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Eddy currents and spin excitations in conducting ferromagnetic films
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We explore the influence of the finite conductivity on spin waves in metallic ferromagnetic films. We
consider propagation perpendicular to the magnetization, which is parallel to the surface, and wavelengths
sufficiently long that the influence of exchange may be ignored. Precession of the magnetization induces eddy
currents which damp the spin waves, and also renormalize the dispersion relation of the Damon-Eshbach mode
encountered in this geometry. We provide analytic formulas which describe these effects, in various limits.
Studies through use of a Green’s-function method explore the influence of the conductivity on the spectrum of
spin fluctuations, in various wavelength regimes.

[. INTRODUCTION are considered. We show below that in certain regimes of
wavelength and film thickness, eddy current damping be-

The theory of spin-wave excitations in ferromagneticcomes very severe indeed. It is also the case, however, that
films is a classic topic in magnetism, treated theoretically infor film thicknesses and wavelengths examined in numerous
various limits many years agcExperimentally, these modes recent experiments, its influence is modest.
may be probed by ferromagnetic resonance, or by the Bril- We confine our attention to a geometry encountered com-
louin scattering of light In such experiments, the modes monly. We consider a ferromagnetic film with magnetization
excited have wavelengths very long compared to a latticgparallel to the surfaces, and we consider spin waves which
constant. In this regime, exchange interactions contribut@ropagate perpendicular to the magnetization. This is the
negligibly to the excitation energy. Such spin waves are themase studied in most current experimenis.this geometry,
described accurately by a theory based on magnetostatiosne encounters the Damon-Eshbach wave, a mode which in
not only for films, but for samples of diverse shapes. the limit of wavelength short compared to the sample thick-

Interest in this area has revived in recent years, as a comess becomes a surface spin wabeund to either the upper
sequence of modern sample preparation techniques, whidar lower film surface, depending on its direction of propaga-
allow the preparation of very thin ferromagnetic films andtion. The methods used here are readily extended to other
multilayers of extraordinary quality, on diverse substrateés. magnetization orientations, or propagation directions.

The early studies of spin waves in thin films, spheres or We begin our discussion in Sec. Il with a derivation of the
ellipsoids, were directed largely toward insulating ferrites,dispersion relation of the Damon-Eshbach wave in the pres-
such as YIG The new materials described in the previousence of finite conductivity. One may extract from this infor-
paragraph incorporate films of ferromagnetic metals, such amation on the linewidth of the mode by extracting the imagi-
Fe. Theoretical descriptions of spin excitations directed tonary part of the frequency, for a given wave vedpparallel
ward these materials include features such as the anisotrte the surface. We are led to simple, useful analytic formulas
pies, dipolar couplings and interfilm exchange couplingshere, in special limits.
found in these samples®but do not explicitly acknowledge It is difficult to extract useful information from the im-
the fact that the constituent films are metallic in nature. It isplicit dispersion relation, in regimes where eddy current
the purpose of this paper to present and explore the influenaamping and renormalization effects are severe. Thus, in
of finite conductivity on the spin-wave excitations of a fer- Sec. lll, we derive a set of Green'’s functions which may be
romagnetic film. used to describe the response of the metallic ferromagnet to

The issue of concern is the following. When a spin wavean arbitrary external microwave field, applied in the plane
is excited, of course the magnetization precesses at eagerpendicular to the magnetization. These response functions
point in space, generally on a trajectory of elliptical charac-can be used for diverse purposes. By invoking the
ter. The precessing magnetization generates a timdiuctuation-dissipation theorem, for example, we can use
dependent internal magnetic inductiofx,t) everywhere. By them to explore the frequency spectrum of thermal spin fluc-
Faraday’s Law, this time-dependent magnetic induction mustuations, and also to describe the Brillouin spectrum of the
induce an electric field(x,t). If the conductivity is finite, film.>® By such a study, we extract information on the nature
eddy currents are generated by this electric field. The ohmiof the spin excitations, in the frequency and wavelength re-
dissipation associated with the eddy currents is a source afime where the influence of eddy currents is severe.
linewidth for the spin-wave mode. We show below that in  In the analysis presented here, we ignore the influence of
addition, the eddy currents can renormalize the dispersioexchange. The precessing moments, in the present picture,
relation of the modes. generate dipolar fields which influence the dispersion rela-

