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Abstract

The electronic and magnetic structures of dilute FeCr alloys have been investigated in the framework of the periodic
Anderson model. The theory involves only a few phenomenological parameters, which can be determined via magnetic
properties of pure Fe and Cr samples. Some examples are considered: the perturbation of magnetic moments of Fe atoms due
to Cr impurities both in the bulk and near the surface; the electronic structure of the Cr protective monolayer covering the Fe

surface; and the properties of Fe /Cr superlattices.

1. Introduction

Investigations of transition metal dilute alloys are
significant from the applications viewpoint (because
they allow the creation of new materials with exotic
properties), as well as from fundamental one (since
they provide unique information about the nature of
d-metal magnetism). The magnetic properties of sur-
faces, superlattices and other low-dimensional sys-
tems are of special interest. Their magnetic and
electronic structures differ from those of the bulk,
and this leads to a number of new physical phenom-
ena, which have been recently discovered.

As an example of such a new class of phenomena
we note the oscillating dependence on the thickness
of the non-magnetic spacer of the exchange magnetic
coupling between magnetic slabs in metallic super-
lattices [1,2]. In these superlattices, giant magnetore-
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sistance has been detected which was caused by a
change in the magnetic structure when an external
magnetic field is switched on [3]. The interfaces in
the superlattices are not perfectly smooth and during
superlattice production the replacement of different
atoms and changing of the properties of interface
take place. Note that namely these atoms determine
the interface roughness and the conductivity of the
sample [4].

Among a number of experimental methods [S],
one of the most promising for investigations of
magnetic structure is the method based on Mdssbauer
spectroscopy. This is connected with the local char-
acter of the information that can be obtained from
the Mossbauer spectra (MS). If, for example, one of
the atomic layers in the superlattice, where Fe is
used as the magnetic material, is made of 57Fe,
whereas the other iron layers contain *Fe, then the
spectra obtained give information about the hyper-
fine fields (hff) of the *’Fe atomic layer [6].

On the other hand, it is possible to investigate the
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surface when the total external reflection of
Mossbauer radiation takes place and the role of
subsurface layers increases significantly [7].

It should be noted that for MS interpretation it is
necessary to develop a model that relates the shape
of the spectra to the magnetic properties. It is usually
assumed that hff on the nuclei emerge due to the
polarization of inner s-shells by the localized mag-
netic moment on a given atom as well as the direct
contact interaction of the s-conductivity band [8].
The first contribution is proportional to the localized
magnetic moment; the second is determined by the
polarization of the s-conductivity band. Hence, for a
theoretical description of the spectra obtained, it is
necessary to calculate both the localized magnetic
d-moments and the polarization of itinerant s-elec-
trons.

One of the most advanced methods for describing
the electron structure is ab initio calculations based
on the density functional formalism [9-12]. These
calculations predict a considerable increase in mag-
netic moments on the surface of Fe, Co and Cr.
Calculations of the electron structure of metallic
magnetic superlattices have been performed in the
framework of this method [13-15]. These computa-
tions are rather elaborate and time consuming but it
is not yet possible to consider non-homogeneous
in-plane states and the effects of adsorbed atoms on
the magnetic properties of non-perfect surfaces [16].

On the other hand, some results of the calculation
in the density functional approach were found to
disagree with experiment. For example, the energy
of magnetic coupling in the superlattices turns out to
be an order of magnitude greater than the experimen-
tal value [13,17]. Moreover these calculations do not
allow to get a simple intuitive picture of the phenom-
ena and to discern which interactions from a number
of those taken into account are responsible for the
properties under consideration. Note that recent cal-
culations [14,15] give values of coupling energies
that are in more reasonable agreement with the ex-
perimental data. At the same time there are studies
where the ab initio method was exploited for the
selection of the simple mechanism of coupling phe-
nomena [18].

