[ ] [Image] [ ] Volume: Page/Article: ------------------------------------------------------------------------ Article Collection: View Collection Help (Click on the [Check Box] to add an article.) ------------------------------------------------------------------------ Phys. Rev. B 51, 2920–2929 (1995) [Issue 5 – 1 February 1995 ] [ Previous article | Next article | Issue 5 contents ] [Add to article collection] View Page Images or PDF (1771 kB) ------------------------------------------------------------------------ Strong anisotropies in MBE-grown Co/Cr(001): Ferromagnetic-resonance and magneto-optical Kerr-effect studies F. Schreiber Institut für Experimentalphysik, Ruhr-Universität Bochum, 44780 Bochum, Germany Z. Frait Institute of Physics, Czech Academy of Sciences, 18040 Prague, Czech Republic Th. Zeidler, N. Metoki, W. Donner, H. Zabel, and J. Pelzl Institut für Experimentalphysik, Ruhr-Universität Bochum, 44780 Bochum, Germany Received 12 August 1994 Ferromagnetic-resonance (FMR) and magneto-optical Kerr-effect (MOKE) studies of molecular-beam-epitaxy grown Co/Cr(001) superlattices and single layers are presented. The FMR measurements were performed in different sample orientations and in a broad frequency range (9–92 GHz). MOKE hysteresis loops were detected in polar and in longitudinal configuration. The in-plane anisotropy parameters, K1 and K2, the out-of-plane anisotropy (i.e., the effective magnetization including the surface anisotropy, Ks), and the g factor were determined for these samples, which exhibit an anomalous out-of-plane lattice expansion of the hcp Co(112-bar0) on bcc Cr(001) as a precursor of a structural phase transition. Due to the strong in-plane anisotropy the switching of the magnetization to out-of-plane easy axis can occur at lower thicknesses ( [approx equals] 14 Å) than the change of sign of the effective magnetization ( [approx equals] 21 Å). In the intermediate thickness range a peculiar situation can be found with the orientation of the magnetization along the surface normal lying energetically between the in-plane easy and hard axis. Taking into account these effects as well as a reduced magnetic moment, Ks [approx equals] 0.76 erg/cm2 is found. For thin Co layers the g factor is found to be increased in comparison with the bulk value. This indicates modifications of the electronic properties accompanied with the considerable structural changes. ©1995 The American Physical Society URL: http://link.aps.org/abstract/PRB/v51/p2920 DOI: 10.1103/PhysRevB.51.2920 PACS: 75.30.Gw, 75.70.-i, 76.50.+g ------------------------------------------------------------------------ [Add to article collection] View Page Images or PDF (1771 kB) [ Previous article | Next article | Issue 5 contents ] ------------------------------------------------------------------------ References (Reference links marked with [dot] may require a separate subscription.) 1. U. Gradmann, J. Magn. Magn. Mater. 100, 481 (1991) [[dot] INSPEC]. 2. B. Heinrich and J. F. Cochran, Adv. Phys. 42, 523 (1993) [[dot] INSPEC]. 3. G. A. Prinz, J. Magn. Magn. Mater. 100, 469 (1991) [[dot] INSPEC]. 4. G. A. Prinz, Phys. Rev. Lett. 54, 1051 (1985). 5. J. A. C. Bland, R. D. Bateson, P. C. Riedi, R. G. Graham, H. J. Lauter, J. Penfold and C. Shakleton, J. Appl. Phys. 69, 4989 (1991) [ [dot] INSPEC]. 6. V. L. Moruzzi, P. M. Marcus, K. Schwarz and P. Mohn, J. Magn. Magn. Mater. 54-57, 955 (1986). 7. See, e.g., J. J. de Miguel, A. Cebollada, J. M. Gallego, R. Miranda, C. M. Schneider, P. Schuster and J. Kirschner, J. Magn. Magn. Mater. 93, 1 (1991) [[dot] INSPEC]; P. Bödeker, A. Abromeit, K. Bröhl, P. Sonntag, N. Metoki and H. Zabel, Phys. Rev. B 47, 2353 (1993); D. Weller, G. R. Harp, R. F. C. Farrow, A. Cabollada and J. Sticht, Phys. Rev. Lett. 72, 2097 (1994). 8. B. Heinrich, J. F. Cochran, M. Kowalewski, J. Kirschner, Z. Celinski, A. S. Arrott and K. Myrtle, Phys. Rev. B 44, 9348 (1991). 