It is of interest to inquire if the films and multilayers can tion of the spin waves we consider. Under the conditions
be utilized for device applications. The lifetime of the spin- explored here, exchange effects on the Damon-Eshbach
wave modes is a critical parameter when such applicationwaves are quite modest, and may be set aside with little
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FIG. 1. The geometry considered in the present paper. We have c
a ferromagnetic film of thickned3, with magnetizatioM 4 parallel
to the surface. An external magnetic figtty is applied parallel to V.b=0 (2.3b
the surface. We consider spin waves, with wave vestothat ' '
propagate parallel to the axis. and also
- Q
. . . . VXe=i—b, (2.30
consequence. One may appreciate this from earlier discus- c

sions, in W.h'Ch. exchange Is mcluded_fuﬁyn the particular wheree is the electric field generated by the precessing mag-
case of Brillouin spectra, exchange influences the Spectrumti»ation. The conductivity of the medium is For the

of standing spin waves importantly, by introducing splittings eometry in Fig. 1, the electric field is parallel to thez

between the various stqndlng wave modes. Th|§ featu_re irection. We have ignored the displacement current term on
absent from the calculations presented below. It is stra|ghtt-he right-hand side of Eq2.39, an approximation valid so
forward, in principle, to extend earlier discussidre in- L

long as we are concerned with lengths smatl). The re-
fardation effects introduced by this term will be negligible
or the examples explored here.

All fields in the above equations are proportional to
p(k,x), with a'y dependence to be determined. It is a
short exercise to find a pair of equations obeyechbyand

hy:

plored here. The cost in complexity is substantial. We leav
this for future work, when we wish quantitative contact be-
tween theory and experiment, in the standing spin-wav%X
spectra of conducting films.

II. THE INFLUENCE OF FINITE CONDUCTIVITY
ON THE DISPERSION RELATION
OF DAMON-ESHBACH WAVES

2t
%

d 2

ik2+ }hy—[k, ay %ﬂhxzo (2.43

The geometry we consider is illustrated in Fig. 1. We d
have a ferromagnetic film of thickneBs with magnetization
M parallel to the surface. An external magnetic fielg is
applied parallel taVi;. The coordinate system is aligned so i ko= e 2
M, is along thez axis, the film lies betweep=0 andy =D, K™ 2 5y
and the waves we consider propagate in hdirection.
Their wavelength will be sufficiently long that we ignore
exchange effects.

The spin waves have frequenfy As remarked in Sec. |,
the precessing magnetization generates magneticHielad c
a magnetic inductiom, both of which oscillate in time with 50:W' (2.9
the frequency). Both h andb lie in the xy plane, for the
geometry in Fig. 1. For the ferromagnet, we have the consti- We seek solutions in the medium with the spatial varia-

h,+

d
M1y~ Mz'ﬂ} hy=0. (2.4b

In these equations, we have introduced the classical skin
depth &, in a medium with conductivityr:

tutive relations tion exd +=Qy]. One finds, after a brief calculation,
. 2Mv 1/2
by = i, +iuzh, 2.1 o=|iz+ W] , 2.6
0
and

where here and elsewhere in the paper we choos@Re(.
The quantity

byzl-Llhy_i/-Lthn (2.1b

pi-us Q5= (Q+il7)?
where e 0aQe— (Q+iIDE

(2.7)
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In Eq. (2.7), Qg=Qu+47Qy=y(Ho+47Myg). conditions(conservation oh, andb,). Fory>D, all fields

Some comments on the physical content of Ey6) are  vary as exp—k,(y—D)) and for y<O, they scale as
in order. First of all, in a conducting material, the expres-exp(+k;y).
sion in Eq.(2.5 is the well-known classical skin depth. Ina It should be remarked that here, and throughout the re-
material with a nonzero magnetic permeability, the skinmainder of the paper, we suppokg>0. The frequency)
depth is modified by the magnetic response. The combinazan then be either positive or negatieDisturbances which
tion propagate from left to right are described by chooding0,

and those which propagate from right to left by choosing
s 0<0.
Sep=—m (2.9 When the analysis is completed, we find the implicit dis-

Viy persion relation may be written

which appears in Eq2.6) is the effective skin depth in the 5 b 2
ferromagnet. Clearly, this is strongly frequency dependent, (Q+ pvk) = (ol pmy) ki
in the vicinity of the resonances in the structure. Recall that (Q—ka”)Z—(M/M)Zkf B
(0,40Qg)Y2 is the ferromagnetic resonance frequency of a

thin film with magnetization parallel to the surfateNear ~ This may be rearranged to read
resonanceu, becomes very large, and the skin depth is

exp—2QD). (2.1)