Another approach to the description of magneto-
ordering in quasi-two-dimensional systems is con-
nected with the application of model Hamiltonians,

such as the Hubbard Hamiltonian. This leads to
equations for Green functions which are usually
solved in the nearest-neighbour approximation.

In spite of the fact that the calculations in this
case are not so complex, they are laborious as well
and this approach is limited to describe non-homoge-
neous complex systems. Furthermore, the results of
the calculations are sometimes in contradiction with
the data of more precise experiments. For instance,
the period of the magnetic coupling calculated for a
Fe/Cr/Fe sandwich system in the approximation of
a perfectly smooth interface [19] does not agree with
experimental data obtained for wedge-like samples
[20]. Note that in recent studies in the frame of the
Hubbard Hamiltonian some surface and interface
structures with broken two-dimensional periodicity
have been successfully deseribed [21,22]. In particu-
lar, in Ref. [22] the experimental results [20] were
interpreted using the calculations of magnetic proper-
ties for high-Miller-index surfaces. Such systems
have not been described by any of the ab initio
methods.

These circumstances make it important to develop
a simple theory with a minimum number of phe-
nomenological parameters which will allow a de-
scription of magnetically ordered non-homogeneous
systems. A version of such a theory based on the
periodic Anderson model was developed for descrip-
tion of surfaces and stratified magneto-ordered sys-
tems [23]. In this approach, the conclusion about an
enhancement of magnetic properties on the surface
was confirmed. The dependence of the surface mag-
netic moment on the surface orientation was demon-
strated [24]. In Ref. [25] a new method of mass-oper-
ator calculation was developed which allows to take
into account d-d interactions inside an arbitrary
number of coordinate spheres; the correlation be-
tween the band and cluster approach was also dis-
cussed.

In the present paper the problem of describing the
magnetic structure of dilute alloy FeCr near the
surface or interface is studied. We consider the
perturbation of the host magnetic moments by impu-
rity atoms in dependence on their mutual positions.
Then we calculate the magnetic and electronic struc-
ture of the Fe surface covered by a protective Cr
monolayer. After that we apply the theory developed
to describe the properties of the dilute alloy near the
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surface. The possibility of using the data obtained for
interpretation of the Mdssbauer spectra is considered.

2. The model

We consider d-metals in the framework of Ander-
son’s periodic model and assume that the electron
spectrum is described by a two-band approach, which
corresponds to s and d subsystems. For the localized
d-electrons we use the Wannier, and for the itinerant
s-electrons the Bloch function representation.

Let us write the equations for the Green function
matrix elements in the form:

%‘. [“’5[,; _Ei,j]G],i’ - Xk:Vi,kaz 8,1 (1)
[w - Ek]Gk,i - Z Vk,jGj,i =0, (2)
[a)_Ei]Gi kT Z e Cr =0, (3)
[0—EGrw— % Vi, i Gk = i (4)
where E,, and E, are the energies of a d-electron

localized on site i and an itinerant s(p) electron with
quasi-momentum k, V; , and V,; describe inter-band
hybridization, E, ; are d1rect transitions from site i to
j. If the dlrect tran51t10ns are omitted, then the
system (1)—(4) is reduced to Anderson equations for
a single impurity [26]. Our approach implies that the
s—d interaction on the site is large enough compared
to s—d interactions on different sites. In this case we
construct a resonant d-state, which has a definite
width, as in Ref. [26], and after that the interaction
between different atoms is taken into account.

Extracting the functions G, ; from (2), the set of
equations for G, ; is obtained:

[w_Ei]Gi,i’— ZVIJGJ i 61‘,1"7 (5)

where the d-electron energy
ViiVi,i
E,=E,, + MY
SR il 7"

and the ‘hopping’ integral between the localized
sites

lk kz
Vi =Eyy +Ea) Ek

are renormalized by the s—d interaction.

