APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 52, 13450–13458 (1995)

[Issue 18 – 1 November 1995 ]

Previous article | Next article | Issue 18 contents ]

Add to article collection View Page Images or PDF (1627 kB)


Magnetic anisotropies of sputtered Fe films on MgO substrates

Yu. V. Goryunov, N. N. Garif’yanov, G. G. Khaliullin, and I. A. Garifullin
Kazan Physicotechnical Institute of Russian Academy of Sciences, 420029 Kazan, Russian Federation
L. R. Tagirov
Kazan State University, 420008 Kazan, Russian Federation
F. Schreiber, Th. Mühge, and H. Zabel
Institut für Experimentalphysik, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Received 23 June 1995

Ferromagnetic resonance (FMR) and superconducting quantum interference device (SQUID) measurements have been used to study the magnetic properties of rf sputtered Fe films on MgO(001) substrates. The dependences of the FMR spectra parameters on the direction of the dc magnetic field turning in the plane of the films were measured in a wide temperature range (20–400 K) for films with thickness L in the range 25–500 Å. The analysis of the angular dependence of the resonance field H0 allowed us to determine the fourfold cubic anisotropy constant K1 and the effective magnetization value Meff. It was found that both values decrease with decreasing L and approach a constant value below a certain thickness. A theory of FMR is outlined demonstrating that for the case of the dc magnetic field lying in a film plane, the anisotropy constant can be interpreted as a combination of a volume anisotropy contribution and a 1/L-dependent contribution from the surface anisotropy up to the thickness L <= 103 Å. This means that for the experimentally studied thickness range the films may be considered as ``dynamically thin films'' with respect to surface perturbations. Then the peculiar thickness dependence of the K1 value can be explained assuming that the relaxation of the strain due to the mismatch between film and substrate extends to distances as far as 45 Å from the film-substrate interface. Since our SQUID measurements show that the saturation moment does not depend on the thickness, it is concluded that the thickness dependence of the effective magnetization Meff is caused by a second-order uniaxial anisotropy arising mainly from the broken symmetry of the crystal field at surfaces and near the edges of interfacial dislocations.

©1995 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v52/p13450
DOI: 10.1103/PhysRevB.52.13450
PACS: 75.30.Gw, 75.50.Bb


Add to article collection View Page Images or PDF (1627 kB)

Previous article | Next article | Issue 18 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. L. Néel, C. Acad. Sci. 237, 1623 (1953).
  2. U. Gradmann, J. Korecki and G. Waller, Appl. Phys. A 39, 101 (1986).
  3. C. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988) [dot SPIN][dot INSPEC].
  4. J. J. Krebs, F. J. Rachford, P. Lubitz and G. A. Prinz, J. Appl. Phys. 53, 8058 (1982) [dot SPIN][dot INSPEC].
  5. B. M. Clemens, R. Osgood, A. P. Payne, B. M. Larison, S. Brennan, R. L. White and W. D. Nix, J. Magn. Magn. Mater. 121, 37 (1993) [dot INSPEC].
  6. B. M. Lairson, A. P. Payne, S. Brennan, N. M. Rensing, B. J. Daniels, and B. M. Clemens (unpublished).
  7. Yu.V. Goryunov, G. G. Khaliullin, I. A. Garifullin, L. R. Tagirov, F. Schreiber, P. Bödeker, K. Bröhl, Ch. Morawe, Th. Mühge and H. Zabel, J. Appl. Phys. 76, 6096 (1994) [dot INSPEC].
  8. K. Kawaguchi and M. Sohma, Phys. Rev. B 46, 14722 (1992).
  9. J. E. Mattson, C. H. Sowers, A. Berger and S. D. Bader, Phys. Rev. Lett. 68, 3252 (1992).
  10. C. Li and A. J. Freeman, Phys. Rev. B 43, 780 (1991).
  11. B. Heinrich and J.F. Cochran, Adv. Physs 42, 523 (1993) [dot INSPEC].
  12. G. T. Rado, Phys. Rev. B 26, 295 (1982); 32, 6061 (1985); J. Appl. Phys. 61, 4262 (1987) [dot SPIN][dot INSPEC].
  13. Th. Mühge, A. Stierle, N. Metoki, U. Pietsch and H. Zabel, Appl. Phys. A 59, 659 (1994).
  14. H. Suhl, Phys. Rev. 97, 555 (1955).
  15. Numerical Data and Functional Relationships in Science and Technology, Landolt Börnstein, New Series, Vol. III/19a (Springer, Heidelberg, 1986).
  16. N. Metoki, M. Hofelich, Th. Zeidler, Th. Mühge, Ch. Morawe and H. Zabel, J. Magn. Magn. Mater. 121, 137 (1993) [dot INSPEC].
  17. E. C. da Silva, R. Meckenstock, O. von Geisau, R. Kordecki, J. Pelzl, J. A. Wolf and P. Grünberg, J. Magn. Magn. Mater. 121, 528 (1993) [dot INSPEC].
  18. F. Schreiber, J. Pflaum, Z. Frait, Th. Mühge and J. Pelzl, Solid State Commun. 93, 965 (1995) [dot INSPEC].
  19. C. Chappert, K. Le Dang, P. Beauvillian, H. Hurdequint and D. Renard, Phys. Rev. B 34, 3192 (1986).
  20. B. Heinrich, Z. Celinski, J. F. Cochran, A. S. Arrott and K. Myrtle, J. Appl. Phys. 70, 5769 (1991) [dot INSPEC].
  21. C. Kittel and J. K. Galt, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1956), Vol. 3.
  22. G. G. Khaliullin and S. V. Buzukin, J. Phys. Condens. Matter 2, 577 (1990) [dot INSPEC].
  23. F. C. Frank and J. H. van der Merve, Proc. R. Soc. London Ser. A 198, 216 (1949).
  24. L. D. Landau, E. M. Lifshitz, Phys. Z. Sowetunion 8, 153 (1935).
  25. J. F. Cochran, B. Heinrich, A. S. Arrott, Phys. Rev. B 34, 7788 (1986).


Add to article collection View Page Images or PDF (1627 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 18 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org