reduced dramatically from the classical valgg If AH is 87202 ktanh(QD)
the linewidth, defined as the full width at half maximum of (Q+il7)2=Qy0+ > ,
oo : ki Q+ (kf—i/85)tanH QD)
the absorption lindthen in our phenomenolog&H =2/7), I I 0
on resonance the skin depth is well approximated by (2.12
which asé&,—, yields the standard dispersion relafiap-
yAH \ Y2/ Q. \ Y4 propriate to the insulating filnffor 7—c):
5FM(Q:(QHQB)1/2)E5R: 2 rperows 0
47TQM QB
(2.9 Q2(k)=y*(Ho+27Mg)?— 42 y?M2exp( — 2kD).
In Fe, 47M =2.1x10" G. If the linewidthAH=100 G, and (.13
the resonance frequency is in the 10 GHz rarfgés smaller From Eq.(2.12, which remains an implicit dispersion

than &, by a factor of roughly 25. The influence of the spin rejation by virtue of the presence of the frequency-dependent
system on the penetration depth of electromagnetic radiatioguantity Q on the right-hand side, we can extract simple
is thus dramatic, near resonance. The skin deRil be-  formulas in special limits. To treat the reginkes,>1, for
comes very large ned2=()g . The film “opens up,” and its  example, we replac® by Q=k,[1—i uy/(k;8) >+ -] and
transmissivity increases dramatically. This is the phenomeypand the right-hand side in powers (& 5,) 2 retaining

enon of “antiresonance,” discovered some years dgo.  only the leading term. After some algebra, we obiair let
We recover the theory appropriate to insulating media in. ., for the moment

the limit 5—. ThenQ=k,|. Suppose we consider an in-

finitely thick film, D—ow, and a Damon-Eshbach wave

propagating down its surface. The spatial variation of the

disturbances associated with the wave is controlled by 2711 y?M

exp(—Qy), which becomes expf|k,|y), as §—=. As the - *[(Ho+27Mg) +(Ho+6m7Mg)e 2RP]

wave vectoik,—0, the fields penetrate ever more deeply into (kido)

the material, in a manner identical to Rayleigh surface acous- +eee (2.14

tic wavest? This behavior is modified dramatically by the

presence of the finite conductivity, where now The result in Eq(2.13 remains an implicit dispersion rela-
tion, by virtue of the presence @ on the right-hand side.

( 2 )1/2 There are two limits where we may generate simple results:

O2=y%(Ho+27Mg)?— 472 y>MZexp —2QD)

(2.10 the very thin film limitD —0, and the thick film limitD —oc,
We have, restoring the influence of the relaxation time

lim Q=

Kj—0 | Opm

The fields can penetrate no deeper than the skin dégjh

associated with the frequency of the wave. WBenqy,, in _ B i imyMg
the long-wavelength limit, the fields of the Damon-Eshbach Dl'f'mﬂ(k”)_ Y(Ho+27My) = 7 (K )2 e
wave will be confined to a channel of dep#py,, near the (2.153

surface. Clearly, in this regime, the eddy currents not only
limit the lifetime of the wave, but will modify its effective

dispersion relation dramatically as well. M (k)= v HoB) 22 i 2imyMs (B
It is a straightforward matter, following procedures now 'Lno (ky) = (HoB)™*= 7 (kog)? \H
standard, to determine the implicit dispersion relation of the (2.150

wave. Inside the film, the various fields are supposed a su-
perposition of expfQy), and exp-Qy). These are Clearly, the last terms in Eq$2.14) describe damping pro-
matched to fields in the vacuum through standard boundargluced by the eddy currents induced by the spin motion.
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We may also extract the behavior of the effective disper+ecalls 4rM =21 kG for Fe, one sees the eddy current con-
sion relation for smalk;, from Eqg.(2.11). Quite clearly, as tribution to the linewidth is in the range of a few tens of
k,—0, Q tends to OHQB)”Z—i/r, the (damped ferromag-  Gauss. This is below current experimental resolution, but is
netic resonance frequency of the film. The task of extractindy no means negligible.
the first correction to this term in tricky, in the smijllimit. The limit k,6,<1 applies to ferromagnetic resonance ex-
For k,8<1, clearly we may ignor&? compared toi/s3.  periments. One sees from Ed8.19 thatk, must be finite
Also, in Eg. (2.1, we replace Q by simply for eddy current damping to influence the linewidth. This
Q=(2uy/i63)*2 Note that ask—0, and @Q+i/7) suggests that in most such experiments, eddy current damp-
—(040) Y2, and thusQ become very large. We shall ing should be very small. We expekit=7/W, with W the
assumeQ D—x ask,—0, so tanhQ D) —1. The criterion for ~ width of the sample, if one has spin pinning at the edges.
the validity of this assumption will be stated when the analy- The approximate formulas obtained above suggest that

sis is complete. We then have whenkd,=1, the eddy current damping should be very sub-
stantial. It is difficult to extract meaningful information from
i\2 8W29§A(k“50)2 the effective dispersion relation, in this regime. Thus, in Sec.
(Q+ —) =005+ —175 (2.16 Nl we turn to a discussion of the Green’s-function method
T [kyGo(2py f1)7 1] used in numerous earlier papers. This method can provide
We seek a solution of Eq2.15 with information on the excitations in the system, even in the limit

of strong damping.
(Q+il7)?=0405—1A(K5)?, (2.1
I1l. GREEN'S-FUNCTION DESCRIPTION OF THE FILM
whereA is to be determined. Now RESPONSE IN THE PRESENCE