Note that E; includes an imaginary part, which is
determined by the s—d interaction:
ViV
I,=Im ), LAy
k w— E k
In the following we take the parameters V and I to
be independent of site coordinate i.
Iteration of Eq. (5) leads to the following expres-
sion for the d-electron Green function:

Goym | 8y
BT —E; BT —E;
AN ] ©
Iy (0—E)(w-E)
For the diagonal matrix element we obtain
Gzt=(w—Ei_0-i)—1 (7)
where the mass operator o; is defined as follows:
ST /T
w—E 7 (0—E)(0—E)
(8)

The summation in (8) is carried out over all transi-
tion paths which start and finish at the i-site and,
moreover, do not pass through it.

To make the system (6)—(8) definite we use the
simplest self-consistent condition, which is analo-
gous to the Hartree—Fock approach:

- Ef=Ey+ Un; ¢, 9

where n;® is the number of d-electrons with spin
—a on the i-site. The initial energy E,; and the
Coulomb integral U, depend on the sort of atoms on
the i-site. We consider these parameters as phe-
nomenological ones in the spirit of the Fermi liquid
theory.

Note that an analogous model was exploited to
describe the magnetic properties of metals with a
half-filled d-band and thin films of these metals
[27,28]. The approach used there corresponds to the
inclusion in the first order of perturbation theory of
electron transitions between neighbouring sites. As
an initial approach the density of states for a single
impurity was used. Such a theory does not allow us
to consider a complex, non-homogeneous state, such
as clusters of different chemical atoms near the
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sample surface. That is why we use another method,
which makes it possible to calculate the mass opera-
tor taking into account d—d transitions inside a given
number of coordinate spheres [25].

To calculate the mass operator o, let us take a
certain set of atoms <3 and consider only the transi-
tions through atoms of this set. Then

g;= Z Vz',ij,i’ (10)
jesy

where S, ; is the contribution from all paths begin-

ning on the i-site and finishing on the j-site. For S, ;

it is possible to write the following set of equations:

(0=E)S;i=Viit+ L Vi (11)
ey
If the set <Y is the first coordinate sphere of atoms

under consideration, for o in the case of the bce
lattice one obtains:

8y?
o= (@
and for the fce lattice it is:
12V*?
g; = m . (13)

In (12) and (13) it is assumed that energies E* = E®
for all i, as it is for ferro- and paramagnetic order in
a homogeneous sample.

Analogous, but more cumbersome formula, can
be derived for space non-homogeneous systems. The
appearance of the ‘hopping’ parameter V in the
denominator (13) is connected with the fact that for
an fcc lattice in the first coordinate sphere of the
atom under consideration there are as long paths as
possible which give a contribution to S, ;, whereas
for a bec lattice only a direct transition is available,
which corresponds to the first term on the right-hand
side of (11).

Now the d-electron state occupation numbers are
given by the expression

[+ 1 d a :
m—-;f of(®) Im G#(w —i0),

where f(w) is the Fermi-Dirac function. Now we
have a full set of equations for self-consistent deter-
mination of n,, E,.

The phenomenological parameters of the model

are the energy E, the Coulomb integral U, the “hop-
ping’ integral V (which we assume to be non-zero
only for nearest neighbours) and the level width I'.
Note that in most cases it is more convenient to use
dimensionless variables:

_(Bume) U
i F H yi I—.’ F

In this case all the energies are expressed in I-units.
We assume that the parameters x;, y;, and V/I
have been determined from calculations of the prop-
erties of a homogeneous sample, and V/I" is taken
to be the same for different materials.

