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A new theory of nonspecular x-ray scattering from layered systems with random rough interfaces 
based on the distorted-wave Born approximation is presented. Calculations of the diffuse scattering 
from a single gold layer and two W/Si multilayer mirrors has been carried out. The theory explains 
the existence of maxima and minima in the angular distribution of diffusely scattered intensity 
resulting from standing-wave-enhanced scattering and other dynamical effects. The influence of the 
mutual correlation between individual interface profiles on x-ray scattering is discussed. 0 1995 
American Institute of Physics. 

I. INTRODUCTION 

Nowadays, thin layers and synthetic layered structures 
are of an increasing significance in applied physics. The 
physical properties of layered systems depend not only on 
the composition and thickness of sublayers but can be 
strongly affected by the quality of interfaces. 

Recent progress in the controlled deposition of ultrathin 
films has made it possible to fabricate nanometer-period 
multilayer structures which may be used as optical elements 
for soft x rays.’ It is well known that the specular reflectivity 
can be considerably modified by boundary imperfections. 
Moreover, interfacial roughness can lead to a loss of contrast 
between specularly reflected and diffusely scattered radiation 
which is detrimental for imaging systems. For these applica- 
tions, both the root-mean-square (rms) value and the lateral 
characteristics of interfacial profiles are important. The de- 
termination of interfacial roughness is therefore a necessary 
assumption for predicting scattering properties of multilayers 
and, prospectively, for improvement of deposition technol- 
ogy- 

X-ray methods provide tools for investigating surfaces, 
thin layers, and layered structures. There is a large body of 
work discussing the spectdarly reflected component of x-ray 
scattering.2*3 The reflectivity curves yield information on 
densities and thicknesses of sublayers and are frequently 
used for a rms roughness evaluation. Considerably less atten- 
tion has been devoted to the diffuse component of the scat- 
tering, which depends on the rms value as well as on the 
correlation function.4-8 

Several theories of nonspecular scattering from a single 
random rough surface have been developed. The Born ap- 
proximation (BA) and the distorted-wave Born approxima- 
tion (DWBA) are mainly used in the x-ray region.4 The BA 
is valid at glancing angles much greater than the critical 
angle 8,. whereas it breaks down as we approach the total 
external reflection region. On the contrary, the DWBA is 
suitable for glancing angles close to tic. However, at larger 
glancing angles, the expressions for the differential cross 
section derived in the DWBA reduce to the results in the 
BA.” 

a)E-mail: kopecky@fzu.cz 

The generalization of a scattering theory for layered 
structures with rough interfaces is a very complicated prob- 
lem. The scattered field is a superposition of many plane 
waves (modes) and it is impossible to take the multiple scat- 
tering of every mode within the system into account. There- 
fore a simplified model of interaction between electromag- 
netic radiation and stratified medium has to be considered. 

The development of the BA for the case of x-ray scat- 
tering from nonideal multilayer structures has been carried 
out by Stearns.’ His solution is based on the so-called 
“specular field approximation.” In this approach, the coher- 
ent (specular) field within the multilayer is treated dynami- 
cally, including multiple reflection and extinction, and the 
incoherent (diffuse) field is treated kinematically, i.e., the 
total incoherent field is approximated by the sum of diffuse 
scattering from each interface. 

More recently, the extension of the DWBA for layered 
systems with rough interfaces has been performed by Holy 
et al.Y In their approach, the specular field within the layered 
system with smooth interfaces has been used for calculating 
the diffusely scattered intensity. 

tn this paper, a new theory of x-ray diffuse scattering 
from layered systems based on the DWBA is described. The 
real specular field and the real transmission coefficient of the 
radiation diffusely scattered from inner interfaces are consid- 
ered. By means of this theory, the previously measured 
modulations in the diffusely scattered intensity are explained. 
The influence of mutual correlation between individual inter- 
face profiles on the x-ray diffuse scattering is discussed. 

II. THEORY 

Let us consider a plane wave ET with wave vector ‘kr 
incident on a system of N- 1 layers deposited on a thick 
substrate. This wave is specularly reflected and refracted (co- 
herent field) and simultaneously diffusely scattered (mcoher- 
ent field) from each interface. 

