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Abstract. Using a microscopic approach. we study the elementary excitations for a uniaxial 
antiferromagnetic film with an extemal magnetic field H applied along the easy axis. For H 
greater than a critical value, Ifs. the system has a non-uniform ground state which is obtained, 
very rapidly and with high accuracy, in terms of a two-dimensional nrea preserving map, where 
the surfaces are introduced as appropriate boundary conditions. The consequent spectrum is 
calculated in the whole Brillouin zone and the behaviour of the localized surface modes is 
cmfully analysed. It is possible to observe that the lowest-energy modes have substantially a 
bulk chxacter for low values of kj (the wavevector in the plane paraUel to the surfaces), whilst 
the localized surface modes have the lowest energy for high values of kll. The relevance 
of om results for the superlattices composed by fenomagnetic films antiferromagnetically 
coupled m s s  nonmagnetic layers, which present the daut magnetoresistance phenomenon, 
is discussed, too. 

1. Introduction 

In recent years much attention has been given to the development of thin magnetic films 
and the investigation of their properties. For a complete comprehension of these systems, 
it is essential to determine their elementary excitations that, in the direction normal to the 
film, are standing waves owing to the absence of translational invariance [I]. 

Usually, assuming a uniform ground state, in addition to the bulk modes one has different 
numbers and types of localized surface excitations, characterized by an exponential decay of 
the amplitude of the spin fluctuations [Z, 31. It is worthwhile to note that, also in the presence 
of dipolar interaction, the surface modes have lower energies with respect to the volume 
ones in almost the whole Brillouin zone [4], and consequently they are very important for 
the thermodynamics. 

In a film with some competitive interactions, the lack of lranslational invariance can 
produce an inhomogeneous ground state. It should be very interesting to study the properties 
of the elementary excitations in such a situation, and in particular it is reasonable to expect 
that the localized surface modes are the most strongly influenced by the non-uniformity of 
the ground state. 

In this paper we present a microscopic study of such a phenomenon in the case of a 
uniaxial antiferromagnetic film with an external magnetic field H applied along the easy axis 
and with the spins in each plane belonging to the same sublattice. For the assumed model, it 
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is now well established [5-7] that, owing to the competition between the antiferromagnetic 
exchange and the magnetic field, one can have an inhomogeneous ground state and low 
fields can be sufficient to obtain *e surface canting. Many diffetent materials can be 
represented by this model depending on the crystal stuchue and the surface orientation: fcc 
lattices like N O ,  MnO, and COO [8] with (111) surfaces, and bcc lattices such as MnFz 
and FeFz [9] with (001) surfaces. However, our analysis presents the greatest relevance for 
superlattices composed by ferromagnetic films antiferromagnetically coupled across non- 
magnetic layers, which present the giant magnetoresistance phenomenon [IO]. In these 
systems, parallel and antiparallel configurations are the only ones commonly considered but, 
on the other hand, all the main experimentally measured quantities are strongly dependent 
on the spin configuration, so that an exact knowledge of the ground state of the system is of 
great importance. Moreover, the giant magnetoresistance effect decreases with increasing 
temperature, as a consequence of a stronger spin mixing for the electrons which is primarily 
due to the interactions between electrons and spin fluctuations in the magnetic material, 
and important information on this behaviour can be gained from the excitation specmm of 
magnons 1111. Furthermore, it  is worthwhile to note that in these systems the non-uniform 
ground state can be modified through an external parameter, at variance with other systems, 
like Gd, where the phenomenon of surface magnetic reconstruction is due to the different 
direction between surface and bulk anisotropies [I?,]. 

In an infinitely extended antiferromagnet, it is well known [13] that when H exceeds 
a critical value, HESF, a sudden nearly n/2 rotation of the spin vectors occurs, which 
drives the system into the so-called bulk spin flop phase. This fist-order phase transition 
is announced by a soft mode for H = HESF [141. 