To calculate the s-band polarization we use Egs.
(3) and (4). Making an iterated expansion, one finds

Sk.10
G(S)’/a = —_—
k.k 0 — Ek
* : YV, Vi uG®
(@=E)(0—Ep) i3 w70
(14)

The first term on the right-hand side is spin-indepen-
dent, corresponding to a free s-electron contribution,
and the second term takes into account the polariza-
tion of the s-band caused by the d-subsystem. The
matrix elements V,, ; are assumed to be the same as
in the space homogeneous case:

Vei=Vi exp(ikRj).
Turning to the Wannier representation for s-electrons

and neglecting the dependence of V, on k, for the
Green function G{** we obtain:

(s)ya = 1 s ! (s), e
kK
= Gjﬁfj)(o) + Z Gj(,sz)'(O)GfmG,(;f,)jm), (15)

Im

where G is the Green function for the free
s-electrons. For calculation of the d-subsystem Green
functions G, in (15) one can use the technique
described above,

If one assumes the perturbation caused by an
impurity to be local, i.e. only the terms in (15) which
contain G (where j is an impurity site) are changed,
then the results of RKKY theory may be reproduced
from (15). Namely, the elcctron density oscillates

Al




V.N. Gittsovich et al. / Journal of Magnetism and Magnetic Materials 146 (1995) 165-174 169

with the amplitude, which decreases as R73, while
the distance R increases. Such an approach is often
used for the interpretation of Mdssbauer spectra.

It should be noted that in the framework of the
theory developed it is possible to consider the pertur-
bation of the localized magnetic moments near the
impurity atom and its influence on the conductivity
band polarization in a general form, in the cases
when the RKKY approach appears insufficient. It is
important for a description of materials close to the
ferromagnetic state (such as Pd) where the magnetic
moment of the impurity induces a strong polarization
of the host atoms in a few coordinate spheres. It may
be necessary to go beyond the framework RKKY
theory when the effective attraction between the
impurities occurs and the structure of the clusters
formed substantially determines the polarization of
the conductivity band.

3. Electronic and magnetic structures of dilute
FeCr alloys

We now exploit the theory developed to describe
the electronic and magnetic structures of Cr impurity
atoms in an Fe matrix. If the Cr concentration is low
enough, we can take into account clusters that con-
tain no more than two Cr atoms. We consider transi-
tions in the first coordinate sphere of the atom in
question and assume that the impurity atoms which
are farther than the second coordinate sphere do not
change the magnetic moments of Fe atoms. This
implies that the Fe atoms whose electron structure is
perturbed by the impurity are able to change only the
magnetic structure of their neighbours. Our calcula-
tions reveal that the perturbation of magnetic mo-
ments in the second sphere of the impurity is much
less than in the first one.

Note that for a space homogeneous metal with
bee lattice mass operator and Green functions of
d-electrons were worked out for the cases when the
d—d interaction was taken into account in the 1, 2, 3
and 7 coordinate spheres of the atom under consider-
ation [25]. It was shown that the main features of the
magnetic behaviour can be reproduced in the sim-
plest model of nearest neighbours but with the corre-
sponding value of the effective hopping parameter.
This is also likely to be true in dilute bee alloys.

Fig. 1. Impurity Cr atoms (full) in the Fe matrix (empty).

All the possible configurations of 1 and 2 impu-
rity atoms in the first coordinate sphere of the Fe
atom are shown in Fig. 1 (a—e). These are:

(a) A single Cr atom (1) in the Fe lattice and Fe
atoms in the first (2) and second (3) coordinate
spheres of the impurity (Fig. 1a).

(b) Two neighbouring impurity Cr atoms (1) in
the Fe lattice and Fe atoms which contain one Cr
atom in the first and second coordinate spheres (Fig.
1b).

(c) Two Cr atoms — second neighbours (1) in the
Fe lattice, and Fe atoms which contain two Cr atoms
among the nearest neighbours (2) and second neigh-
bours (3) (Fig. 10).

(d) Cr atoms at a distance of ay2 (where a is the
lattice constant) (1), and Fe atoms which contain two
impurity atoms in the first (2) and second (3) coordi-
nate spheres (Fig. 1d).