A, The coherent field 

We start by determining the coherent field within the 
layered structure which may be in each medium i expressed 
as the superposition of two plane waves ET and Ef (Fig. 1). 
The continuity of the tangential components of the electric 
and magnetic vectors at the boundary i may be written as” 
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Ri=EPIET is the reflection coefficient of the system below 
the boundary i. The reflection coefficient ~i,i+l of this rough 
interface is related to the Fresnel reflection coefficient Ti,i+, 
of a smooth interface byi 

ri,i+ 1 =ri,i+l Xi(J&ZTL). (5) 

xi denotes the one-dimensional characteristic function of the 
rough interface i. Vector q,(O,O,2’&) represents the differ- 
ence of wave vectors of waves EF, ET. The set of equations 
(4) may be solved by starting at the bottom medium N+ 1, 
where RN+ i = 0 (since the thickness of the substrate is as- 
sumed to be infinite). 

Further, the coherent field may be determined using 
formulas13 

E;(8A=Ri(8,W:(8,), (6) 

Eir+O,j= l+Ri~~f:$f$)l,e,, goi+1(4.WT(ed. 

(7) 
The calculation is now carried out from top to bottom. 

FIG. 1. Scheme of the coherent field within stratified medium. 

z$(el)+Ef(elj= 
1 

9i+l(ed 
@Au 

(14 

where ‘ki is the wave vector of the wave ET, 4oi the ampli- 
tude factor corresponding to the perpendicular depth d, , 

qi(O1)=e-iLki~di for i=Z,...,N, (2) 

and ~+++,=l. 
According to SnelI’s law, the wave vectors ‘ki are deter- 

mined by the refractive indices ni of individual layers, wave- 
length A, and the glancing angle 0i of the incident wave: 

Ikix=‘kl, 9 (34 

‘kiv=lkly, CW 

‘ki,=-ko@-c0S2 Bl=-‘<i, (34 

where k,,= 27~0~ is the magnitude of the vacuum wave vec- 
tor. By dividing the difference of Eqs. (la) and (lb) by their 
sum, the well-known recursion formula’O*” may be obtained: 

&(4)= 
Ri+lCe,)cp~+,l(el)+Fi,i+l(el) 

Ri+1(e1)50i2+1(e1)vi,i+l(e,)+ 1 ’ (4) 

8. The diffuse x-ray scattering from a single rough 
interface 

As the second step, the scattering of the coherent field 
from each rough interface has to be evaluated. Let us con- 
sider rough interface (surface) i between two homogeneous 
media i and i+ 1. The deviation of this interface from the 
average reference plane z = zi is described by the profile 
function h,(x,y). 

The electric field for x rays poIarized perpendicular to 
the plane of incidence satisfies the wave equation 

V2~(r>+k~~(r)-V(r)~,(r)=0, (8) 

where r is the position vector and the scattering potential 
V(r) is related to the refractive index n(r) by 

V(r) =k$l -n’(r)]. (91 

The polarization of x rays in the plane of incidence is not 
discussed since at grazing incidence the results are the same 
for both the polarization components. 

Let us assume that the real rough interface represents a 
small perturbation from the smooth interface, for which the 
exact eigenfunctions are known. Then it is convenient to split 
the scattering potential into two parts: 

V(r) = VI (4 + V2(rL (10) 

where V1 is the scattering potential of the system with a 
smooth interface and V, is regarded as the perturbation due 
to the roughness: 

for Z>Q, 

for :<zi (11) 

and k$+n;+& for zi<z<zi+hi(x,y), 
v,= -kz(nF-nF+,), for zi+hi(x,y)<z<zi, (12) 

0, elsewhere. 
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FIG. 2. X-ray scattering from random rough interface i. The incident wave 
(‘ki) is scattered into the same half space cki). 

Let the plane wave 

14=ei’kir (13) 

with the wave vector ‘ki fall on the boundary i. According to 
the Fresnel theory, the eigenstate for the smooth interface is 

e’lki’+ri,i+l(lki)e i’k!r 

‘*w= 
1 , for Z>Zir 

ti,i+l(lkijei’kf+~‘, for Z<Zi) 
(14) 

where ‘k’ i 7 ‘k+ 1 are the wave vectors of the specularly 
reflected and transmitted waves. The amplitudes of these 
waves are given by the Fresnel reflection and transmission 
coefficients Ti,i+ 1 and ti,i+ 1, respectively. 

Sinha et al.” define another eigenstate for the smooth 
interface, 

“i&r) = 
i 

~~zki’+r~i+l(-2ki)ei2k~r, for z>z~, 
* 

t&+‘( -‘kijeiLki+lr, for ZCZi, 
(19 

which is a time reversed state for the incident plane wave 
with the wave vector --‘ki (Fig. 2). 

