Article Collection: View Collection  Help (Click on the to add an article.)
Phys. Rev. E 51, 28232838 (1995)
[Issue 4 April 1995 ]
[ Previous article | Next article | Issue 4 contents ]
View Page Images or PDF (1195 kB)
Thin Ising films with competing walls: A Monte Carlo study
- K. Binder
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
- D. P. Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602
- A. M. Ferrenberg
- Center for Simulational Physics and University Computing and Networking Services, The University of Georgia, Athens, Georgia 30602
Received 10 November 1994Ising magnets with a nearest neighbor ferromagnetic exchange interaction J on a simple cubic lattice are studied in a thin film geometry using extensive Monte Carlo simulations. The system has two large L x L parallel free surfaces, a distance D apart from each other, at which competing surface fields act, i.e., HD=-H1. In this geometry, the phase transition occurring in the bulk at a temperature Tcb is suppressed, and instead one observes the gradual formation of an interface between coexisting phases stabilized by the surface fields. While this interface is located in the center of the film for temperatures Tc(D)<T <~ Tcb, and the average order parameter of the film is hence zero, at Tc(D) we observe the interface localization-delocalization transition predicted by Parry and Evans [Phys. Rev. Lett. 64, 439 (1990); Physica A 181, 250 (1992)]. For T<Tc(D), there is thus a symmetry breaking, and the interface is located either close to the left wall where H1<0 (and the total film magnetization is then positive) or close to the right wall where HD=-H1>0 (and the total magnetization is negative). As predicted, for large D this transition temperature Tc(D) is close to the wetting transition Tw(H1) of the semi-infinite system, but the transition nevertheless has a two-dimensional Ising character. Due to crossover problems (for D--> [infinity] the width of the asymptotic Ising region shrinks to zero, and one presumably observes critical wetting in this model) this Ising nature is clearly seen only for rather thin films. For Tc(D)<T<Tcb evidence for a correlation length xi || that varies exponentially with film thickness is obtained and compared to corresponding theoretical predictions.
©1995 The American Physical Society
URL: http://publish.aps.org/abstract/PRE/v51/p2823
PACS: 64.60.Fr, 68.45.Gd, 68.35.Rh
View Page Images or PDF (1195 kB)[ Previous article | Next article | Issue 4 contents ]
References
(Reference links marked with may require a separate subscription.)
- M. E. Fisher and P. G. de Gennes, Compt. Rend. Acad. Sci. (Paris) B 287, 207 (1978).
- F. Brochard-Wyart and P. G. de Gennes, Compt. Rend. Acad. Sci. (Paris) B 297, 223 (1983).
- E. V. Albano, K. Binder, D. W. Heermann and W. Paul, Surf. Sci. 223, 15 (1989).
- E. V. Albano, K. Binder, D. W. Heermann and W. Paul, J. Stat. Phys. 61, 161 (1990).
- A. O. Parry and R. Evans, Phys. Rev. Lett. 64, 439 (1990).
- M. R. Swift, A. L. Owczarek and J. O. Indekeu, Europhys. Lett. 14, 475 (1991).
- J. O. Indekeu, A. L. Owczarek and M. R. Swift, Phys. Rev. Lett. 66, 2174 (1991).
- A. O. Parry and R. Evans, Phys. Rev. Lett. 66, 2175 (1991).
- A. O. Parry and R. Evans, Physica A 181, 250 (1992).
- J. Rogiers and J. O. Indekeu, Europhys. Lett. 24, 21 (1993).
- For reviews, see M. N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1983), Vol. 8, Chap. 2.
- K. Binder, in Phase Transitions and Critical Phenomena (Ref. [11]), Vol. 8, Chap. 1.
- K. Binder, Thin Solid Films 20, 367 (1974).
- K. Binder and D. P. Landau, J. Chem. Phys. 96, 1444 (1992).
- For reviews of wetting phenomena, see S. Dietrich, in Phase Transitions and Critical Phenomena (Ref. [11]), Vol. 12, Chap. 1, and Ref. [16].
- D. E. Sullivan and M. M. Telo da Gamma, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1986), p. 45.
- P. G. de Gennes, Rev. Mod. Phys. 57, 825 (1985).
- M. E. Fisher, J. Stat. Phys. 34, 667 (1984); J. Chem. Soc. Faraday Trans. 282, 1569 (1986).
- M. Schick, in Liquids at Interfaces, edited by J. Charvolin, J. F. Joanny, and J. Zinn-Justin (North-Holland, Amsterdam, 1990), p. 415.
- M. E. Fisher and H. Nakanishi, J. Chem. Phys. 75, 5857 (1981).
- H. Nakanishi and M. E. Fisher, J. Chem. Phys. 78, 3279 (1983).