9. For the magnetic properties of bcc Co, see also, G. A. Prinz, C. Vittora, J. J. Krebs and K. B. Hathaway, J. Appl. Phys. 57, 3672 (1985); J. M. Karanikas, R. Sooryakumar, G. A. Prinz and B. T. Jonker, J. Appl. Phys. 69, 6120 (1991), and references therein [[dot] INSPEC]. 10. W. Donner, N. Metoki, A. Abromeit and H. Zabel, Phys. Rev. B 48, 14745 (1993). 11. N. Metoki, W. Donner and H. Zabel, Phys. Rev. B 49, 17351 (1994). 12. W. Donner, N. Metoki, F. Schreiber, Th. Zeidler and H. Zabel, J. Appl. Phys. 75, 6421 (1994) [[dot] INSPEC]. 13. P. V. Mitchell, A. Layadi, N. S. VanderVen and J. O. Artman, J. Appl. Phys. 57, 3976 (1985) [[dot] SPIN]; J. O. Artman, J. Appl. Phys. 61, 3137 (1987), and references therein [[dot] SPIN][[dot] INSPEC]. 14. N. Metoki et al.(unpublished). 15. D. M. Paige, B. Szpunar and B. K. Tanner, J. Magn. Magn. Mater. 44, 239 (1984) [[dot] INSPEC]. 16. F. Schreiber, A. Soliman, P. Bödeker, R. Meckenstock, K. Bröhl, J. Pelzl and I. A. Garifullin, J. Appl. Phys. 75, 6492 (1994) [[dot] INSPEC]; F. Schreiber, A. Soliman, P. Bödeker, R. Meckenstock, K. Bröhl and J. Pelzl, J. Magn. Magn. Mater. 135, 215 (1994) [[dot] INSPEC]. 17. The form of the resonance condition for the case of one single domain is equivalent to the one given in Ref. 20 except for an exchange of the two brackets on the right-hand side of Eq. (4) in Ref. 20 and a misprint in that equation in Ref. 20 [term 4 pi M missing in the second line of Eq. (4)]. 18. J. Smit and H. G. Beljers, Philips Res. Rep. 10, 113 (1955); S. V. Vonsovskii, Ferromagnetic Resonance (Pergamon, New York, 1966). 19. For a recent description of FMR and its applications to thin films see, e.g., B. Heinrich, in Ultrathin Magnetic Structures, edited by B. Heinrich and J. A. C. Bland (Springer, Berlin, 1994), Vol. II. 20. Z. Frait, Brit. J. Appl. Phys. 15, 993 (1964). 21. J. J. Krebs (private communication). 22. B. Heinrich, K. B. Urquhart, A. S. Arrott, J. F. Cochran, K. Myrtle and S. T. Purcell, Phys. Rev. Lett. 59, 1756 (1987). 23. S. T. Purcell, H. W. van Kasteren, E. C. Cosman, W. B. Zeper and W. Hoving, J. Appl. Phys. 69, 5640 (1991) [[dot] INSPEC]. 24. W. Sucksmith and J. E. Thompson, Proc. R. Soc. London Ser. A 255, 362 (1954). 25. E. C. Stoner and E. P. Wohlfarth, Proc. R. Soc. London Ser. A 240, 599 (1948). 26. Yu. V. Goryunov, M. G. Khusainov, I. A. Garifullin, F. Schreiber, J. Pelzl, Th. Zeidler, K. Bröhl, N. Metoki, and H. Zabel, J. Magn. Magn. Mater. (to be published). 27. A. Nakamura and M. Futamoto, Jpn. J. Appl. Phys. 32, L1410 (1993). 28. F. Ono, J. Phys. Soc. Jpn. 50, 2564 (1981) [[dot] INSPEC]. 29. M. B. Stearns, in Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 19a (Springer, Berlin, 1986). 30. Y. Henry, C. Mény, A. Dinia and P. Panissod, Phys. Rev. B 47, 15037 (1993); P. Boher, F. Giron, Ph. Houdy, P. Beauvillain, C. Chappert and P. Veillet, J. Appl. Phys. 70, 5507 (1991) [[dot] INSPEC]; M. B. Stearns, C. H. Lee and T. L. Groy, Phys. Rev. B 40, 8256 (1989). 31. P. J. H. Bloemen, Ph.D. thesis, Eindhoven, 1993; H. A. M. de Gronckel, Ph.D. thesis, Eindhoven, 1993. 32. A. J. P. Meyer and G. Asch, J. Appl. Phys. 32, 330S (1961); R. A. Reck and D. L. Fry, Phys. Rev. 184, 492 (1969). 33. D. Schmitz et al.(unpublished). 34. R. Wu, D. Wang and A. J. Freeman, J. Magn. Magn. Mater. 132, 103 (1994), and references therein [[dot] INSPEC]. 35. A. J. Freeman and R. Wu, J. Magn. Magn. Mater. 100, 497 (1991), and references therein [[dot] INSPEC]. 36. P. Bruno, Phys. Rev. B 39, 865 (1989); P. Bruno and J.-P. Renard, Appl. Phys. A 49, 499 (1989). 37. See, also, recent experimental investigations, e.g., D. Weller, Y. Wu, J. Stöhr, M. G. Samant, B. D. Hermsmeier and C. Chappert, Phys. Rev. B 49, 12888 (1994); and references therein. ------------------------------------------------------------------------ [Add to article collection] View Page Images or PDF (1771 kB) [Show Articles Citing This One] Requires Subscription [ Previous article | Next article | Issue 5 contents ] ------------------------------------------------------------------------ [ APS | APS Journals | PROLA Homepage | Browse | Search ]