In the semi-infinite system, assuming an antiferromagnetic ground state with the surface 
spins antiparallel to H (AFT$), in addition to the BSF transition, one has that the surface 
mode softens for H = HS N HasF/& [15,16]. In this case, the A F ~ J  state is only a 
metastable one for H c Hs. while the configuration with the surface spins parallel to H, 
AF++, is the true ground state for H < HBSF.  In a previous paper [7], we have argued that 
for H = HS the AF,J state becomes unstable with respect to the nucleation of a domain wall 
which interchanges the two sublattices, so that the system evolves, through non-equilibrium 
configurations, towards the AF+, ground state. This description holds for systems in which 
the uniaxial anisotropy is much lower than the exchange. In such a situation the surface 
spin flop phase predicted earlier in the literature [17,18] does not exist [7]. When the 
two quantities are instead comparable, the domain wall is very narrow and non-uniform 
metastable states due to the discreteness of the lattice c3n arise [19]. 

For a film with a finite number of planes, N ,  one has two surface modes, localized at 
the two surfaces, and two different possibilities arise. 

For a film with odd N, the situation is analogous to the semi-infinite system: the 
excitations calculated with respect to the AF state with the spins on both surfaces parallel to 
the field (ground state) are unstable only at H Y HBSF, as we will show in the following, 
while an instability at H N HS is found if H is reversed, as it was shown by LePage and 
Camley [ZO]. 

For a film with even N, starting from the antiferromagnetic configuration, for H = HS 
one observes a complete softening only for the surface mode localized at the surface with 
the spins antiparallel to the field. Obviously, because of the complete symmetry between 
the two sublattices, no interchange can occur, so that for H > HS the system undergoes a 
phase transition to a non-uniform ground state. 

Again, a marked difference exists between the case in which the anisotropy is much 
lower than the exchange and the one of comparable quantities. In the first situation the 
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non-uniform configuration is always symmetric with respect to the middle of the sample 
[7], while in the second one surface-localized canted configurations can arise [6,19,21,22]. 

In this paper we will concentrate on the low-anisotropy case for a film with even N. 
In order to calculate the excitation spectrum in an accurate way, the new ground state 

must be determined with great precision. In a very recent paper [7] we have shown that this 
problem can be formulated as a two-dimensional area preserving map [23-251, where the 
surfaces are introduced with appropriate boundary conditions [26]. In this way, the non- 
uniform ground state is obtained very rapidly and with high accuracy, and the excitation 
spectrum can be calculated. Such a high precision turns out to be necessary in order to 
obtain correctly the spectrum of excitations in the low-energy limit, and in particular the 
zero-frequency Goldstone mode. 

In the non-uniform ground state situation, our most interesting results are the following 
ones: 

many modes show a hybridization phenomenon; 
the localized surface modes are not the lowest-energy ones for low values of kli, but 

they do become the lowest-energy modes on increasing of the wavevector, by means of 
successive hybridizations. 

A similar study was previously performed by Nortemann er al and Camley and Stamps 
[27,28], but they investigated a model where the uniaxial anisotropy is absent, and they only 
analysed the H dependence of the gap in the spectrum of the excitations and the behaviour 
of the eigenfunctions for a fixed value of the wavevector. 

The layout of the paper is as follows. In section 2 the model is introduced and, for 
the sake of completeness, the method to determine the ground state in the mean-field 
approximation is briefly reported, too. The formal treatment for obtaining the excitation 
spectrum is developed in section 3, and the results obtained starting with a uniform and a 
non-uniform ground state are reported in sections 4 and 5, respectively. Finally, in section 6 
the conclusions are summarized. 

2. The model and the ground state 

We want to describe a bcc twc-sublattice Heisenberg antiferromagnet with nearest-neighbour 
exchange interaction. We consider a film with an even number of planes, N, and (100) 
surfaces, so that the first plane belongs to the A sublattice, while the last one belongs to the 
B sublattice (see figure I). In order to consider the excitations of the superlattice structure 
we will confine our attention to the limit where the ferromagnetic films can be regarded as 
very thin, so that each of them will be associated with a single plane of the antiferromagnetic 
film structure. Moreover, we will suppose the spins belonging to a given ferromagnetic film 
to be linked together by a very strong intrafilm exchange. The Hamiltonian is thus given 
by 