(e) Two Cr atoms which are along the diagonal
of the cube (1), Fe atoms which contain these Cr
impurities among nearest neighbours (2), and Fe
atoms which contain impurities in the second and
third coordinate spheres (Fig. le).
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The model parameters for Fe and Cr atoms were
chosen so that the properties of the corresponding
spatially homogeneous materials (the number of d-
electrons per atom Np, =7.0, N, =5.0, and the
magnetic moments My, =2.2uy for ferromagnetic
ordering, M., = 0.6u, for antiferromagnetic order-
ing) were reproduced. Note that in the Cr samples
the state of spin density wave with an amplitude of
about 0.6y is realized. This state is close to the
unstable one and leads to some difficulties in calcu-
lations of Cr-containing systems [19].

As an initial approximation for the self-consistent
calculation we use the populations of the electron
states which correspond to the pure ferromagnetic Fe
and antiferromagnetic Cr. At an initial stage, it was
possible to choose the magnetic moment of Cr impu-
rity atoms to be both ferro- and antiferro-ordered
with respect to the moment of Fe. The mass operator
in our approach is determined by the atoms in the
first coordinate sphere of the atom under considera-
tion. For example, for the configuration shown in
Fig. 1(c), every Cr atom (1) is surrounded by four Fe
atoms of kind (2) and four Fe atoms of kind (1) from
Fig. 1(a); every Fe atom of kind (2) is enclosed by
two Cr atoms (1), four Fe atoms of kind (3) and, in
our approach, two Fe atoms, like atoms in pure
ferromagnetic Fe. Finally, the Fe atom of kind (3)
has, among its nearest neighbours, two atoms Fe (2),
two atoms Fe (3) from Fig. 1(a), and four atoms of
‘pure’ Fe.

The self-consistent calculation of the occupation
numbers for the localized d-state being fulfilled, one
can find the magnetic moment and the number of
d-electrons per atom. Although our system includes
both localized d and itinerant s(p) subsystems, one
should demand that the electroneutrality condition
for the clusters which consist of impurity atoms and
Fe atoms with perturbed state under the action of the
impurity, is governed only by d-electrons. This con-
dition can be changed if the equatioms for both
subsystems are solved and the Fermi level has to be
shifted for all electrons. The electroneutrality condi-
tion for Fig. 1(c) configuration reads:

2n(Cryy,) + 4n(Fe ) + 8n(Fe ) + 8n(Fe )
+ 2n(Fe,,) =2n(Cr) + 22n(Fe).

Here the literal indices and the numbers refer to the

Table 1

Magnetic moments and number of d-electrons on Fe atom near the
impurities. Letter in the first column corresponds to Fig. a—e,
cipher — number of atoms on this figure

Magnetic moment ( z153) Number of d-¢lectrons

a(2) 2,06 7.04
a(3) 222 7.03
b(2) 2.07 7.04
o2 1.93 7.05
(3) 2.19 7.07
d(2) 1.95 7.03
d(3) 2,23 7.05
e(2) 1.99 7.00
e(3) 2.23 7.04

configurations in accordance with Fig. 1, and the
kind of the atom within it, respectively. The right-
hand side contains the corresponding values for pure
metal.

We now turn our attention to the results of numer-
ical calculations,

(1) The magnetic moments of Cr impurity atoms
for the self-consistent solution turn out to be ordered
antiferromagnetically relative to the magnetic mo-
ments of Fe. This result does not depend on the
initial magnetic ordering (i.e. on the magnetic order-
ing which was assumed at the very first step of the
calculations). Note that the same behaviour was ob-
tained in the ab initio calculation and in the experi-
mental data [9].

(2) The magnetic moment of Cr impurity atoms
exceeds considerably the magnctic moment in the
pure antiferromagnetic Cr. The interaction between
Cr atoms leads to a reduction of the moments, and
the closer the Cr are, the greater is this reduction
(Table 1).

