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The reflection and transmission of x rays (and neutrons) by graded interfaces and surfaces of arbitrary
profile are calculated by generalizing the approximation introduced by Nevot and Croce. The results ap-
ply also to the specular scattering by Gaussian and non-Gaussian random rough surfaces in the limit of
short lateral correlation length. Two alternative approximation schemes are given: one involves the
self-consistent calculation of the reflected field while the other imposes self-consistency for the transmit-
ted field. The two alternatives give identical results for the reflection coefficient but not for the transmis-
sion coefficient. A third and better approximation is given by the geometric mean of the transmission
coefficients obtained by the two alternatives above. Comparison with exact solutions for the special Ep-
stein profile helps ascertain the accuracy of the approximations. The well-known peak of the transmit-
ted amplitude for incidence at the critical angle is appreciably enhanced by grading the interface, and/or

by roughness.

I. INTRODUCTION

Modern thin-film deposition methods have led to new
synthetic materials with useful properties which are
- strongly correlated with the nature of the surfaces and in-
terfaces. To satisfy the increasing demand for surface
structural information a number of techniques have
evolved, one of them being the scattering of x rays at
grazing incidence.’?> Thus, quite apart from its intrinsic
interest, there is a pressing need for reliable theories of
reflection by complex surfaces.

The waves scattered by a real interface naturally
separate into specular and nonspecular components. The
specular or coherent waves are essentially what one
would obtain if the inhomogeneities in the real interface
are averaged out. This averaging procedure replaces the
real rough interface by an equivalent, effective graded in-
terface. For example, a rough surface with a Gaussian
height distribution is replaced by an effective surface with
a graded profile given by an error function. The real and
the effective interfaces are not identical and this
difference causes an additional scattering, which is the
source of the nonspecular waves, also known as in-
coherent, or diffuse waves. Therefore, one important
reason to calculate the specular reflection by graded in-
terfaces is that this is a necessary first step in the calcula-
tion of scattering (specular and diffuse) by purely rough
surfaces. The second motivation is, of course, that real
interfaces may be both rough and graded simultaneously.

There is an extensive literature on specular and diffuse
scattering by purely rough surfaces.?” 1
neutrons the effect of roughness on the specular com-
ponent can be taken into account by multiplying the
Fresnel reflectivity of an ideal sharp and planar surface
by a “static Debye-Waller” factor. The calculation of
this factor has been carried out in many ways. For exam-
ple, one may use the Rayleigh approximation>*
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where r; is the reflection coefficient for a sharp smooth
surface, g is the normal component of the incident wave
vector, and o? is the mean-square roughness. This ap-
proximation is good for purely rough surfaces with very
long lateral correlation lengths but fails for short correla-
tion lengths particularly for angles of incidence close to
or below the critical angle 6,.. Using the distorted-wave
Born approximation>® (DWBA) improves the description
for small angles but fails for angles larger than a few
times 6,. For short lateral correlation lengths a better
approximation, based on the self-consistent calculation of
the scattered fields, was proposed by Nevot and Croce’
(NO),
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Here g is the normal component of the transmitted wave
vector. This is similar to the Rayleigh result, Eq. (1), ex-
cept within the region of total reflection where § becomes
imaginary; it provides a reasonable description of both
the low and the high angle regimes. Two other
significant developments are a study of how the DWBA
should be modified to reproduce the NC approximation
by Pynn,® and an interpolation suggested by de Boer’ be-
tween the Rayleigh and NC expressions to describe the
regime of intermediate correlation lengths.

The simplicity of Egs. (1) and (2) has led to their wide
acceptance; the exploration of their validity has, howev-
er, been rather limited.!»!* The transmission coefficients
have received even less attention.