where J > 0, K > 0 are the exchange interaction and the singleion uniaxial anisotropy, 
respectively, and Jo 0 denotes the intralayer ferromagnetic exchange interaction which 
is present only when the superlattice structure is considered, whilst it is set equal to zero 
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in the antiferromagnetic film case. 6 denotes the vectors connecting an A spin to its z 
nearest-neighbour B spins: U + 6 = b ( z  = 8); 60 denotes the two-dimensional vectors 
connecting a spin to its zo next-nearest neighbours belonging to the same plane (zo = 4). 
In the following we will present extensive results for the antiferromagnetic film (i.e. for 
JO = 0) and we will then show the effect of the inkdayer ferromagnetic exchange. 

A A 

A A 

H &L ___) 

Y '  

Figure 1. 
considered system. 

Lattice and mapnetic structure of the 

We choose the x axis perpendicular to the surfaces, while the y z  plane is the film plane 
(see figure 1). It will be useful to introduce an index n = 1,2,. . . , N to enumerate the 
different planes, so that 

(24 

(26) 

( 7 4  

a0 a, = 2(n - I)- 
2 
a0 bx = (2n - 1)- 
2 

a0 6, = 6.- 
2 (8, = 41) 

and in the following we will always put a0 = 1. We decompose each vector into its y z  and 
x components. For example: 

a = (all>%) (3) 
and it is clear that the x component is fully specified by the plane index n. 

For the determination of the ground state we assume that all the spins belonging to the 
same plane are ferromagnetically aligned. In this way the energy for a film with N planes 
reduces to the energy of an N-spin chain: 
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with H E  = Z J S ,  HA = 2 K S .  In the following we will always adopt HE = 100 kG 
and H A  = 0.9 kG, so that we have H ~ s p  =  HA HE + H i  = 13.45 kG and 

H s  d x  = 9.53 kG. (We have put g m  = 1, so that the energies will be 
measured in kG.) 

The equilibrium configurations are obtained by derivation with respect to the angles &: 

(1 - 8,v.d sin(h+i - h) + (1 - 8 1 , ~ )  sin(&-1 - A) + 2- s1nA + - stn 24" = 0 (5) 

with n = 1,. . . , N .  
Defining s,, = sin(& - $"-I), the previous equations can be written, for n = 

2 ,  . . . , N - 1, as a two-dimensional mapping 

7 

H .  HA . 
HE H E  

&+1 = h + sin-'(s,+l) 
H .  HA . 
HE H E  

S.+I = ~ ~ - 2 - s t n ~ , , - - s t n 2 ~ L  

and the terms with the Kronecker 8, which represent the presence of surfaces, are taken 
into account, introducing two fictitious planes n = 0 and n = N + I, so that we have the 
following boundary conditions: 

st = sin(@l - 40) = 0 
SN+I = sin(b+l  - @ N )  = 0. 

(70) 
(7b) 

Among all the trajectories obtained from (6). which are the same as those of the infinitely 
extended system, the physical ones, representing equilibrium configurations for the film, 
must have two intersections with the s = 0 axis separated by exactly N steps of the 
recursive mapping: a very selective condition. Of course if more trajectories satisfy these 
conditions, the ground state is that one which is stable with respect to spin wave excitations 
and has the lowest energy. 

For H < H i  (which is a value slightly lower than H s  because of the metastability region 
associated with the first-order nature of the phase transition the system undergoes [14]), the 
ground state for the film is the usual antiferromagnetic one, represented by the fixed points 
P&'" (that is (-r, 0) and (0, O)).This configuration always satisfies the boundary conditions 
(7). but, for H > Hs. it cannot be a minimum for the system, since it turns out to be 
unstable with respect to a linear spin wave analysis. So, there must be other equilibrium 
configurations representing the ground state. In fact, in this case, we have non-homotopic to 
zero curves that cross the s = 0 line in two different points. For any fixed N one and only 
one among these curves satisfies the corresponding boundary conditions. The associated 
spin configuration is stable and its energy is smaller than the antiferromagnetic one and 
thus we obtain the new, non-uniform ground state. In figure 2 we report the phase portrait 
for HS -= H < HESF with the non-homotopic to zero curves giving the ground state for 
different values of N. The corresponding spin configurations are reported in figure 3. For 
sufficiently thick films, the spins on the two surfaces tend to be aligned with H producing, 
close to the surfaces, two nearly antiferromagnetic regions which are separated by a domain 
wall in the middle of the sample. 