Table 2
Localized magnetic moment on Cr impurity atoms as a function of
the distance between impurity atoms

Distance between impuritics Magnetic moment
(in lattice constant) (py)

3 1.79
213

2.16

2.18
2.19

L]

B

[ ‘\ i

I

[

i
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(3) The calculations demonstrate that Fe atoms
reveal a small decrease in the magnetic moments
under the action of Cr impurities (Table 2). How-
ever, this is not additive with respect to the number
of impurity atoms but depends on their mutual posi-
tions. In particular, the decrease in magnetic mo-
ments for the Cr atom (2) in Fig. 1(b) is less than
that for atom (2) in Fig. 1(a), although atom Fe,
has one impurity atom in the first and one in the
second coordinate sphere, whereas atom Fe,,) has
only one atom in the first sphere. This could be
explained by the strong mutual influence of neigh-
bouring Cr atoms.

(4) The increase in the localized magnetic mo-
ments is accompanied by a decrease in the number
of d-electrons on the same atom. In our approach,
this leads to the lowering of the Fermi level relative
to the bottom of the band and to the redistribution of
electrons between atoms of a cluster.

4. Stratified systems: surface and superlattices
Fe /Cr

The main factor that influences the magnetic
properties of surface atoms is connected with the
variation of the number of nearest neighbours and
with the subsequent effective shrinking of the d-band.
For both Fe and Cr this leads to a considerable
enhancement of the surface magnetic properties.
These results were obtained for surfaces and thin
films in the framework of the density functional
formalism [10-12], as well as in the tight-binding
approximation [28]. With our model, it is easy to
explain the dependence of the magnetic structure on
the orientation of the surface with respect to the
crystal axes.

For example, in a bee lattice the surface atoms
have six nearest neighbours for (110) surface orienta-
tion and only four such atoms for (100) orientation.
It seems reasonable that narrowing of the d-band and
deviation of magnetic moments from the bulk values
would be less in the last case. Namely, this be-
haviour, which completely corresponds with the re-
sults obtained in the framework of density functional
calculations [10], has been found in our theory.

In the numerical calculation of the magnetic mo-
ment distribution the following procedure is used.

The values of the occupation numbers of d-electrons
are determined successfully, starting with the surface
layer. For an initial approximation we take the bulk
values of the occupation numbers. To find the mass
operator for an i-layer we need to specify energies in
layers i —1 and i+ 1. For E;_; we use the value
found immediately before this at the same iteration,
whereas for E;,, we use the value of the previous
iteration. This procedure is repeated until the mag-
netic moments and the numbers of d-electrons in
each layer remain unchanged.

If a layer containing nonequivalent atoms (such as
for the calculation of the FM /AFM interface, where
AF ordering of magnetic moments occurs in the
superficial layer), it is necessary to perform self-con-
sistent calculations for every nonequivalent atom.
Here we suggest, as in the case of a dilute alloy
problem, that the total number of d-electrons in the
sample is preserved. This condition significantly af-
fects the results of calculations for thin films and
superlattices with a short period, because it leads to a
redistribution of electrons between layers. For a
semi-infinite metal the shift of the Fermi level and
the electron redistribution appear to be weak, since
the electron structure changes only in a few subsut-
face layers.

For the pure «-Fe surface (100) it was found that
the magnetic moment of the surface layer increases
to 2.54y from the value 2.23uy in the bulk. The
number of d-electrons per atom decreases from 7.0
in the bulk to 6.86. The enhancement of magnetic
properties near the surface turns out to be less than
predicted with the density functional formalism.
However, the results obtained are closer if the d-
magnetic moment and the number of d-electrons are
taken to be 2.3 and 7.0, respectively [23].

The changing of the d-electron number in the
subsurface layers leads due to the local electroneu-
trality condition, to the s(p) band polarization. Ab
initio calculations also predict that the s(p) band
polarization is antiferromagnetic relative to the local-
ized magnetic moment [10]. This makes it difficult to
observe an increase in the magnetic properties in the
MS experimental studies.