The T matrix for scatteriilg between states ‘ki and ‘ki 
(proportional to the scattered electric field) has in the DWBA 
the form’” 

(21T11)=(2~1V111~)+(2~1V211(//). (16) 

The diffuse scattering is the consequence of the perturbation 
potential V2 so it is related to the second term on the right- 
hand side of Eq. (16) only. 

Substituting expressions (12), (14), and (15) for V,, 
’ @, and ‘I$, respectively, the perturbation matrix element can 
be evaluated as 
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FIG. 3. X-ray scattering from random rough interface i. The incident wave 
(‘k;) is scattered into the opposite half space (‘kLki+ 1). 

(21/11V211~)=k~(~~-~~+l)ti,i+l(1ki)ti,i+1(-2k~j 
xpi(%+l)* (17) 

The functions F, are given by 

& dy(e-iPi+lzktx~Y)- 1) 

xe--i(w+qyy) 08) 

and the wave-vector transfers 

qi=2ki-1ki. 09) 

Note that the tangent components of all the vectors qi are the 
same (qir=qxr gi,=q,). The integration in Eq. (18) is car- 
ried out over the illuminated area SO of the size L,L, . 

In a similar way, the field diffusely scattered from the 
interface i into the medium i+ 1 may be derived. Then the 
eigenstate ‘4 is chosen as the time reversed state for the 
wave incident on the interface i from the medium i+ 1 with 
the wave vector ‘ki+l (Fig. 3): 

2$crj= ti*,l,i(-‘ki+l)e 

i 

i’ki’, for z>zi, 

e’2ki+~rfr~+l,i( -2ki+l)ei2k[+l’, for z<zi, 
w 

leading now to the perturbation matrix element13 

wlv2111cr) 

=~~(~~-~~+~jti,i+l(‘ki)ti+l,i(-2ki~~jFi(qi+1). 

(21) 
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C. The diffuse x-ray scattering from a layered system 
For the evaluation of the diffuse scattering from layered 

systems, the scattering of the waves ET(&), 
EF+,,(I~I)~~+~( 01) from each interface i both into the me- 
dium i and i+ 1 has to be taken into account. The wave 
vectors ski of the scattered waves are again determined by 
the observation angle 19,. Let us denote the pertinent matrix 
elements (2$/V211(/1> by .YFR, YT’ (the scattering of the 
wave ET) and YPR -i”f’ (the, scattering of the 
EP+, (pi+:). It follows’from Eqs. (17) and (21) that 

wave 

~~R(ql)=ET(Bl)k~(a~-n~+l) 

Xt i,i+l(e,)t,,i+l(e2)Fi(15i+l+2~i+1), 
(224 

2 2 .Y;T(qJ=ET(e*)kO( I n. -4+,) 