OF EDDY CURRENTS

2_ 2
= Q5 (Q+'/_T) ~ 4779'\/'98 (2.18 In Sec. I, we examined the influence of eddy currents on
VU Qg —(Q+i/7)% 7 i1A(K80)?" the dispersion relation of the magnetostatic spin waves of the
; . ferromagnetic film, for the geometry illustrated in Fig. 1. We

as ky—0. When Eq.(2.16 ar_1d Eq.(2..17) are inserted into saw that the eddy currents introduce damping, which could
Eqg. (2.19, we find two solutions foA: ) . .
be very severe in the wave-length regime whie/@~1, if

Yo 1 the asymptotic formulae of Sec. Il are extrapolated into this

AL=2mQy(Qg = Q). (219 regime. In principal, at least, we could explore this issue

We then have, for each choice of wave vector, two propa!urther through examination of the Q|spers!on relation found
Sec. Il, through numerical studies which trace out the

gating modes, each characterized by a different lifetime andf! .
propagation length: complex frequency as a function of wave vector. In the re-

gime where damping is strong, such studies are of limited
) o "™ qsefulness, ;ince it is often L_lnclear how the dispersion rela_l—
Q. (k)= y(HoB)Y2— I——iwyMS( (E) 4 (@) ] tion or damplng rate rate which emerges are related t_o vari-
- T Ho B ous experimental probes of the system. We recall earlier dis-

’ cussions which led to unphysical conclusions in other
X(kydo) ™t - . (220 contextst? and as a consequence we turn to the development

The origin of the two-mode behavior is the resonance in th@f @ Green’s-function technique within which strong dissipa-
Voigt susceptibility w, which controls the effective skin tlve_ effects can be mcqrporated, and related to diverse ex-
depth. A discussion of the excitation of these modes requireBeTiments in an unambiguous manner.
an analysis of any particular experiment of interest, to assess One proceeds by supposing the film is driven by a weak
their relative amplitude. The Green's functions discussed irfxternal magnetic field in they plane, given by
Sec. Il will allow one to perform such analyses, for any
desired excitation scheme. . h<e)(x,t):[)”(h(;”(y)+§/h§,e)(y)]exp(ik”x—iQt),

We remark on the requirement for our assumption (3.

|QDI|>1 to be valid. From Eq(2.17), ask,—0, one sees
where the profile of the external field in thedirection is

112 arbitrary. In response to this field, in linear-response theory,

D SWQMQB . . . .
D= — | —*° 292 the magnetization of the film is
SO we must havé)>kH5S, or k 6p<<(D/dy). M(x,t)=ZMg+m(x,t), (3.29

The results in Egs(2.14 and Eq.(2.19 allow one to
estimate the influence of eddy current damping, for variougvhere
experimental situations of interest. For instance, in typical
Brillouin-scattering experiments, the modes excited have m(x,t) =[Xm,(y) +Im,(y)Jexp(ik x—iQt). (3.2b
k=10 cm %, while for metallic Fe, in the microwave fre- Y
quency rangé10 GHz, for examplg one finds§,=10"*cm.  The elements of the external fiel@{(y),h{?(y)) are re-
We thus havek; 6,=10 in such studies, and we may use Eqgs.lated to the system respong®,(y),m,(y)) by a matrix of
(2.149 to estimate the eddy current damping effects. If oneGreen’s functions introduced below.
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We cor_15ider the system driven by an external perturbation  — ), .m,(y)+i amy(y)+ Auh@(y)=—0uh®(y),
characterized by only a single frequeri@y and wave vector (3.4b)
k, parallel to the surface. Within linear-response theory, o o
straightforward Fourier synthesis may be used to describl@’h”e_aﬂer e_hmmatlon of the electric field, we may generate
the response of the film to a perturbation of arbitrary form inth€ dipolar field from
space and time. By this means, for example, with the use of
our Green’s functions, one can develop the theory of spin- 92 g 5h§d)(y)
wave generation by a current bearing strip or meander line 4 A m,(y)+ &—y2+i>\2 hi(y) — ik ay =0
(modeled as a periodic structdideposited on the surface. In (3.49
this paper, we do confine our attention to propagation per-
pendicular to the magnetization, as illustrated in Fig. 1.  and

