of Mo¨ssbauer
spectra both in energy and in time domain.
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APPENDIX: DERIVATION OF THE REFLECTIVITY
FORMULA

The integral propagation matrixL of Eq. ~3.4! is ex-
pressed byL9 of Eq. ~3.15!:

r5F ~g t,2I 2!V
21T21L9TVS I 2g r D G21

3F ~2g t,I 2!V
21T21L9TVS I 2g0D G , ~A1!

whereT is given in Eq.~3.14!; g t,r ,0 are the impedance ten-
sors for the transmitted, reflected, and incident radiation as
defined in Eq.~3.5!. Assuming vacuum on both sides of the
stratified sample~which — by allowing for a thick enough
substrate — imposes no further restriction! theg ’s are of the
form11

g05g t52g r5S sinu 0

0 sin21u D . ~A2!

V is the matrix of the (1,2,3,4)→ (2,3,4,1), (K→K 8)
transformation of the form

V5S 0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

D . ~A3!

Performing the calculations in Eq.~A1! with the above ma-
trices the planar reflectivity

r52S 0 sin21u

21 0 D 21

~L @11#9 2L @12#9 2L @21#9 1L @22#9 !21

3~L @11#9 1L @12#9 2L @21#9 2L @22#9 !S 0 sin21u

1 0 D . ~A4!

From Eqs.~A4! and ~3.6! we obtain the~3.21! reflectivity
formula.
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