For H > HssF the phase portraits and the ground state configurations are shown in 
figure 4 and figure 5 respectively. We note that, for thick films, the spins in the middle 
region present the typical bulk spin flop configuration, represented by the P f s F  fixed points 
(that is (&& &sin27), where COST = H / ( ~ H E  - H A ) ) .  

So, both for H smaller and larger than H B S F ,  a large part of the spin configuration 
is nearly uniform. This occurs close to the surfaces at low fields and in the interior at 
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higher fields. This is due to the different location of the P i ”  and PISF fixed points and to 
their different nature for low and high field. A uniform configuration corresponds to many 
steps of the map in proximity to the hyperbolic fixed point. For H c H B S F ,  the P j F  are 
hyperbolic and they lie on the boundary condition line, so that the uniform region a e s  
place close to the surface. In coneast, for H H B S F ,  the P f S F  are hyperbolic but they 
do not belong to the s = 0 axis, so that a surface canting must be present before reaching 
the bulk spin flop phase in the middle of the sample. In this sense, a surface magnetic 
reconsmction is present only for H 2 H B S F .  

N-20 
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3. Elementary excitations: general treatment 

In this section we determine the dynamical matrix which must be diagonalized in order 
to obtain the dispersion curves of the excitations and their relative eigenvectors. Taking 
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n Figure 3. Ground state mnhguration for 
52 a N = 52-plane film for H = 10 kG. 

<D 
Figure 4. Phase portrait obtained from mapping (6) for H = 15 kG. The AF and SSF fixed 
points have interchanged their character with respect to figure 2. Again, the non-homotopic to 
zero curves providing the ground state configuration for a N = 52-plane film and a N = 20 one 
are reported. 

into account that in the general case each piane has a characteristic canting angle we must 
introduce a local reference frame @, 7, z )  so that the spin components can be written as: 

where 0 is the angle the spins in each layer form with the direction of the applied field, and 
n runs now from one to N / 2 .  
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1 

1 n 52 

F@xe 5. Ground s a  configuration for 
a N = 52-plane film for H = 15 kG. 
The solid h o b n t d  lines refer to the 
uniform bulk spin Bop configuration of 
the infinite system for the same value of 
he magnetic field. 

Introducing the operators 

'i(b) %b) * '&) (9) 

and performing a Fourier analysis in the y z  plane (where the system maintains translational 
invariance), so that 

the linearized Hamiltonian is given by 

where the explicit expression for the ( N / 2  x N / 2 )  matrix Ti' is reported in the appendix. 
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From the equation of motion in the Heisenberg representation (71 = 1): 

7569 

d 
i;s.&.) = [SA:,,. 'HI 

S$,)(kli, n ,  t )  = exp(-iEr)S:i,)(kli. n)  
and assuming a plane-wave-like time dependence 

we obtain for the linearized eauation of motion 

(13) 

(14) 

T S  = ES. (16) 
For a film with N planes we have N positive and N negative eigenvalues. Because T 
is real and non-symmetric it is necessary to distinguish between right (St) and left (SL)  
eigenvectors 

TSR = ESR (17) 
SLT = ESL (18) 

so that the normalization factor t u m s  out to be 
cz = [SL(T, Ell x [SAT, E11 = [ S R ( T ~ ,  E)IT x [SR(T, E)]. (19) 

In the following we will consider only the positive eigenvalues. However the negative ones 
are fundamental in order to obtain the correct zero-point contribution to the thermodynamical 
properties, like the T = 0 spin reduction [3,29]. 

