Home Browse Search Subscriptions Help
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 51, 15062–15073 (1995)

[Issue 21 – 1 June 1995 ]

Previous article | Next article | Issue 21 contents ]

Add to article collection View Page Images or PDF (949 kB)


Antiferromagnetic domain walls

N. Papanicolaou
Department of Physics, University of Crete, and Research Center of Crete, Heraklion, Greece
Received 26 January 1995

Antiferromagnetic domain walls are shown to exhibit a nonvanishing total magnetic moment. This result is established numerically for a discrete spin system, as well as analytically within a suitable continuum approximation that leads to the nonlinear sigma model extended to include anisotropy. The moment is due to certain parity-breaking terms that are implicit in arguments pertaining to the Haldane gap but have been missing in earlier treatments of domain walls. In this paper we present a study of both static and dynamical properties of domain walls in antiferromagnets with an easy-axis anisotropy, but some of the results should prove relevant also for weak ferromagnets.

©1995 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v51/p15062
DOI: 10.1103/PhysRevB.51.15062
PACS: 75.10.Hk, 75.70.Kw


Add to article collection View Page Images or PDF (949 kB)

Previous article | Next article | Issue 21 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979).
  2. T. H. O'Dell, Ferromagnetodynamics, the Dynamics of Magnetic Bubbles, Domains and Domain Walls (Wiley, New York, 1981).
  3. V. G. Bar'yakhtar, M. V. Chetkin, B. A. Ivanov, and S. N. Gadetskii, Dynamics of Topological Magnetic Solitons—Experiment and Theory (Springer-Verlag, Berlin, 1994).
  4. I. V. Bar'yakhtar and B. A. Ivanov, Sov. J. Low. Temp. Phys. 5, 361 (1979); Solid State Commun. 34, 545 (1980).
  5. H. J. Mikeska, J. Phys. C 13, 2913 (1980).
  6. F. D. M. Haldane, Phys. Lett. A 93, 464 (1983); Phys. Rev. Lett. 50, 1153 (1983); J. Appl Phys. 57, 3359 (1985).
  7. I. Affleck, J. Phys. Condens. Matter 1, 3047 (1989).
  8. N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).
  9. Such a possibility was suggested to the author by Victor Bar'yakhtar.
  10. N. Papanicolaou and T. N. Tomaras, Nucl. Phys. B 360, 425 (1991).
  11. N. Papanicolaou, Physica D 74, 107 (1994); Phys. Lett. A 186, 119 (1994).
  12. N. Papanicolaou and W. J. Zakrzewski, Physica D 80, 225 (1995).
  13. R. A. Leese, M. Peyrard and W. J. Zakrzewski, Nonlinearity 3, 773 (1990).


Add to article collection View Page Images or PDF (949 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 21 contents ]

Home  | Browse  | Search  | Subscriptions  | Help  ]

E-mail: prola@aps.org