The NC approximation was developed for the special
case of a sharply defined surface with Gaussian rough-
ness. This leads to an effective graded interface described
by an error-function profile. In this paper we generalize
the method and calculate the specular reflection and
transmission of x rays (and neutrons) directly for graded
interfaces of arbitrary profile.’> Our results apply also to
the specular scattering by non-Gaussian rough surfaces,
and to interfaces that may be both rough and diffuse.
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The basic equations are set up in Sec. II. To solve
them we offer two alternative approximation schemes. A4
priori there is no reason to prefer one over the other. The
first involves the self-consistent calculation of the
reflected field (Sec. III) while the second imposes self-
consistency for the transmitted field (Sec. IV). The two
schemes give identical results for the reflection
coefficient, which suggests that this generalized NC ap-
proximation is reliable even for moderately thick transi-
tion layers. We find, however, that the two alternatives
do not lead to the same expressions for the transmission
coefficient. This disagreement can be a valuable indica-
tion of how far these approximations can be pushed. In
general, this discrepancy is not a serious problem; after
all, substrates are thick and the transmitted beams are
not normally observed. There are, however, situations
where the transmitted beam is observed indirectly. One
may measure, for example, the effects on diffuse scatter-
ing,!""!® or on the excitation of fluorescence,!” or even on
Bragg diffracted beams in multilayered structures,!®
where the transmission through upper layers is necessary
to reach the deeper ones. To explore the reliability of
these approximations we have considered in Sec. V the
special case of zero absorption for arbitrary profiles, and
also the special case of the Epstein (or hyperbolic
tangent) profile®!® for which exact solutions are known.
This leads us to suggest that a third, better approxima-
tion for the transmission coefficient is given by the
geometric mean of the expressions obtained by the two
alternatives above.

In Sec. VI the various approximations are compared
numerically among themselves, and with the exact solu-
tions when possible. We find that for the reflected waves
the generalized NC calculation of the amplitude is very
accurate even for very thick transition layers (say, about
40 A), while the phase is calculated reliably only for tran-
sition layers of moderate thickness (say, less than 20 A).
For the transmitted waves we find that all three of our
generalized NC approximations are reliable for both am-
plitude and phase for transition layers of moderate thick-
ness. Above critical incidence our third NC approxima-
tion predicts the transmitted amplitude very accurately
even for thick transition layers. As mentioned above, an
important feature of the transmitted amplitude is that it
has a pronounced peak at the critical angle. We find
that, unlike the effect of absorption, the effect of grading
the interface (and therefore, the effect of roughness as
well) is to appreciably enhance this peak. Therefore, the
peak itself contains useful surface structural information.

II. BASIC EQUATIONS

As mentioned above, whether one deals with a purely
rough surface, a purely diffuse interface, or a combina-
tion of the two, as far as the specular scattering is con-
cerned, they may all be replaced by equivalent graded in-
terfaces. Consider, therefore, a graded interface de-
scribed by the dielectric susceptibility x(z) depending
only on the normal coordinate z. An x-ray plane wave of
vacuum wave number K = /c and polarized normally to
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the plane of incidence is incident at an angle 6 to the sur-
face. The electric field satisfies the wave equation

da*
— +¢*+Kx(2)

i E(z)=0 (3)

where g =K sinf is the component of the wave vector
normal to the surface. Since y(z) depends only on the
normal coordinate z and not on the transverse coordi-
nates x and y, the tangential component of momentum is
conserved. This implies the reflection is specular. Let

X(z)=x,(2)+8x(z) , 4)
where
0 ifz<z,
Xs(2)= Xo if z>z,

describes an ideally sharp interface between vacuum
(z <zy) and a medium (z > z,) of susceptibility X, and 8y
represents the transition layer. Below we will exploit the
fact that the separation of x(z) into x,(z) and 8y(z) is
quite arbitrary: even if our graded surface lies roughly at
z=0 [one may, for example, impose X(0)=x,/2], the
choice of z; is not unique.

