APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 51, 2506–2514 (1995)

[Issue 4 – 15 January 1995 ]

Previous article | Next article | Issue 4 contents ]

Add to article collection View Page Images , Figure Images or PDF (1699 kB)


Mössbauer investigation of the growth of the Fe multilayer in Fe(100)/Ag(100) structures

P. J. Schurer
Physics Department, Royal Roads Military College, Victoria, British Columbia, Canada V0S 1B0
Z. Celinski and B. Heinrich
Surface Physics Laboratory, Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Received 12 August 1994

A monolayer of 57Fe is used as a probe layer in molecular-beam-epitaxy-grown Ag/Fe(001)/Ag(001) structures. Different Fe sites can be distinguished in the iron multilayer based on the isomer-shift (i.s.) and quadrupole-splitting (QS) values of different components in the Mössbauer spectrum. This makes it possible to determine the concentration of 57Fe atoms in the different atomic Fe layers and obtain information about the growth processes for different regions of the Fe multilayer. It was found that after deposition of about 5-Fe ML the growth changes from a Fe multilayer formation mode to a quasi-layer-by-layer mode. The values of the i.s. and QS are the same for Fe atoms located at the top and bottom Ag/Fe interface. Hhf values, on the other hand, are different by 9 kOe at the top and bottom for a sample in which the upper Ag(001) layer is covered by another Fe(001) layer. This result may be due to a contribution to the top Hhf value from Ruderman-Kittel-Kasuya-Yosida-like spin-density oscillations that couple the ferromagnetic Fe multilayers across the nonmagnetic Ag spacer.

©1995 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v51/p2506
DOI: 10.1103/PhysRevB.51.2506
PACS: 76.80.+y, 68.65.+g, 75.30.Fv


Add to article collection View Page Images , Figure Images or PDF (1699 kB)

Previous article | Next article | Issue 4 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. N. C. Koon, B. T. Jonker, F. A. Volkening, J. J. Krebs and G. A. Prinz, Phys. Rev. Lett. 59, 2463 (1987).
  2. S. Ohnishi, M. Weinert and A. J. Freeman, Phys. Rev. B 30, 36 (1984).
  3. G. T. Gutierrez, M. D. Wieczorek, H. Tang, Z. Q. Oiu and J. C. Walker, J. Magn. Magn. Mater. 99, 215 (1991) [dot INSPEC].
  4. D. J. Keavney, M. D. Wieczorek, D. F. Storm and J. C. Walker, J. Magn. Magn. Mater. 121, 49 (1993) [dot INSPEC].
  5. G. Liu and U. Gradmann, J. Magn. Magn. Mater. 118, 99 (1993) [dot INSPEC].
  6. P. J. Schurer, C. Zelinski and B. Heinrich, Phys. Rev. B 48, 2577 (1993).
  7. B. Heinrich, Z. Celinski, J. F. Cochran, A. S. Arrott, K. Myrtle and S. T. Prucell, Phys. Rev. B 47, 5077 (1993).
  8. B. Heinrich, A. S. Arrott, J. F. Cochran, Z. Celinski, and K. Myrtle, Science and Technology of Nanostructural Magnetic Materials, edited by G. C. Hadjipanayas and G. P. Prinz (Plenum, New York, 1991), p. 15.
  9. J. A. Stroscio, D. T. Pierce and R. A. Dragoset, Phys. Rev. Lett. 70, 3615 (1993).
  10. A. R. Miedema and F. Van der Woude, Physica B 100, 145 (1980).
  11. C. Larica, E. M. Baggio-Soitovitch and S. K. Xia, J. Magn. Magn. Mater. 110, 106 (1992) [dot INSPEC].
  12. C. L. Chien and K. M. Unruh, Phys. Rev. B 28, 1214 (1983).
  13. G. Longworth and R. Jain, J. Phys. F 8, 993 (1978).
  14. W. F. Egelhoff, Jr., in Structure Property Relationships for Metal Interfaces, edited by A. D. Romig, D. E. Fowler, and P. D. Bristowe, MRS Symposia Proceedings No. 229 (Materials Research Society, Pittsburgh, 1991), p. 27.
  15. S. D. Chamblis, R. J. Wilson and S. Chiang, J. Vac. Sci. Technol. A 10, 1993 (1992) [dot INSPEC].
  16. K. E. Johnson, D. D. Chambliss, R. J. Wilson and S. Chiang, J. Vac. Sci. Technol. A 11, 1654 (1993) [dot INSPEC].
  17. In this model a N times N terrace has a fraction of (4/N-4/N2) /2 iron atoms located at the upper edge of the terrace. From the data in Ref. 6 the model gives an average terrace size of 2 nm, not 4 nm as was indicated in Ref. 6.
  18. Th. Detzel and M. Memmel, Phys. Rev. B 49, 5599 (1994).
  19. D. M. Edwards, J. Mathon, R. B. Muniz and M. S. Phan, Phys. Rev. Lett. 67, 493 (1991).
  20. P. Bruno and C. Chappert, Phys. Rev. B 46, 261 (1992).
  21. J. E. Ortega, F. J. Himpel, G. J. Mankeyl and R. F. Willis, Phys. Rev. B 47, 1540 (1993).


Add to article collection View Page Images , Figure Images or PDF (1699 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 4 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org