In fact, owing to the rotational invariance in the yz  plane, the eigenvector components 
S+ and S- are completely decoupled and they differ only by a phase factor Aq5 = K. 
Consequently, the excitations have a circular polarization [4] and it is sufficient to specify 
only one component. 
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H = 0, .IO = 0. We have N / 2  eigenvalues which are doubly degenerate owing to 
the perfect equivalence of the two sublattices. In figure 6 we report the dispersion curves 
obtained for a N = 52-plane film. The lowest curve corresponds to the two surface modes, 
each of them localized close to only one surface, as is evident from figure. 7(a.b) where the 
respective eigenvectors are reported, respectively for kll = 0 and IC11 = (xj4, x/4). With 
the growing of kll the localization increases, because-as will be clearer later on-adjacent 
planes are less coupled. At kl = 0, the localization is entirely due to the anisotropy (i.e. 
there is a complete delocalization if H A  = 0). 

100 

s 
Y 
w 
Y 

0 ‘  I 

kpk, (n units) 
0.00 0.50 1 .oo 

Figure 6. The energy spectrum for a N = 52-plane film for H = 0. Each tine is doubly 
degenerate. ?be lowest curve refers to the two degenerate surface modes. 

The log plot of figure 7(c) clearly shows the exponential decay of the amplitude, while 
figure 8 refers to a bulk mode, whose amplitude is an oscillatory function of the plane index 
n. The components of the amplitude of each mode on the two sublattices are opposite in 
phase, because of the AF nature of the system. 

The dispersion curves show a strict analogy with those found in a semi-infinite system 
[15,16]. the only difference being a continuum in the semi-infinite system for the bulk 
modes. In fact, for the surface modes we have numerical evidence (analytical for ti = 2) 
that the gap is given by 

which equals the one found for the semi-infinite system. 
Finally, for k, = x and/or k, = x only two distinct frequencies exist. All the modes 

are localized exactly on a plane: the two outer ones for the lower energy and an inner one 
for the ( N  - 2) modes of higher energy. A similar result was also obtained for different 
wave vectors kll in ferromagnetic films [3]. This happens because, at the boundaoies of the 
2D Brillouin zone, adjacent planes are exactly decoupled: 

y(k11) 5 &cos(kz/2)cos(k,/2) = 0 if kz = i~ 01 k, = f~ (25) 

so that the dynamical matrix becomes diagonal. 
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1 n 52 

1 n 

7571 

Figure 7. (a) Amplitude on both the sublmices of the eigenveclors associated with the two 
surface modes for kil = 0. The full (open) circles refer to the A @) sublattice component of 
the eigenvector associated with the mode IocalimJ on the first plane. The full (open) squares 
refer to the A (B) sublattice component of the eigenvector associated with the mode localized 
on ihe last plane. (b) The same as (a) for ki = 4 / 4 ,  z/4). The solid lines provide a guide for 
the eyes. (c) The log plot of h e  amplitude on the A sublanice of the surface mode localized on 
the fint plane for kil = 0. 

0 < H < H s ,  JO = 0. The application of a field breaks the equivalence of the 
two sublattices and removes the degeneration. This is clearly seen in figure 9 where the 
dispersion curves are reported. It must be stressed that it is possible to speak of the same 
modes because in the present collinear ground state the field modifies only the diagonal 
elements of the maaix T, and consequently the eigenvectors are not modified. The removal 
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1 

FIgurc 8. Amplitude on both 
the sublanices of the eigenvector 

52 associated kl = 0. wilh a bulk mode for Y----A -1 

1 n 

100 

Y 
1 

n 
U 

0.00 0.50 1 .oo 

kv=k, (n units) 
Figure 9. The energy s p e m  for a N = 52-plane film for H = Hs. The field has removed 
the degeneracy of figure 6.  The 6quency at R I  = 0 of the surface mode relative to the surface 
with spins antiparallel to H goes son. The dashed line refers to the WO degenerate surface 
modes for H = 0. 

of the degeneracy is particularly important for the surface modes. Their gaps become 
A, = [HAHE + Hi]”’ - H (2W 

(26b) 
where the sign - (+) refers to the mode localized on the surface with the spins antiparallel 
(parallel) to the field, i.e. on the first Oast) plane of the system, due to the conventions we 
have adopted. Of course, when H = Hs = [HA HE + H:]’/*, we have a complete softening 
of the first one (just this case is reported in figure 9). which signals a change in the ground 
state. In fact, for this value of the field, using the method outlined in section 2, we obtain 
a non-uniform ground state, 

It is important to note that the removal of the degeneracy of the bulk modes presents 
the same characteristic as the surface ones. In fact, at the Brillouin zone boundary we have 
still a complete localization but with different energies between the two sublattices. 