The fluctuation-dissipation theorem also may be em-

ployed to relate our Green'’s functions to the amplitude of (?hf(d)(y)
thermal spin fluctuations in the film, of frequenéy and AmiN®my(y) —ik, a——[kf—i)\z]h§d>(y)=o.
wave vectork,. The spatial variation of the thermal spin y (3.40

fluctuations may be explored by this means. Brillouin-

scattering experiments provide us with a probe of such thern these last two equations?=2/85, whered, is the classi-
mal spin fluctuations, within the optical skin depth. Thus, ourcal skin depth defined in Eq42.5). The processing magneti-
earlier theories of the Brillouin spectrum of ferromagneticzation generates fields in the vacuum, which must be
films and superlattices utilized similar Green’s functions formatched to those in the film through appropriate boundary
this purpose:® One may view the present paper as an extenconditions. These are conservation of tangeritigtontinu-
sion of an earlier descriptiGrof spin waves in thin films to ity of h{?(y) at the film surfacels and normab [continuity
include the influence of eddy currents induced by the fluctuof h§,d)(y)+47rmy(y)]. The fields in the vacuum are de-
ating magnetization. The earlier study incorporated exchangecribed by Eqs(3.49 and(3.4d with A\ set to zero.

effects ignored here; as noted in Sec. | the present discussion We rewrite Eqs(3.4) by introducing two four component

is readily extended to include exchange, at a cost in technicalectors.

complexity. Our interest will center on the Damon-Eshbach

portion of the response presently; exchange effects on this my(y)

mode are quite modest, in the experiments which motivate my(y)

our analysis. u= h<é/)( ) (3.5
We now turn to the formalism. As noted above, our task Xd) y

is to generate a description of the response of the film when h; (y)

it is driven by the external magnetic field in E@.1). The
basic equation we solve describes the precession of the mag-
netization of the film in an external field:

QuhiP(y)
— Quh{(y)
dm — Mtix
<o = —i0m=y(Mxh), (3.3 f 0 : (3.6
0

where in the spirit of spin-wave theory, we linearize the
right-hand side of Eq(3.3) with respect to the fluctuating
portion of the magnetization defined in E¢3.2). The quan-
tity y is the gyromagnetic ratio. The magnetic fidldn Eq. 4
(3.3 is the externally applied field®(x,t) described in Eq. Z Lijui(y)=fi(y) 3.7
(3.1, and to this is added the fluctuating dipolar field =1
h@(xt) generated byn(x,t). The dipolar field is linear im,  with L;; a 4x4 matrix of differential operators. We obtain
and is calculated by solving Maxwell's equation. We posethe solution of Eqs(3.7) by introducing a matrix of Green’s
the problem of generating formulas for,(y),my(y) in Eg. functionsG;;(y,y") which satisfy
(3.2 whenh{?(y),h{(y) in Eq. (3.1) are arbitrary, un-
specified functions ofy. All quantities exhibit the time de- a
pendence exp-iQt), and vary withx as exp{k,x). The ey N S Syt
dipolar fieldh® also lies in thexy plane for thengometry 121 LikGig(y,y) = a0ty =y")- 38
considered, and the eddy currents are parallel tazttigec-
tion. Thus, the electric field is parallel toalso.

We defineQl = yH,, andQ = yM,. The magnetization
components then are found from

so they acquire the form

We then have

4
D
w=3 [ iy indy. @9
i _ (d) ) = (e)
HQAm,(y) + Qumy(y) = Quhy "(y) = Quhy(y) (3.49 By tracing through the definitions, we see By G14(y,y')
' provides thex component of magnetizatian,(y) at pointy,
and in response to an external driving field applied parallel to the
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y axis, and with the spatial variatioA(y—y’). Similarly
QuGy(y,y') givesmy(y) for such a driving field, while 0.6 T 0.3 1t
—QuGiAy,y') givesm,(y), in response to a field with this (a)
spatial variation, but applied parallel tx. Finally,
—QuGaoy,y') is my(y) in response to a field applied par-
allel to x, localized aty=y'.