The reflection of neutrons is described by analogous
equations with the electric field E(z) replaced by the
wave function, and the susceptibility y(z) given in terms
of the potential V (z) by

Vi(z)

X&) == e am

Equation (3) can be rewritten in integral form as

E(2)=E,(2)+ [dz'G(z,2")K*x(z")E ('), (5)

where E (z) and G(z,z') are the field and the Green’s
function for an ideally sharp interface at z =z:

iqz 2igzy  —jgz

e'¥tre e for z<z,,

E,(2)= 6)

i(q—q)zy iz
te %' for z<z,,

and
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for z,z’ >z,

(7

at least, it is not divergent. We will refer to this expres-
sion, with the transmission coefficient given by ¢ =¢_ as
the Rayleigh approximation. For an error-function

profile this leads to Eq. (1).
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Gzz_i_ [elml'z"_rse*2'720817(z+z’)]
2g
G(zz")= i ig—=§)2g iy it
G3=Te 0T for z' <zy<z
q97T49
] i(q—3)2y sy,
G4:$el 1790 ez for 4 <zy<z'
q7T4q
where
=99 and 1,=-20_ (®)
q+q q+g

are the Fresnel reflection and transmission coefficients of
a sharp interface and g is the z component of the
transmitted wave vector deep into the medium,

q-=(q2_+_K2XO)l/2 . (9)

In the Born approximation, E (z) is taken as an in-
cident plane wave e¢'%, and G (z,z') is the vacuum Green’s
function, given by G, in Eq. (7), with r,=0. The field
E(z') within the medium is also approximated by e %"
This is justified at large incidence angles where the
reflectivity is very low; it fails close to the critical
reflection region. One obtains

2 ’
- K xQq 10
49  Xo
where
)= [ 4X(2) —io:
X(Q)r= [ 4= e %dz . (11)

Equation (10) is obviously flawed for small g; for larger
values of g the approximation is, to the same order in Y,
equivalent to

r=r, X290 (12)

Xo

For graded interfaces this is also inaccurate for low g, but

II1. FIRST APPROXIMATION
OF THE NEVOT-CROCE TYPE:
SELF-CONSISTENT REFLECTED WAVE

We want to obtain approximate solutions to the in-
tegral equation (5). As was mentioned in the preceding
section, one can take advantage of the arbitrariness of the
location of the point z,, that separates x(z) into x,(z) and
8x(z). Suppose we choose z, <<0, so that §y(z) extends
well into the vacuum (see Fig. 1); §y(z) has sign opposite
to that of x,(z) so that in the vicinity of z, they complete-
ly cancel out. '

Consider the integral over 8y in the right-hand side of
(5); for an appreciable part of the region of integration
the unknown field E (z’) is just the field in vacuum. This
suggests the following approximation: under the integral
sign in Eq. (5) let

E(z')=~e® +re 14 (13)

where 7 is the unknown reflection coefficient we wish to
calculate. But, for z <<0, the exact field is of the form
(13). Therefore, for z <z, <<0, Eq. (5) becomes

4

FIG. 1. The susceptibility profile y(z) for a graded interface
located at z ~0 showing the transition layer 8y(z) for the choice
2o <<0.
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re 'i"z=rse2iqz°e —igz fzwdz'GA(z,z’ K 28x(z' e +re ~i4) (14)
0
which, using Egs. (7) and (8), allows us to solve for r in a self-consistent way. The integral in (14) is evaluated using
fwdz'ax(z')e"QZ’=ﬁ %o _X(Q) | (15)
%o iQ Xo

where x'(Q) is the Fourier transform of the derivative dy /dz given in Eq. (11). Equation (15) can be verified by in-
tegrating the left-hand side by parts, replacing d8) /dz by d x /dz and using zy <<0 to extend the lower limit of integra-
tion to — .

We thus arrive at the first result of this paper: the self-consistent reflection coefficient for an arbitrary graded profile
x(z)is

r=r, x’(g+q) _ (16)
X' (@—q)
The dependence on the arbitrarily chosen point z, has completely canceled out. For the special case of an error-

function profile, Eq. (16) reproduces the Nevot-Croce result, Eq. (2).
We can now calculate the transmission coefficient ¢, using the same approximation, Eq. (13). For z >>0, Eq. (5) reads

tle@zztsei(q_q)zoe@z_k fzwdz,Gz(z’zl)KZSX(zr)(eiqz'+re—iqz’) . amn
0

Using Egs. (7) and (8), dependence on z, again cancels out, and we obtain

_, Xlg—9) 1= IX@+9/X @I (=7 —9)/X (7 +4)]

t = (18)
: Xo 1—r2

Before analyzing these results let us consider a different E(z')=tye® | (19)

choice of the point z,.
where ¢, is the unknown transmission coefficient we wish

IV. SECOND APPROXIMATION to calculate. But, for z >>0, the exact field is of the form
OF THE NEVOT-CROCE TYPE: (19). Therefore, for z> 20 >> 0, Eq. (5) becomes