In the second layer from the surface the magnetic
moment is moderately less than in the bulk. Then it
approaches the bulk value.

In experimental studies of the Fe superlattice it is
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important to bear in mind the influence of adsorbed
atoms on the magnetic properties. Such atoms often
suppress the surface magnetism [6]. That is why
investigations of electronic and magnetic structure of
surface covered by protective monolayers (an exam-
ple is Cr on Fe surface) are of special interest.

As discussed above, the impurity atoms decrease
the moments of the surrounding Fe atoms. It seems
to be natural that the increase in the magnetic mo-
ments of atoms at the Fe surface is less in the case
when the surface is covered by a Cr monolayer.
Actually, as our calculations have demonstrated, the
moment of the interface Fe layer is less than in the
bulk: 2.07ug. A fair increase in the moment (up to
2.32 pug) due to surface effects is exhibited only in
the next Fe layer.

Note that, as distinct from the magnetic moment,
the number of d-electrons per atom in the interface
Fe layer is found to be almost the same as without
the Cr layer. This results in a redistribution of the
s(p)-electrons near the interface.

Magnetic ordering in the protective Cr layers is
ferromagnetic and magnetic moments are ordered
antiparallel relative to the Fe moments. The value of
the magnetic moments for Cr atoms is 2.75ug,
which is much greater than both in the bulk and in
the FeCr alloy. The reason for such a considerable
increase in magnetic properties lies in the fact that
the protective layer is the surface one and has fewer
nearest neighbours than the inner layers. In addition,
for the surface (100) all the Cr adjacent atoms are Fe
atoms, and there is no direct interaction between Cr
atoms. This leads to an increase in the magnetic
moment. The results of recent experimental studies
of Cr layers on Fe surfaces [29,30] are in good
agreement with our data. Note that calculations of
the properties of the free Cr surface give a giant
enhancement of magnetic moments up to 3.63ug
[31]. Experiments demonstrate the magnetic phase
transition occurs at a temperature 2.5 times larger
than that of the bulk [32].

In the Fe/Cr superlattice (the classic system with
antiferromagnetic coupling and giant magnetoresis-
tance) the same peculiarities are exhibited in elec-
tronic and magnetic structures as for the Cr mono-
layer on the Fe surface. If the superlattice is consid-
ered where the Fe film consists of three layers, our
calculations show that the interface layer has a lower

magnetic moment (2.0u), whereas the moment of
the central layer is greater than that of the bulk
(2.5u5) in accordance with the results of other cal-
culations [19,33]. When the thickness of the Fe film
increases the same structure can be observed as for
two independent Fe surfaces covered by Cr.

As for magnetic ordering in the Cr mediator, we
found that the magnetic moment for the (100) inter-
face is always ordered antiferromagnetically to Fe.
That is why for ferromagnetic ordering of Fe slabs in
the superlattice and for an even number of layers in
the Cr mediator (for antiferromagnetic ordering of Fe
slabs in the superlattice and an odd number of layers
in the Cr mediator) in the Cr slabs the magnetic state
with a fold superposed on antiferromagnetic order is
observed. In the centre of the Cr slab the magnetic
moment vanishes. The possibility of such states in
the frame of the Anderson periodic model was dis-
cussed in Ref. [23]. The state with the fold has a
higher energy. Therefore, for superlattices with per-
fectly smooth interfaces one can expect short-range
oscillations of the magnetic coupling with a period
of two lattice constants.

5. Cr impurities near the Fe surface

To conclude this study, we consider the problem
of describing the perturbation of the electronic and
magnetic structures caused by impurity atoms near
the sample surface. On the one hand, the presence of
the surface leads to an increase in the magnetic
moments. However, the influence of Cr impurities
results in a decrease of these values. What happens if
both factors are taken into account? Let us consider
the two configurations in Fig. 2.