Our task is to solve Eq93.7) subject to the boundary
conditions that for any choice of ,G3;(y,y’), considered a
function of y, is continuous at the film surface, as is the
combinationG,;(y,y') +47G,;(y,y’). These ensure con-
servation of tangentigh and normalb, respectively. 0.0 e oola—l L 1|

It is a tedious exercise to carry through the solution of the oy f"(%) 25 30 e f:’G)Z‘s 30
above set of equations, but the procedure is straightforward
in principle. We thus omit details, and present a tabulation of K. =0.5 ¢ 105cm-! k=01 % 105 cm-!
the results in the Appendix. 0.4 r————1— 8

The Green’s function§;;(y,y") can be used to explore (¢)
the amplitude of thermal spin fluctuations in the film, as
remarked earlier. Lem,(x,t) andm,(x,t) denote thex andy
components of the fluctuating magnetization. We can always
Fourier transform these variables:

ky=40x10%cm™ k,=1.0 x 10° cm™"!

0.4

0.2

Syy (arb. units)
Syy (arb. units)

0.2 -

Syy (arb. units)
Syylarb. units)

Pyt e'kiie Mm (k,Q;y), (3.10
(27T)3 K2 Y)s ) ool 1 ¢t 4} ool 1 o+ 1 . &
10 1.5 2.0 25 30 0o 15 20 25 30

where m,(k,Q;y) is the amplitude, within the plane Q(k6) Q (kG)
y=const, of the thermal fluctuation of frequen€y, and
wave vectork, in the plane parallel to the film surfaces. If FIG. 2. The spectral density functicg,(k,,Q) defined in Eq.
hQ<kgT, the limit of interest for the long-wavelength (3.11h, calculated forag=10° cm™ %, §,=10"° cm, D=10* cm,
dipolar-dominated spin waves of interest here, then the flucH,=0.5 kG, Hy+47Mg=4 kG, and 1+=0.01(), where(} is the
tuation dissipation theorem tells us that{lq(y,y’)} is  frequency.
proportional to  kgT/AQ)(m (k,Q;y)m,(k,Q;y" )T,
where the angular brackets denote a statistical average OVgHual to 16 cm™™. The calculations are for a film whose
an ensemble at the temperatdreSimilarly IM{G,1(Y,y')}  thickness isD=10"* cm. Finally, H,=0.5 kG, and we set
is proportional to kgT/%Q)(my (kQ;y)my(kQ;y"))r. A B, =4 kG, while we use a frequency-dependent relaxation
precise statement of these connections is found elseWhererate 14/=0.01 Q, with Q the frequency.
Again, the present paper confines its attention to wave vec- These numbers do not describe any real material, but are
torsk; perpendicular to the magnetization. chosen for convenience in display. Notice that one may scale
We shall explore the thermal fluctuations sensed by ahe above results to apply to real materials, since the fre-
probe that extends into the sample a degpthag !, with an  quency dependence is controlled by the two dimensionless
exponential profile. The fluctuations of wave vectgrand  ratios (/) and (Q,/Qg), and we have two parameters
frequency() parallel to the surface sample by such a probe /D) andk,8, which control the wave vector dependence.
are described by The prominent peak in Fig. 2 is the structure associated
with the Damon-Eshbach wave of the film. In the absence of
o o eddy current effects, from E.12 we see that fok,D—<,
Sel ki ’Q):J dyf dyrefao(y+y’)|m{Glz(y,yr)} its frequency isy(Hq+ 27M52/2—_2.25 kG, while ak,D—0,
0 0 we have y(Hg[Hy+47M]) ““=1.41 kG. For the largest
(3.113  and smallest values & in Fig. 2, the peak indeed coincides
with these limiting values.
One sees clearly from Fig. 2 the very strong eddy current
damping effects whelk,8,~1. There is some eddy current
D (D , damping in the feature shown fef=4x10°> cm™*, the mode
syy(K; ,Q)=J dyf dy’e” ¥ TYIIm{G,(y,y")}. becomes very broad indeed fly=1.0x10° cm* and also
o J0 for k,=0.5x10° cm %, and then narrows down whémndrops
(311D 45 0.1x10° cm™. This behavior is compatible with the be-
A description of the Brillouin light-scattering spectrum is havior provided by the asymptotic formulas in Sec. Il.
obtained by suitably synthesizing these and other closely re- There are two length scales in the problem. One is the
lated spectral density functior$:* film thicknessD, and the other by the microwave skin depth
In Fig. 2, we show the spectral densiy,(k,,{2), calcu-  &. Wheng<D, the near surface spectral densities are con-
lated for the following parameters, chosen to display clearhytrolled by the parameté; &y, and are insensitive to,D. We
the influence of eddy current damping. We hage=10"°> may see this by calculating spectral density functions for
cm for the microwave skin depth, ang, has been chosen D=10"3cm, a value ten times larger than that in Fig. 2. The

m,(x,t)=

while those normal to the surface are given by
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FIG. 3. From plots such as that in Fig. 2, we extract the line-
width AH of the Damon-Eshbach moddotted ling, and its effec-

Eq. (2.12, appropriate for a film with no eddy current damping, is
shown as the dashed line.