SELF-CONSISTENT TRANSMITTED WAVE iz i(q—q) i Z —
tzezqz:tsel 9—9 ZOequ+ f 0 dz'G3(Z,Z')K26X(Z')tze’qz ,
- o0

Suppose we choose z,>>0 (see Fig. 2) then the un-

known field E (z') within the integral in Eq. (5) is essen- (20)
tlallx the field that was transmlyted past the graded inter- where G, is given in Eq. (7), and the integral is similar to
face into the bulk medium. This suggests the approxima- Eq. (15):
tion T
Zp oz Xo | igzg  X'(Q)
dz'8x(z")e’P =" | T 0— A X" || (21)
f— ® iQ Xo
A=XsTOX The self-consistent solution for ¢, is
x(2) =ts,—f°—— . (22)
X(q—q)

As in the preceding section the reflection coefficient
can now be calculated in the same approximation of Eq.
(19). For z <<0 <<z, Eq. (5) becomes

—i 2igzy _; % ., , , iz’
re =y ¢ 00 "iaz 4 f_wdz G,(z,2" ) K8x(z")t,e™ .

(23)

Using Egs. (7), (8), and (22) and the identity (21), the cal-
culation of r yields the same reflection coefficient we had
before, Eq. (16). In words: whether we impose self-

FIG. 2. The susceptibility profile y(z) for a graded interface ~ consistency of the reflected field or of the transmitted
located at z ~0 showing the transition layer 8x(z) for the choice  field, the result for r is the same. This is encouraging; it
25 >>0. suggests the approximations for r are reliable. But ¢,
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differs from ¢,. To study how good the approximations
for ¢t are it is convenient to examine some special cases.

V. APPLICATION TO SPECIAL PROFILES:
AN IMPROVED TRANSMISSION COEFFICIENT

The first special case we consider is that of an ideally
sharp interface at some arbitrary z =z,. In this case our
generalized Nevot-Croce approximations, Egs. (16), (18),
and (22) yield the exact results

’i
r=(q—gq/q+gqle ", (24)
and

.\ 2ilg—7q)z
Je o,

t,=t,=2q/(q—7q (25)

This is not surprising; for a sharp interface the approxi-
mations (13) and (19) are exact.

The second example we consider is that of a graded in-
terface of arbitrary profile but zero absorption, Y, real.
In this case energy conservation leads to the identity

[r?+(Reg /q)|t]*=1, (26)

which is not satisfied by Eq. (16) or either (18) or (22). In-
stead one can check that

[r|?+(Reg /q)t t,=1 . (27)

This is a first indication that perhaps a better approxima-
tion to the transmission coefficient is given by

ty=(1,2,)1% . (28)

The argument above does not, of course, determine the
phase of ¢;.
The next example we consider is the Epstein profile,

i9, T(+igog)l[—(i/2)og(q+q)T[—(i/2)og(qg—7)]
e =
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X(z)=xo/(1+e ), (29)
for which
X,(Q)/X():%UEQ/ {sinh Tos0||- (30)
Equations (16), (18), and (22) give
r= {sinh lzr—aE(q —q) /[sinh %UE(q +7) },
(31)
— |log(g —7q)
2 E 1_r2
tlzts . _ 2 (32)
sinh[(7/2)o (g —q)] 1—r;
and
t2=ts{sinh %UE(q—q) ’/ (%UE(q —zj)}. (33)

The expression of Eq. (31) [but not Egs. (32) and (33)]
has been previously obtained by Hamilton and Pynn'? by
applying the DWBA directly to a rough surface with
heights h distributed according to a sech®(h /o ) proba-
bility distribution. Our derivation is for the graded inter-
face allowing a direct comparison with the known exact
solutions, rg and t;.>!*!° In terms of Egs. (31)-(33)
these exact solutions are

rE=rel¢’ and tE=(tlt2)1/2e'¢’ , (34)
where the factors e'¢’ and el¢’ can be written in terms of
T functions,