A? = [HAHE 4- Hi]’/’+ H 
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Y 
w 
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0 
0 1 

k,=k, (n units) 
Figure 10. The energy spectrum for a N = 53-plane film for H = 0 (a) and H 3 HSSF (b). 
Only some modes are reported. In (b) the dashed line refers to the surface modes for H = 0: 
the dotted line refers to the surface modes for H 2 Hg.3~ .  It is evident that it is a bulk mode 
that shows a complete mftening for H 5 H ~ S F .  

We conclude this section by noting that the different behaviour for the two surface mode 
gaps given by equations (26) summarizes the results obtained for the semi-infinite system 
[15,16]. In the latter case we have only one surface mode, which shows a full softening 
for H = HS only if the spins on the surface plane are antiparallel to the field. Otherwise, 
when the surface spins are parallel to H ,  we have a full softening of the lowest-energy bulk 
mode for H = H E S F .  A further confirmation of this behaviour is obtained considering a 
film with an odd number of planes. Assuming that the surface spins are parallel to H we 
see from figure 10 that in this case it is a bulk mode which shows a complete softening for 
H N H E S F ,  as it was already observed by LePage and Camley [ZO]. 

H < Hs, JO # 0. The excitation spectrum pertinent to the case of the superlattices 
composed by ferromagnetic films antifenomagnetically coupled is reported in figure 11, 
where we have assumed J b / J  = 20. In particular, in order to emphasize the effect of the 
antiferromagnetic coupling, in figure 11 we have reported the energy E’ obtained from the 
actual energy E of the system by the subtraction of the quantity zoJOS(1 - yo(k1)). which 
represents the energy excitation of a ferromagnetic plane. We can observe that the spectrum 
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0.00 0.60 1 .oo 

k,=k, (fl units) 
Figure 11. The energy spectrum for a superlaltice composed by N = 52 ferromagnetic film 
antiferromagnetically coupled for H = 0 and Jo f J  = 20, after lhe submction of the energy of 
a ferromagnetic plane zaJoS(1 - ~ ( l q ) ) .  

shows the same behaviour found for JO = 0 (see figure 6): the eigenvalues at the Brillouin 
zone centre (i.e. for k( = 0) and at the Brillouin zone boundary (i.e. for ky = x andlor 
k, = n) have exactly the same value as in the previous case, but in the present case we have 
a stronger dispersion at low wavevectors followed by a large kj-region where the energy 
is substantially constant. In order to gain some information about the kll-dependence of 
the excitation energies let us consider a simple bilayer in the absence of anisotropy and 
magnetic field. The energy E' is given by 

E'&) = -ZoJos(l - Vo(k11)) + ZoJos[(l - M(~II))* + ( Z J , I F / ~ Z O J O ) ~ ( ~  - 4V&)) 

+ ( z J A F / z o J o ) ( ~  - ~o(kii))l~.  (27)  

For ky = kz = k -P 0, the previous equation gives E'(k(0 = J ( z o J o z J ~ ~ S ~ / 2 ) k .  From 
the comparison with the equivalent result obtained for JO = 0, E(k11) = ( Z J ~ , d / 2 f i ) k ,  
one can see that the presence of ferromagnetic coupling determines a steeper growth of the 
energy with the wavevector. The similarity with the JO = 0 situation is confirmed by the 
analysis of the eigenvectors: the same character and evolution as in the antiferromagnetic 
film case, shifted for lower values of the wavevector, are found. 