- D. Nicolaides and R. Evans, Phys. Rev. B 39, 9336 (1989).
- R. Evans, J. Phys. Condens. Matter 2, 8989 (1990), and references therein.
- A preliminary account of some of our results was given in K. Binder, A. M. Ferrenberg, and D. P. Landau, in Proceedings of the International Conference on Phase Transitions of Interfaces, Bad Herrenalb 1993 [Ber. Bunsenges. Phys. Chemie 98, 340 (1994)] and in Ref. [25].
- K. Binder, D. P. Landau and A. M. Ferrenberg, Phys. Rev. Lett. 74, 298 (1995).
- K. Binder, D. P. Landau and S. Wansleben, Phys. Rev. B 40, 6971 (1989).
- Prior to Ref. [8], Eq. (6) was assumed in Ref. [3] in order to locate the wetting transition line TW( H1/ J ) of the two-dimensional Ising model with a field H1 at a one-dimensional surface.
- M. E. Fisher, in Critical Phenomena, edited by M. S. Green (Academic, London, 1971), p. 73.
- Finite Size Scaling and the Numerical Simulation of Statistical Systems, edited by V. Privman (World Scientific, Singapore, 1990).
- K. Binder, in Computational Methods in Field Theory, edited by C. B. Lang and H. Gausterer (Springer, Berlin, 1992), p. 59.
- Note that kBTcb/ J approx 4.511 42 +- 0.000 05; see A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991).
- E. Bürkner and D. Stauffer, Z. Phys. B 55, 241 (1983); K. K. Mon, S. Wansleben, D. P. Landau, and K. Binder, Phys. Rev. B 39, 70 89 (1989); K. K. Mon, D. P. Landau and D. Stauffer, ibid. 42, 545 (1990).
- M. Hasenbusch and S. Meyer, Phys. Rev. Lett. 66, 530 (1991).
- P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
- K. Binder and D. W. Heermann, The Monte Carlo Method in Statistical Physics. An Introduction (Springer, Berlin, 1988).
- K. Binder and D. P. Landau, J. Appl. Phys. 57, 3306 (1985); Phys. Rev. B 37, 1745 (1988).
- K. Binder and D. P. Landau, Phys. Rev. B 46, 4844 (1992).
- K. Binder and D. P. Landau, Phys. Rev. Lett. 52, 318 (1984); D. P. Landau and K. Binder, Phys. Rev. B 41, 4768 (1990).
- T. W. Burkhardt and B. Derrida, Phys. Rev. B 32, 7273 (1985); A. D. Bruce, J. Phys. A 18, L873 (1985); D. P. Landau and D. Stauffer, J. Phys. (Paris) 50, 509 (1989).
- A. J. Liu and M. E. Fisher, Physica 156A, 35 (1989).
- M. Hasenbusch and K. Pinn, Physica A192, 342 (1993).
- We used the leading term of the power law quoted in Ref. [40], which agrees with the results of Ref. [41] within the statistical errors of the latter calculation. If we included the correction to scaling proposed in Ref. [40], the disagreement would even get worse. Analyzing the magnetization profile mn at free surfaces choosing H1= 0 or slightly negative, we obtained xi b independently. These results again agree with the leading term of the Liu-Fisher analysis within statistical error.
- D. Jasnow, Rep. Prog. Phys. 47, 1059 (1984).
- E. Brezin, B. I. Halperin and S. Leibler, Phys. Rev. Lett. 50, 1387 (1983).
- R. Lipowsky, D. M. Kroll, and R. K. P. Zia, Phys. Rev. B 27, 4499 (1983).
- D. S. Fisher and D. A. Huse, Phys. Rev. B 32, 247 (1985).
- K. Binder, D. P. Landau and D. M. Kroll, Phys. Rev. Lett. 56, 2276 (1986).
- R. Lipowsky and M. E. Fisher, Phys. Rev. B 36, 2126 (1987).
- E. Brezin and T. Halpin-Healey, Phys. Rev. Lett. 58, 1220 (1987); J. Phys. (Paris) 48, 757 (1987).
- A. O. Parry and R. Evans, Phys. Rev. B 39, 12336 (1989).
- M. E. Fisher and H. Wen, Phys. Rev. Lett. 68, 3654 (1992); K. Binder, D. P. Landau and D. M. Kroll, Phys. Rev. Lett. 68, 3655 (1992).
- A. J. Jin and M. E. Fisher, Phys. Rev. B 47, 7365 (1993); M. E. Fisher, A. J. Jin and A. O. Parry, Ber. Bunsenges. Phys. Chem. 98, 357 (1994).
View Page Images or PDF (1195 kB)[ Previous article | Next article | Issue 4 contents ]
[ Home
| Browse
| Search
| Subscriptions
| Help
]
E-mail: prola@aps.org