FIG. 4. The same as Fig. 3, but now the film thicknBss10~°
tive dispersion relation, shown as the solid line. The prediction ofcm.

the eddy current damping will affect the spectra severely
only at values ofk; smaller than those accessed in typical

results are identical to those in F|g 2, to gl’aphical aCCUracyexperimentS, which exp|0re the reg|nk¢\,105 Cmfl. We

In essence, the microwave skin depfhacts as the active jjjustrate this in Fig. 5, with a series of spectra calculated for
Channel, to which the fields of the Damon-Eshbach wave al’goz 10_4 cm, appropria‘[e to Fe. Severe eddy current broad-
confined. o o _ ening is evident in the spectrum for whigh~0.1x10° cm,

We may extract the variation of the linewidth with fre- byt its influence is rather modest at the large wave vectors.
quency, and also an effective dispersion relation, from specaccess to the regime wheke~10* cm™* would require de-
tral density plots such as that displayed in Fig. 2. We showection of scattered light reflected off the sample very close

this information in Fig. 3, for the model film used to generate
Fig. 2. The dotted line is the frequency variation of the line-
width; the peak occurs whek,§,=0.85. The effective dis-
persion relation is given by the solid line, and this differs
gualitatively from that appropriate to the case where eddy
current damping is absefEq. (2.12]. For this film, we
show the prediction of Eg2.12 as a dotted line. Qualita-
tively, the solid line bears resemblance to the prediction of
Eq. (2.12, but with D replaced bys,.

In Fig. 4 we show the variation with wavelength of the
linewidth (dotted ling, the effective dispersion relation
(solid line) and the dispersion relation given by H.12,
for a film with thicknessD=10"° cm. All other parameters
are identical to those used in Figs. 2 and 3. We thus have a
case whereD=4,. The peak in the linewidth occurs very
close tok;5,=0.85, the same value where we have the peak
in Fig. 2. We see in this figure the dramatic fall off in the
eddy current damping, dsd, drops below unity, and also as
ki& increases above 0.85. The dispersion relation now is
quite close to that applicable in the absence of eddy current
damping. WherD <&, it is the film thickness and not the
skin depth which controls the effective dispersion relation.

As noted earlier, the calculations presented above use pa-
rameters chosen to illustrate eddy current damping effects,
but the microwave skin depth, has been chosen equal to
107° cm, an order of magnitude smaller than the value ap-
propriate to a transition-metal film such as Fe. The results
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may be applied to various materials by the appropriate scal- FiG. 5. The spectral density functiag,(k, () defined in Eq.
ing procedure, when one realizes the characteristic quantitigg.11b calculated foray=10° cm %, §=10"* cm,D=5x10"°cm,
enter only in the productis,D andk,d,, as remarked above. H,=0.5 kG, andHy+47M s=4 kG, with also 1+=0.01Q, where

If we have actual light-scattering studies of Fe in mind,Q is the frequency.



53 EDDY CURRENTS AND SPIN EXCITATIONS IN CONDUCTIS . . . 12 239

in angle to the specular beam. This would present an experfor Fe. The additional damping introduced may obscure fine
mental challenge, since surface roughness would most likelgtructure expected in superlattices with a finite number of
lead to an elastic component in the same angular regime, arddyers. Such finite superlattices have a rich spectrum of spin-
the signals detected in such experiments are very weak. wave modes affected sensitively by an external magnetic
field.2 The mode structure of finite Fe/C211) superlattices
has been studied by BLS recentfyand compared with
theory. The theoretical spectra are considerably richer in de-
IV. RESULTS AND DISCUSSION tail than the experimental counterparts. The difference may

We have presented the theory of eddy current dampin§e due, at Iegst in part, to broadening with origin in eddy
urrent damping.

and frequency renormalization of spin waves in conductin .
ferromagnetic films. We focus our attention on the Damon- It is the case that Damon-Eshbach waves may be

Eshbach wave, when it propagates perpendicular to the mai]gunched in ferromagnetic films via a small scale structures

netization. The methods used here are readily extended id over the film. Meander lines proyide an example of such
other propagation geometries an excitation source. Numerous microwave and magneto-

In Sec. Il, we obtain an implicit dispersion relation for the optic devices excite modes of finite wave vector by this