5. Elementary excitations: non-uniform ground state 

In section 2 we have determined the non-uniform ground state of the system when H > Hs. 
Introducing in the T matrix (15) the thus-obtained angles, the eigenvalues and eigenvectors 
can be determined. In figures 12 and 13 the dispersion curves for a film with N = 5 2  and 
for two different fields, HS < H < HBSF and H > H B S F ,  and for JO = 0, are shown. We 
label the various modes with an index m = 1, , . . , N from the lowest one in energy to the 
highest one, for each value of kj. We can observe some general characteristics. 
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100 

I 
0.00 0.50 1.00 

ky=k, (n units) 

50 - 

0.00 0.05 0.10 0.15 0.20 

k,=k, (n units) 
F i m  12. (a) 17ie energy spectrum for H = 10 kC assuming the non-collinear ground state of 
figure 3. @) Details of (a) showing the hybridization phenomenon of the lowest eight modes. The 
localized eigenvectors corresponding to the modes indicated with A-D are shown in figure 14. 

Degeneracy is absent, even though the energy difference between two modes is so 
small that it is not resolved at the scale of figures 12, 13. 

0 Owing to the rotational symmetry around the easy axis z the system presents a 
Goldstone mode and the energy vanishes linearly with I C ! .  We would l i e  to stress that 
the accuracy with which the correct E = 0 limit is obtained is a measure of the precision 
of the ground state calculated in section 2. Quantitatively, in order to obtain zero energy 
within at least six significant figures it is necessary to determine the ground state within 
machine double precision. The eigenvector corresponding to the Goldstone mode is reported 
in figure 14 where it is possible to observe the bulk character and of course the absence of 
nodes. 

0 The separation at kll = 0 of the two lowest-energy modes decreases on lowering 
of the field. In fact, decreasing the field to Hi, the non-uniform configuration becomes 
unstable and the system undergoes a transition to the collinear ground state. This transition 
is signalled by the full softening for kll = 0 of the second mode. 
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Figure 13. (a) The energy spec" for H = 15 kG assuming lhe non-collinear ground state of 
figure 5. @) Details of (a) showing the hybridization phenomenon of the lowest eight modes. 

For low values of lcll the lowest-energy modes have a bulk character, while the 
localized surface modes have a higher energy (see figures 12(b), 15). Increasing the 
wavevector, we observe successive hybridizations, so that for sufficiently high wavevectors 
kll the localized surface modes do have the lowest energy. In contrast to the collinear case, 
each of the two surface modes is localized close to both the surfaces: the Si(Bl component 
of the associated eigenvector close to the first (last) plane, and the SicB) component close 
to the last (first) plane. In figure 15 the eigenvectors associated with the surface modes are 
reported for different values of kll. We can observe from figure I5 that for a very low value 
of the wavevector the surface modes present a low degree of localization; this is due to the 
substantial isotropization of the spin space induced by the external field for H = HBSF, so 
that the localization is present in a clear way only for higher values of (remember that 
in the collinear phase the localization appears only for k~ # 0 if HA = 0, see section 4). 
In figure 16 the evolution of the eigenvectors of the four lowest modes involved in the 
last hybridization (0 in figure 12(b)) is shown. For greater values of the wavevector, the 
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Figure 15. Amplitude of the localized eigenvectors for H = 10 kG and different values of kll, 
The circles (squares) refer to the S+ (S-) components an the A sublanice of the eighth and 
seventh mode in A. of the sixth and fiffh mode in B. of the fourth and Wid modc in C and 
finally of the second and first mode in D. 

eigenvectors relative to the two lowest modes always maintain a localized character. 

we can note a difference between the Hs < H 
Finally. from the comparison of the dispersion curves shown in figures 12(a), 13(a), 

HBSF case and the H > HBsF one. In 
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Figure 16. The St (crosses) and S- (circles) components on the A sublattice of the  first 
(m = 1). second (m = 2). ulird (m = 3). and fourth (nr = 4) mode for kll = (0 .2080~,  0.2080~). 
and for bg = (0.2086~. 0.2086~). for H = I O  kG. The eigenvectors corresponding LO the two 
lowestenergy modes acquire a localized character after this lasl hybridization. 

the first case, the dispersion curves nearly condense at two different values at the Brillouin 
zone boundary. This is reminiscent of the collinear behaviour (see figure 9) ,  and it is a 
consequence of the nearly parallel or antiparallel orientation with respect to the field of 
a large number of the spins in this regime, though the configuration is non-uniform (see 
section 2 and figure 4). In contrast, for H > HESF, the orientation of a large number of 
the spins is close to the bulk spin Bop configuration (i.e. almost perpendicular to the field) 
and consequently the dispersion curves do not present such a behaviour. 