) (35)

I'(1—igog)T[(i/2)0z(q +g)IT[(i/2)0 5(qg —7)]

and

I(1+igog)I'(1+igog)

I[1+(i/2)og(qg +3)]

A few comments are in order. If there is no absorption
and one is outside the total reflection region (6>6,) so
that both ¢ and g are real it is easy to see that e '~ and
e are pure phase factors. The generalized Nevot-Croce
expressions for r and ¢ are off by a phase but the
reflectance and transmittance are reproduced exactly:
|rg12=|r|? and |tz|2=|t;|2%. This constitutes further evi-
dence in favor of Eq. (28). Within the total reflection re-
gion (6 = 6,)7 is pure imaginary (for zero absorption) and
one can see that e’ " is still a pure phase factor but e’ '’ is
not, thus |rz|2=|r|? but |t5|°%|t;]%. If there is absorp-

C(1—igoz)T(1—igoy)

172
(36)

tion then |rg |27 |r|? and |15 |2 |t,]%

Whether there is absorption or not, and whether 6> 6,
or =6, the important question is when are the factors
'’ and e'* close to unity; the fact that Egs. (24) and (25)
are the exact results suggests that the requirement for the
validity of the various Nevot-Croce approximations is
that transition layers be thin. In fact, an expansion of
Egs. (35) and (36) in powers of gop shows that even
powers cancel out and the leading order in the expansions
of ¢, and ¢, is cubic in go .

As a final example we consider the error-function



52 REFLECTION AND TRANSMISSION OF X RAYS BY GRADED. ..

profile
¥(2)=x, | 1—erf x/g—l ’ ) 37)
a’ .
for which
X’;Q) :e—Q202/2 X (38)
0

The reflection and transmission coefficients given by Egs.
(16), (18), (22), and (28) are

r =rse‘2q‘7"2 , (39)
.2

t1=tse_(7_q)202/2% , (40)
— 7

tzztse +(6—q)202/2 , (41)

and
172
1—¢2
t,=t . (42)
3 s |1_rS2 ‘

Equations (39) and (41) are the results which Nevot and
Croce obtained for a Gaussian rough surface.” One can
check that all ¢, ¢,, and ¢; increase as o increases. For
t5, Eq. (41), this is obvious. For ¢; and ¢; the increase is
due to the lower value of . Our previous considerations
suggest that for angles above the critical angle ¢ is the
best approximation while the original Nevot-Croce result
t, overestimates the effect of o (see the next section).

VI. NUMERICAL ANALYSIS
OF THE VARIOUS APPROXIMATIONS

A straightforward way to understand the implications
of the expressions for r and ¢ in the previous sections is to
plot them. First we consider the reflection and transmis-
sion of Cu K« radiation by a silicon surface with an Ep-
stein profile, Eq. (29). The transition layer has been
chosen to be rather thick (o ; =100A/7=49.08 A) in or-

10-1
10-2 — Epstein
-- Rayleigh
10-3 ¢ o NC
Eq0-4L
10-5E
10-6 ¢
. . . | )

0.0 0.1 0.2 0.3 0.4 0.5 0.6
angle (degrees)

FIG. 3. Reflectivity |r|? of a silicon surface with an Epstein
profile (0;=49.08 A) for Cu Ka radiation according to
Epstein’s exact solution (solid line), the Rayleigh approximation
(dashed line), and our generalized Nevot-Croce approximation
(circles).
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FIG. 4. The modulus of the static Debye-Waller factor for
reflection |f,|=|r/r;|. The surface is the same as in Fig. 3.
Solid line: Epstein’s exact solution; dashed line: Rayleigh ap-
proximation; circles: generalized Nevot-Croce approximation.