Xti,*+l(b)l)ti+l,i (e2)Fi(-‘~i+1+25i+l)r 

(22b) 

~~~ql)=--EP+1(~l~cpi+l(e1)ko2~~~+l-~?) 

xti+*,i(~l)ti,i+1(B2)~i(15i-2~i), (224 

~~T~~l)=-~~+l~elj~i+l~eljk~(~~+l-~~~ 

xt~+l,i(e,>ti+l,i(e2jFi(-1~i-2~ij, (224 
where the tangential components qX, q, of vectors qi , qi+ , 
are omitted in the argument of functions Fi. The variables 
‘ci are defined analogically to ‘& as 

“ci=ko (23) 
If the multiple diffuse scattering is neglected, the vari- 

ables Yi may be considered as “independent sources of x 

I 

ruys.” Further, the field outside the layered system produced 
by these “SOUX~S” has to be determined. In contrast to the 
kinematical approximation, the total incoherent field is not 
expressed as the sum of the waves scattered from each inter- 
face but the multiple reflections and thus the real transmis- 
sion are included in the calculation. Consequently, besides 
YTR and YTR, the terms ..YT’, YfT have to be considered. 

In the medium i, the sources Yi’_‘, , YfT,, Y”TR, .55fR 
produce the electromagnetic field, which is a superposition 
of two specularly related waves 99:, @. The boundary con- 
ditions for the interfaces i- 1 and i yield 

-tYiT_T*(q& (25) 

where Qi are the reflection coefficients of layered systems 
above the interface i. We can determine Ri( 0,) from Eq. (4) 
and Qi( 0,) from the similar recursive formula 

Q,(e )= Qi-l(e2)(P~-l(e2)+Y"i,i-l(e2) 
1 2 Qi-l(e2)cp~-l(e2)Ti,i--l(e2j+l. (26) 

The values of Qj are calculated in the direction from top 
(Q, = 0) to bottom. 

If we express the term ti from Eqs. (24) and (25), 
multiply it by the transmission coefficient Ti( 0,) for the sys- 
tem above the interface i, and carry out the summation over 
all interfaces, the final matrix element Z?& corresponding to 
the total diffusely scattered field outside the layered structure 
may be obtained: 

@i(ql)=; Ti(B&Z9f(ql)=$ Ti( 0,) 
~i(~2)~i(~2)~~_Tl(ql)+~~~~l(q~)l+~R(ql)+.~(ql) 

i=l i=l 1 -Ri(e2)Qi-l(e2j~o?(e2j (27) 

The transmission coefficients Ti( 0,) may be determined 
in the following way: Let the plane wave I$+ t (6,) in the 
substrate pass through the system of layers toward the sur- 
face. By analogy-f0 Eq. (7), the amplitudes of the waves 
Ef( 0,) in each medium may be expressed using the recur- 
sive formula 

~$7 0,) = l+Qi(e,j 
l+Qi-1(e2)p~(e2) 4oi+lm~~+lw. 63) 

From Eq. (28), all the transmission coefficients T~( e,) may 
be calculated as 

(29) 

cients Ti( O,), jGi, has to be performed starting by the wave 
not in the substrate but in a layer closer to the surface. 

By substituting Eqs. (22a)-(22d) for .Y<? the term ?&u 
may be rewritten in the form 

%(qlj=~ [ai(q1)Fi(‘~i+l+2~i+l) 
i=l 

where CLi, pi, yi, and Si are the following coefficients: 

If the amplitude of the wave Ef( 0,) in a medium i is too Tit 4) 
small, the calculation of the remaining transmission coeffi- X1-Ri(e2)Qj-l(e2j(P~(e2)’ 
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(3 lb) 

(3lc) 

(31d) 

The diffuse component of the differential cross section4 

c%s%) - woM%) 
1695-z ’ (32) 

is then 

XFij(1Si+l+25i+l,‘~j+1+2~j+1)+...l, 
(33) 

where the symbol ( ) denotes the process of averaging across 
the random rough interfaces. The term in parenthesis consists 
of 16 items, which differ only in the multiplicative factors 
and in the arguments of the functions Fi, defined as 

Fij(K1 ,K*)=(Fi(KI)F~(KZ))-(Fi(KI))(Fj*(K2)). 
(34) 

Equation (33) is the general formula describing the rela- 
tionship between the diffuse component of x-ray scattering 
from the layered system and the topography of the interfaces. 
The shape of function Fij depends on the distribution of 
interface heights h,(x,y). 

If h,(x,y) are Gaussian random variables with standard 
deviations oi, the function Fij may,be expressed in the form 

LL, 
Eiq(Kl,K2)= - C? 

K,K; 

-(KfO;+K2 %312 

X dX dy(eKIK,*CdX,Y)- 1 jei(qd+qyY), 

(35) 

C*j(X~Y)~(hi(x+X9Y+ Y)hjix,Y)) (36) 

is the correlation function between height fluctuations of the 
interfaces i and j. We assume isotropic self-affine 
interfacesi described by the correlation functions 

Cij(R) = (+fje-(R17ij)2H, 07) 
where the exponent H determines the texture of the rough- 
ness and takes values between 0 and 1. Values of H close to 

1 describe smooth hills and valleys, whereas values of H 
approaching 0 characterize extremely jagged interfaces. The 
correlation function is exponential for H = i and Gaussian for 
H= 1. The parameters cij and 7ij are defined by means of 
the rms roughness oI and the correlation length 7i of indi- 
vidual interfaces as 

2 
CT;+CT,” 

(J-..=------- e -1zpjll7, 
‘I 2 

and 

7ij’ 7i7j .  r (39) 

The parameter T; describes the tendency of individual layers 
to replicate the substrate surface (vertical correlation). For 
simplicity, rz is supposed to be the same for all layers of the 
system. 

Ill. RESULTS AND DISCUSSION 

In order to demonstrate results of the scattering theory 
presented in the previous section, the diffuse x-ray scattering 
(Cu K, radiation) from a single layer and periodical multi- 