In Fig. 2(a) the Cr impurity atom is on the
surface, and in Fig. 2(b) it is on the next layer. As an

Fig. 2. Impurity Cr atom (full) on the Fe surface (a) and in the
second after surface layer (b).
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initial approximation for the occupation numbers in
our calculations we use the values that correspond to
the homogeneous antiferromagnetic Cr for Cr atoms
and a semi-infinite Fe sample for Fe atoms.

In all cases, the self-consistent solution reveals
antiparallel ordering of neighbouring Fe and Cr mag-
netic moments. The value of Cr moments on the
surface (2.8 45) appears to be close to that of Cr in
the Cr monolayer on the Fe surface. In the layer next
to the surface, the Cr atoms have a magnetic moment
of 2.27u, which is larger than that for an impurity
Cr atom in the bulk.

For Fe atoms surrounding the impurity, it is possi-
ble to keep track of the influence of both the impu-
rity and the surface. If an impurity atom is on the
surface, nearest-neighbour Fe atoms from the second
layer have a magnetic moment of 2.5u. The impu-
rity atom in the first coordinate sphere causes a
decrease in the surface magnetic moment of Fe to
2.44p5. The perturbation of the magnetic moments
by the Cr impurity is substantial only in the first
coordinate sphere.

Note that when Cr atoms pass through the Fe
surface they reduce the magnetic moments of their
neighbours and could give rise to the giant decrease
in the sample magnetic moment in the magnetometer
experiments [16].

6. Conclusions

We have presented the theory that allows us to
calculate the d-electron occupation numbers for a
specially non-homogeneous system. As an example
of such a system, dilute FeCr alloys were considered,
as well as the surfaces of the pure metal, (Fe)
covered by the protective (Cr) layer, FeCr alloy near
the surface of the sample. Now we summarize the
results of our calculations.

(1) In all cases the Cr impurity atom has a mag-
netic moment unparallel to the Fe moment of the
matrix.

(2) The interaction between Cr atoms leads to a
decrease in the magnetic moment. The replacement
of Cr by Fe atoms in the system of interacting Cr
atoms results in an increase in Cr magnetic moments.

(3) The increase in the magnetic moment per
atom is followed by a decrease in the number of

d-electrons on the same site. The electroneutrality
condition leads to a redistribution of itinerant elec-
trons and their polarization.

(4) The Cr impurity atoms cause a decrease in the
magnetic moments of the surrounding Fe atoms.
However, this decrease is not additive with respect to
the number of impurities, but depends on their mu-
tual positions. This is a result of the interaction of
the impurities and the subsequent decrease in their
magnetic moments.

(5) The surface changes the magnetic properties
of atoms through the reduction in the number of
nearest neighbours. This results in a considerable
increase in magnetic moments near the surface of
pure metals (both Fe and Cr).

(6) The protective Cr layer on the Fe surface
depresses the interface Fe magnetic moment down to
a value that is less than that in bulk Fe. However, in
the next (after the interface) layer the magnetic
moment appears to be larger than that in the bulk.
Similarly, for Fe/Cr superlattices the interface Fe
atoms have a moment that is less than that in the
bulk; but the central layer has a higher magnetic
moment,

(7) Calculations of the electronic and magnetic
structures of Fe /Cr superlattices show that self-con-
sistent solutions exist for both ferro and antiferro-
magnetically ordered Fe slabs in the superlattice.
One of this solutions always has a fold, where the
magnetic moment falls to zero. This solution has a
higher energy and hence is unstable.

(8) The Cr impurities near the Fe surface induce
a reduction in the magnetic moments of surrounding
atoms. It is significant in the first coordinate sphere
and much less in the second. It is possible to follow
the influence of both impurities and the surface on
the distribution of magnetic moments. The perturba-
tion of magnetic moments determines the hyperfine
fields on Fe nuclei and can be used for the interpreta-
tion of Mdssbauer experiments. However, for this
purpose it is urgent to calculate more precisely the
s(p) band polarization. Such calculations are now in
progress.
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