der to enhance the differences between various approxi-
mations. The layer thickness for “good” interfaces may
be much smaller, the rms roughness o of a smooth sur-
face may be as small as a few angstroms. The
reflectivities |r|> shown in Fig. 3 are calculated using
Epstein’s exact solution, Eqs. (34) and (35), the Rayleigh
approximation, Egs. (12) and (30), and the generalized
Nevot-Croce approximation, Eq. (31). One sees that the
NC curve agrees extremely well with the exact solution.
As discussed in the preceding section this is what one ex-
pects when the effects of absorption are small. On the
other hand, the Rayleigh approximation deviates appreci-
ably (the plot uses a logarithmic scale) from the exact
solution. Even at high angles where the reflectivity is low
and one might expect a first Born approximation to be

— Epstein
-- Rayleigh
- NC

-0.3 F

%0 0.1 0.2 0.3 0.4 0.5 0.6

angle (degrees)

FIG. 5. The exact phase of the reflected beam differs appreci-
ably from either the Nevot-Croce or Rayleigh approximations.
The quantity plotted is ¢, =arg(r/r,) in radians. The surface
has the same Epstein profile as in Fig. 3. Solid line: Epstein’s
exact solution; dashed line: Rayleigh approximation; solid line
with circles: generalized NC approximation.
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0.5 F
0.0 <o . . . . ) —0.300 011 012 ols 044 0‘5 016
0.0 0.1 0.2 0.3 0.4 0.5 0.6 : . . . . . .
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FIG. 6. The squared amplitude of the transmitted wave |¢|?
according to Epstein’s exact solution (solid line), the Rayleigh
approximation (dashed line), and the three generalized NC ap-
proximations (solid line with circles: [t;|% solid line with
squares: |,|? solid line with crosses: |¢;|%). Same surface as in
Fig. 3. Notice that the effect of grading the interface or of
roughness is to enhance the amplitude at the critical angle.

accurate we find a discrepancy of about a factor of 2. To
exhibit the failure of the Rayleigh approximation in a
different way we define the ‘““static Debye-Waller” factor
for reflection as f,=r/r; and in Fig. 4 we plot its
modulus |f,| in a linear scale. In this figure one can also
barely see a very slight disagreement (because absorption
effects are small) between the NC and the exact Epstein
curves below the critical angle.

The generalized NC approximation reproduces ex-
tremely well the amplitude of the reflected wave even for
thick transition layers. The phase of the reflected wave,
however, is not predicted nearly as well (see Ref. 13 and

1.0 prmmmmmmmm s ——-deg E=8-8-5-88
F 091 ; — Epstein
= o8l " ;—_ Scé)d?lgh
07 TNES
0.6 |
0.5 s L - L L )
0.0 0.1 0.2 0.3 0.4 0.5 0.6

angle (degrees)

FIG. 7. The modulus of the static Debye-Waller factor for
the transmitted wave |f,|=|t/t,| according to Epstein’s exact
solution (solid line), the Rayleigh approximation (dashed line),
and the three generalized NC approximations (solid line with
circles: [t;|% solid line with squares: |t,|% solid line with
crosses: |t3]?).

angle (degrees)

FIG. 8. The phase of the static Debye-Waller factor for the
transmitted wave, ¢, =arg(¢/¢,) in radians. The surface has the
same Epstein profile as in Fig. 3. Solid line: Epstein’s exact
solution; dashed line: Rayleigh approximation; solid line with
circles, squares, and crosses: generalized NC approximations.

the preceding section). The quantity plotted in Fig. 5 is
the phase of the static Debye-Waller factor,
¢, =arg(r /ry), in radians. For this thick transition layer
the exact phase differs appreciably from both the NC and
Rayleigh approximations; for thinner layers we find that
the agreement improves.

Next we consider the transmitted waves. In Fig. 6 we
show the square of the amplitude of the transmitted wave
|t]? calculated exactly [the Epstein solution, Egs. (34) and
(36), the Rayleigh approximation (which, as discussed at
the end of Sec. II, we take as t=t,), and the three gen-
eralized NC approximations Egs. (32), (33), and (28)].
The most remarkable feature of these curves is the well-
known peak of the transmitted amplitude at the critical
angle. This effect is routinely observed indirectly through
the Yoneda wings in diffuse scattering!"!® and also

100 foesocoseceooeccos,

-- Rayleigh
- NC

— (Epstein)

10-1
10-2

10-3.