layers has been calculated. The Gaussian random rough in- 
terfaces and the exponential shape of correlation functions 
have been assumed. 

Three scanning modes were considered to map out the 
distribution of the diffusely scattered intensity in the recip- 
rocal space.t6 In the 8, mode (transverse scan), the sample 
rotates and the scattering angle et+ cl,=20 is kept constant. 
The angle w of the sample rotation is given by w=(e2- &)/2. 
In the 0, mode, the angle of incidence remains fixed and the 
angular distribution of the scattered intensity is scanned. Fi- 
nally, in the offset (0,2t9) scan the sample and analyzer are 
moved in such a way that the difference of angles 0, and 0, 
is conserved. 

The theoretical 8t scans calculated for a gold layer on a 
silicon substrate are shown in Fig. 4. As follows from de- 
tailed numerical analysis, the contribution from the upper 
interface predominates in the nonspecularly scattered inten- 
sity and the correlation between the substrate and gold sur- 
face profiles has no appreciable effect on these scans. It is 
noteworthy that the diffuse scattering exhibits local maxima 
(known as Yoneda peaks)t7 if either 0i or 0, is equal to 8,. 
This effect is caused by a standing wave with a maximum 
located at the surface, resulting in an enhanced diffuse scat- 
tering. Moreover, subsidiary maxima and minima may occur 
in the scattered intensity. These fringes arise due to the varia- 
tion of the surface coherent field produced by the interfer- 
ence of the incident wave and the wave specularly reflected 
from the substrate. The differential cross sections are calcu- 
lated in two ways. The former approach includes the influ- 
ence of interfacial roughness on the local coherent field ET, 
Ef which affects the diffusely scattered field (30) through the 
coefficients (31). On the contrary, the latter approach corre- 
sponds to the use of exact eigenfunctions for the ideal lay- 
ered structure for working out the perturbation theory 
(DWBA).’ The difference between these two curves is more 
significant at larger angles [Fig. 4(b)]. Here, the reflection 
from the substrate is suppressed by the roughness, the modu- 
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FIG. 4. Theoretical transverse scans for the gold layer (dAu=20 nm) on the 
silicon substrate. The differential cross sections calculated using the coher- 
ent field within the stratified medium with rough (solid line) and smooth 
(dashed line) interfaces are compared. The rms roughness ~~2.0 nm and the 
correlation length ~0.1 ym are assumed at both interfaces. 

lation of the coherent field is therefore negligible, and the 
fringes disappear. Only the calculations starting from the co- 
herent field within nonideal stratified medium give realistic 
results in this case. 

Figure 5 depicts the influence of the vertical 
correIation16~‘s~‘g on the theoretical 0, scan. If the roughness 
is correlated (identical layered systems), the maxima and 
minima periodically alternate in the angular distribution of 
the scattered intensity. Similar to the Kiessig structure of 
reflectivity curves, these oscillations result from the interfer- 
ence between the waves diffusely scattered from the top and 
bottom interfaces. However, if the interface profiles are com- 
pletely uncorrelated, nonspecular scattering monotonously 
decreases with the increasing angle 0,. 

For the demonstration of the diffuse scattering from 
more complicated structures, two, W/Si multilayers have 
been chosen. These x-ray mirrors differ only in the thickness 
ratio of layers composed of heavy and light elements. The 
rms roughness rr=OS nm and the correlation length r= 1 ,um 
are considered at each interface. 

The series of theoretical transverse scans at 28 values 
corresponding to the first-, second-, and third-order Bragg 
maxima are plotted in Figs. 6 and 7. The x-ray scattering 
from multilayers with correlated and uncorrelated roughness 
is compared. These pIots show several interesting features. 

When the wave vector of the incident or scattered wave ful- 
fils the Bragg condition,” the sharp maxima arise. However, 
satellite minima may sometimes occur in these positions. 
This somewhat surprising but already experimentally ob- 
served phenomenon13V16*21 can be explained within the 
framework of the theory presented above. When one of the 
angles 0,) a, approaches the Bragg angle, not only are the 
interference effects and the coherent field modulations im- 
portant but, in addition, the transmission of the incident wave 
or the waves scattered from individual boundaries exhibits a 
local extreme. Whether the increase or the decrease of the 
transmission occurs it depends particularly on the ratio of W 
and Si in the bilayer and on the number of periods. That is 
why no decision-which effect is dominant and whether the 
scattering in a given direction is enhanced or attenuated- 
may be done without carrying out the numerical calculations. 

For uncorrelated roughness, rZ-+O, CijiO if i#j and 