7 . B - . _
waves. Ifk, is their wave vector, we see that eddy currentsmeansl' If a structure used for excitation has a linear dimen

influence the modes modestly in the two regimiedg,<l sion w in the direction perpendicular to the direction of
andk, &1, whered, is the microwave skin depth. We g,ive propagation, then the waves excited most efficiently will

analytic approximations which apply to these limits in Eqs.h.avek”:W/W' If W ist ir; the ra”nge cl)f JéLm. or S?ha dtirr]nen-
2.13, (2.1, and(2.19. sion quite appropriate to small scale devices, then the waves

The approximate formulas, when extrapolated to the reﬁ;nrig?/dtrinrér?nhz\iigns\;\rlicljlngagsfeéco::olﬁ ?ﬁg%ﬁ;ﬁ?ﬁ:ﬁg&nep
gime k&1, suggest eddy current effects can be large i ted, and its propagation length. The Green'’s functions in the

this regime of wave vector. In Sec. lll, we present a Green'd

function analysis which yields forms that may be applied toAppendix will allow the quantitative study of this issue. We

analyze the response of the film to a diverse array of probe?.lan to address this question in the near future.
The fluctuation dissipation theorem allows us to use the same
functions to simulate light-scattering spectra. Calculations
we present indeed show eddy current damping to be strong

whenk;d&~1, and we have also a dramatic renormalization

of the dispersion relation, when the film thicknéss &,. In This research has been supported by the U.S. Army Re-
essence, the skin depth acts as a channel within which thesarch Office, through Contract No. CS001208. N.S.A. also

wave is trapped, and the dispersion relation becomes qualicknowledges the support of the Brazilian agency CPNg.
tatively similar to that of a wave confined to a film of thick-

nessé,, rather than a film of thickneds.
We conclude with a discussion of the implication of these APPENDIX: THE EXPLICIT FORM OF THE GREEN'S

results for various experimental probes of metallic ferromag- FUNCTIONS

netic films. We have in mind the case of Fe, for which the

microwave skin depthSO~10‘4 cm. Most of the transition areTPui(?ﬂz)iinnsog lg:](l:tloor}/igéy’,y t))ultn;ggﬁcz(rj] de Slﬁct'hgl
metals have skin depths very close to this value. y Y I '

There are two types of experiments where eddy curren'gtereSt of brevity, we have omitted referencekjaand(2 in

ACKNOWLEDGMENTS

effects may play a role: ferromagnetic resonance studies, arfge main paper, and in this sec'uoyn as W(?"' In what fOIIOW.S’
Brillouin light scattering(BLS). we provide the form of the Green’s functions only for posi-

In an idealized ferromagnetic resonance experiment, ong-Ve values ofk;. The frequency) may be either positive or

hask,=0, if microwaves strike the film at normal incidence. _negatlvel. One may generate forms valid fsf<0, by not-

We see from Eq(2.11) that in this limit, the film responds at ing that the functionﬁijgy,y’) are invariant under simulta-
the ferromagnetic resonanfk, (), unaffected by eddy cur- necl)ushreversal of the s;]grk.ﬁfalvdﬂ. h e O
rent effects. In fact, one expects a mode with nonzertm n the expressions that follow, we ha¥h,= yHo, Qv

PP . i« finiis YMg, andQg=y(Hy+47Myg), while Q is defined in Eq.
be excited in such experiments. Suppose the sample is finitg V'S B Y(HoTamMs -1
in size, possibly in the form of a square or disc with Iinear(.%'5)' We take the root with R€)>0. Note also the defini-

dimensionW. Then one may expect the edges to act as pintion 0f #1 and x> [Egs.(2.2)], and also that ofuy [EQ.

ning centers, so one will excite a mode wkh-/W. For ~ (2.7]. Finally, =0 +i/7, and we suppose the fim lies
typical samples, we expekts, to be very small compared to Petweeny=0 andy=D. _ o
unity under these circumstances, and eddy current effects Each of the Green'’s functions may be written in the form
should be quite negligible.

In the BLS studies, as noted abokg;-10° cm ™%, so for e , ,
Fe, k,&~10 or so. Eddy current effects are again small; we Gij(y.y)=Gjj (y=y" ) +AGi(y.y"), (A1)
estimated in Sec. Il that the linewidth of the modes may
contain a contribution in the range of a few tens of Gausswhere Gi(jw)(y—y’) describes the response of the infinitely
This is significant, and may affect light-scattering spectraextended ferromagnetic medium, add;;(y—y’) correc-
For example, we may expect eddy current effects in metalli¢cions which arise from the presence of the two film surfaces.
magnetic superlattices to be comparable to those estimated We have
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' Q QHQB_’Qz e ' ¢ that this quantity has a pole, for fixdd, at the(complex
frequency of the Damon-Eshbach wave of the film.
and Then we have the unfortunately lengthy formulas
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