=
10-5
10-6
10-7

10-8 . . I ) . )
0.0 0.1 0.2 0.3 0.4 0.5 0.6

angle (degrees)

FIG. 9. Reflectivity |7|? of a silicon surface with an error-
function profile (0 =39.16 A) for Cu K a radiation according to
the Rayleigh approximation (dashed line) and the NC approxi-
mation (solid line with circles). Also shown is the exact
reflectivity of the “best” Epstein match (o z =49.08 A).
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1.0 [oageocececooocoss
N } --- Rayleigh
N - NC
0.8 + . — (Epstein)
\\
N\
0.6 N
N\
N
= 0.4
0.2 +
OO 1 1 i 1 T PPeesceaa
0.0 0.1 0.2 0.3 0.4 0.5 0.6

angle (degrees)

FIG. 10. The modulus of the static Debye-Waller factor for
reflection |f,|=|r/r,| for the error-function profile of Fig. 9.
Dashed line: Rayleigh approximation; solid line with circles:
NC approximation; solid line: ‘“best” Epstein match (same
curve as in Fig. 4).

through an enhanced fluorescence signal when the in-
cident beam is at the critical angle.!” If there is no ab-
sorption the Fresnel formula gives a maximum value of
|t,|?*=4; with absorption this value is somewhat reduced
(dashed curve). Epstein’s exact solution (solid line) shows
another remarkable and perhaps surprising feature: the
effect of grading the interface, and therefore (see Sec. I),
the effect of roughness also, is to enhance rather than
reduce this peak at the critical angle. This enhancement
effect is shown by all three generalized NC approxima-
tions. For angles above critical we see that the third NC
approximation, |#;]?, is in remarkable agreement with the
exact solution. Again, this is a consequence of low ab-
sorption effects (see preceding section). For angles below
critical we see that the second NC approximation, |¢,|%,
is better.

Essentially the same information is displayed more

03¢
02t —
0.1}
0.0 frmmmmmmmmmm e s 55 5

--- Rayleigh
- NC

-0.2r — (Epstein)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
angle (degrees)

FIG. 11. The phase of the static Debye-Waller factor,
¢, =arg(r /r,) in radians for the error-function profile of Fig. 9.
Dashed line: Rayleigh approximation; solid line with circles:
NC approximation; solid line: “best” Epstein match (same
curve as in Fig. 5).
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FIG. 12. The squared amplitude of the transmitted wave ||
for the error-function profile of Fig. 9 according to the Rayleigh
approximation (dashed line), the three generalized NC approxi-
mations (solid line with circles: |¢,]? solid line with squares:
|£,]%; solid line with crosses: |#;]?), and the “best” Epstein
match (same curve as in Fig. 6).

clearly in Fig. 7 where we show the modulus of a static
Debye-Waller factor for the transmitted wave
|f.|=1t/t;|. Note that for angles above critical, |¢;]? is
the best approximation, and that for large incidence an-
gles (say, 6> 1.50,) the naive Rayleigh expression |z,|? is
better than either |¢,|? or |z,|2.

The phase of the static Debye-Waller factor for the
transmitted wave, ¢, =arg(¢ /t,) is shown in Fig. 8. Note
that within the total reflection region the phase of the
transmitted wave beam differs appreciably from either
the Nevot-Croce or Rayleigh approximations, while for
larger angles (say, 6>26,) all approximations agree; the
phase of the transmitted wave is that given by the ideal
Fresnel transmission through a sharp surface.