the sum in the relation (33) for the diffuse component of the 
differential cross section has only N nonzero terms. On the 
other hand, if the roughness is fully conformal, r,--+m and 
all terms contribute to the total diffuse scattering. Therefore 
the nonspecular intensity is usually in the former case much 
smaller. That is why the vertical correlation is very undesir- 
able at layered systems used as image elements, because it 
causes the contrast degradation of the final image. But the 
opposite situation may also occur and the incoherent scatter- 
ing from the layered structure having uncorrelated interfaces 
may be comparable or even higher [Fig. 6(c)] than for the 
identical system. The reason why the multilayer with corre- 
lated interface profiles exhibits a very low diffusely scattered 
intensity at the third-order Bragg maxima is the fact that the 
third order is nearly structure factor forbidden. Another in- 
teresting feature is also that incoherent scattering from sys- 
tems with completely uncorrelated roughness may show fine 
structure but this is mostly less apparent. This can be ex- 
plained by the effect of primary extinction in the vicinity of 
Bragg angles22 (reduced or enhanced transmission if the 
nodes of the standing wave pass through the W or Si layers). 

IO4 6.. s ’ ’ s * - I * Q r s *. ’ *. I * * * - - * = * - I * - = * *. * - ‘4 

IO" F. 
0.0 1.0 2.0 3.0 4.0 

0, Meg.1 

FIG. 5. Theoretical Ci, scans for the gold layer (dA,=20 nmj with correlated 
(solid line) and uncorrelated (dashed line) interface profiles. The rms rough- 
ness (r= 1.0 nm and the correlation length ~0.1 pm are considered at both 
interfaces. 
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FIG. 6. Transverse scans calculated for the multilayer WEi @,=I.7 nm, 
dsi=3.3 nm, 40 periodsj at (a) the first-, (b) second-, and (c) third-order 
Bragg maxima. 

FIG. 7. Transverse scans calculated for the multilayer W/S (d,=1.2 nm, 
~&~=3.8 nm, 40 periods) at (a) the first-, (bj second-, and (c) third-order 
Bragg maxima. 

The off (0,2 19) scan measurement appears to be a very 
promising method for determining vertical correlation. The 
numerical calculations were carried out for the muhilayer 
consisting only of 10 pairs of Fe/C (Fig. 8). A smaller num- 
ber of periods was chosen in order to reach a better resolu- 
tion of subsidiary interference fringes. This scan exhibits no 
fine structure for completely uncorrelated interfaces. With 
increasing vertical correlation, the interference maxima start 
to appear in the regions where the angle of scattering 20 is 
equal to twice the Bragg angle. These peaks correspond to 
the constructive interference of waves diffusely scattered 
from individual bilayers in a full analogy to the Bragg peaks 

in the specular reflection. For the parameter 7z = 0.2 pm, not 
only the profiles of adjoining boundaries are correlated but a 
certain degree of correlation also exists between the rough- 
ness of the substrate and of the surface. This again results in 
fast oscillations equivalent to the Kiessig ones. 

The presented results show that the structure of layered 
systems has a strong impact on their scattering properties. 

IV. SlJttlMARY 
In this paper, the theory of diffuse x-ray scattering from 

rough layered systems based on the distorted-wave Born ap- 
proximation has been presented. To author’s knowledge, this 
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FIG. 8. Theoretical offset (0.28) scans for multilayers Fe/C (dFe= 1.77 nm, 
&=3.28 nm, 10 periods) with different vertical correlation. The same val- 
ues of u=OS MI and 7= 1.0 ym are considered at each interface. 

is the first model valid also at small glancing angles, where 
the calculation of the diffusely scattered intensity respects 
both the real coherent field within a nonideal stratified me- 
dium and a real transmission of waves scattered from inner 
boundaries. 

By using the above-mentioned approach, the Yoneda 
anomalous scattering of x rays can be described. Further, the 
modulation in the nonspecularly scattered intensity can be 
explained as the consequence of dynamical effects. The scat- 
tering from periodical multilayers exhibits satellite maxima 
and minima when 8, or ~9, approaches the Bragg angle. 
These features depend on the mutual correlation between in- 
dividual boundaries but they can be observed for completely 
correlated as well as for uncorrelated interface profiles. 

This scattering theory may be also used for fitting ex- 
perimental data. In this way, basic statistical parameters 
(root-mean-square roughness, correlation function) of ran- 
dom rough surfaces and interfaces within layered structures 

may be quantified. Different scattering properties of systems 
with correlated and uncorrelated roughness enables one to 
specify the level of vertical correlation. 

A paper devoted to the characterization of layered struc- 
tures by coherent and incoherent scattering of x rays is being 
prepared. 
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