Again, for Jo # 0 (see figure 171, the only significant difference from the 
antiferromagnetic film case is the stronger dispersion of the energy spectrum for low value 
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Figure 17. The energy spechum for a superlattice composed by N = 52 ferromagnetic films 
antifmomagneticdy coupled for H = 15 kG and Jo t3  = 20. affer the subtraction of the 
energy of a ferromagnetic plane zaJoS(1 - yo(kl)), assuming the non-collinear ground state 
configuration of figure 5. 

of the wavevector kl, as already discussed in the collinear ground state situation. 
In our calculation we have neglected the dipolar interaction [21,27]. This fact does not 

present any consequence on the ground state, if-as we have assumed-the easy axis lies in 
the film plane. On the contrary the dispersion curves are modified by the dipolar interaction 
since the rotational invariance is not present, and therefore a Goldstone mode is absent. 
However, since the dipolar energy has the same order of magnitude as the anisotropy, the 
magnetostatic region is confined to very small kl,. For this reason, the hybridization between 
the lowest modes should not be modified. 

6. Conclusions 

In this paper we have studied the elementary excitations of a uniaxial antiferromagnet with 
a magnetic field along the easy axis. The absence of translational invariance in addition 
to the presence of competitive interactions (magnetic field and antiferromagnetic exchange) 
implies, for H greater than a critical field, a non-uniform ground state, in the sense that 
the surface order is different from the bulk one. For a film with an even number of  planes 
this surface reconstruction is obtained for H > Hs N a and it is announced by a 
full softening of a surface mode. In the odd case we have instead a phase transition only 
for H > H s s p  m, as in the translationally invariant infinitely extended system, 
with a full softening of a bulk mode [20]. The consequent non-uniform ground states 
are obtained with high precision and the relative excitation spectrum and eigenvectors are 
calculated, too. We showed the localized surface modes are the most strongly influenced 
by the non-uniformity of the ground state, as argued in the introduction. In particular, we 
showed that a hybridization phenomenon for many modes occurs, and that the localized 
surface modes become the lowest-energy ones on increasing of the wavevector, by means 
of successive hybridization. 
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Furthermore, in order to apply OUT treatment to ferromagnetic multilayers 
antiferromagnetically coupled, we took into account a strong intralayer ferromagnetic 
interaction and we discussed its effects both on the excitation spectrum and the 
eigenfunctions. Our result can be relevant to the study of the giant magnetoresistance 
phenomenon [lo] displayed by these systems. First, the correct non-uniform ground state 
obtained for H > HS is fundamental in order to reproduce the field dependence of the 
resistance for H lower than the saturation value for which a ferromagnetic order is reached, 
and secondly, the calculation of the spectrum in the whole Brillouin zone is very important 
in order to obtain the temperature dependence of the resistance itself. 

Appendix. Explicit form of the matrices !@ 

zSJ  
2 

Ti,:, = SHCosOh-1 +2KScosZ8~- i  - KSsin'f3h-1 --(COS(& -&.-I) 

+ ( I  -&,n)CoS(Oui-2 -&-I)) +ZoJoS(I - M ( ~ I I ) )  8n.n) (Ala)  

[ 
1 

z S J  
2 

+Hcoseh+2KScosZe2,- KSsin'6h-I - - ( c o ~ ( e ~ - ~ u t - ~ )  

where 

Finally, we observe that in order to take kinematic consistency into account 1301, it is 
sufficient to replace the anisotropy constant K by the effective value K(l  - 1/2S) both in 
the ground state equations and in the dynamical matrix T .  
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