--- Rayleigh

- NC—1
1.2 - NC—-2

> NC-3

— (Epstein)

f1l

0.7 r

0.6 |

0.5 . . ; . L J
0.0 0.1 0.2 0.3 0.4 0.5 0.6

angle (degrees)

FIG. 13. The modulus of the static Debye-Waller factor for
the transmitted wave |f,|=|t/t,| for the error-function profile
of Fig. 9 according to the Rayleigh approximation (dashed line),
the three generalized NC approximations (solid line with cir-
cles: |t;]?; solid line with squares: |¢,|?; solid line with crosses:
|£51?), and the “best” Epstein match (same curve as in Fig. 7).
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0'30.0 0.1 0.2 0.3 0.4 0.5 0.6
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FIG. 14. The phase of the static Debye-Waller factor for the
transmitted wave, ¢,=arg(z/t;) in radians for the error-
function profile of Fig. 9 according to the Rayleigh approxima-
tion (dashed line), the three generalized NC approximations
(solid line with circles: |t,|% solid line with squares: |f,|?; solid
line with crosses: |t;|%), and the “best” Epstein match (same
curve as in Fig. 7).

Next we perform a similar analysis of the reflection
and transmission of Cu K« radiation by a silicon surface
with an error-function profile, Eq. (37). The difference is
that now we do not have an exact solution against which
our approximations may be compared. This problem is
partially overcome by noting that the error-function and
the Epstein profiles have quite similar shapes. Thus, for
comparison we have included in Figs. 9—14, curves corre-
sponding to the Epstein profile which “best” approxi-
mates the error function. This raises two questions: first,
which is the best Epstein fit to an error function, and
second, what is the effect of the slight differences between
the two profiles?

The first question does not have a unique answer.
Below we adopt the criterion of Ref. 14 according to
which the “best” Epstein profile is chosen to have the
same midpoint slope (i.e., slope at z=0) as the error-
function profile. This gives 0y =20 /7=~0.80. For an
alternative criterion see Ref. 4.

The answer to the second question requires some care.
One may reasonably expect that the small difference Sy
between the two profiles will itself only contribute with a
small amount of scattering (except at zero angle). The
reflections from the two profiles must therefore be in
close agreement except in those regions where the
reflection by either profile is so weak that the small con-
tribution due to 8y ends up being comparable and
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perhaps even dominant. Thus the answer is that we ex-
pect the reflections to disagree for large incidence angles.
A similar effect has been found to occur in the far tails of
Bragg diffraction peaks.?°

We have chosen the thickneoss of the transition layer
(the rms roughness), 0 =39.16 A, so that the correspond-
ing Epstein layer thickness is the same as in Figs. 3-8
(ocp=49.08 A).

The reflectivities |7|? in Fig. 9 are calculated using the
NC approximation, Eq. (39), and the Rayleigh approxi-
mation, Egs. (12) and (38). Also shown is the reflectivity
of the “best” Epstein match (same curve as in Fig. 3)
which agrees well with the NC curve in the region where
they are supposed to agree, namely at low angles. This is
evidence of the reliability of the NC approximation. The
disagreement at larger angles is as expected. The failure
of the Rayleigh approximation is shown in Fig. 9 and also
in Fig. 10, where we graph the modulus |f,| of the static
Debye-Waller factor (f,=r/r,) in a linear scale. Note
the slight difference between the NC approximation and
its Epstein match. Figure 11, which shows the phase of
the “static Debye-Waller” factor, ¢, =arg(r /r,), is simi-
lar to Fig. 5. For this thick transition layer neither the
NC nor Rayleigh approximations are accurate; for
thinner layers the accuracy improves.

Figures 12—14 show the square of the amplitude of the
transmitted wave |¢|2, the modulus of a static Debye-
Waller factor for the transmitted wave |f,|=|t/t,|, and
its phase ¢=arg(z/t;), for the same error-function
profile. These are calculated using Egs. (39)-(42). Also
shown is the “best” Epstein match. These figures are
closely analogous to Figs. 6—-8 and so are our comments:
The transmitted amplitude peaks at the critical angle;
this peak is enhanced by either grading the interface, or
equivalently, by roughness. Above critical incidence the
best approximation is |7;|% below critical incidence |z,|?
is somewhat better. All NC approximations are
equivalent as far as the phase of the transmitted waves is
concerned; they are expected to be accurate only for thin
transition layers. For large incidence angles (say,
6>26,) the naive Rayleigh expression ¢, (the Fresnel ex-
pression for a sharp surface) is accurate.
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