PHYSICAL REVIEW B

VOLUME 52, NUMBER 18

1 NOVEMBER 1995-1

Phase diagram of magnetic multilayers: The role of biquadratic exchange

N. S. Almeida* and D. L. Mills
Department of Physics and Astronomy, University of California, Irvine, California 9271 7-4575
(Received 16 June 1995)

We study the magnetic phase diagram of a superlattice fabricated from ferromagnetic films, with interfilm
exchange coupling provided by intervening nonferromagnetic layers. We suppose the interfilm exchange cou-
pling contains a biquadratic component, with magnitude comparable to the linear exchange, as found recently
in the Fe/Cr(211) structures. Our analysis centers on these materials, where the Fe magnetizations lie in plane,
which also contains a twofold anisotropy axis. Sufficiently large biquadratic exchange produces important
qualitative modifications of the magnetization curves, and can introduce new magnetic phases. We illustrate
with results for infinite superlattices, and for finite superlattices with either an even or odd number of ferro-

magnetic layers.

L INTRODUCTION

When ferromagnetic films are incorporated into magnetic
multilayers or superlattices, there are magnetic interactions
between adjacent ferromagnetic films, mediated by the
spacer layer between them. These have the character of ex-
change interactions of Heisenberg form, for most systems
studied so far. One may thus write the interaction energy
between adjacent films in the form H A,-n,, with i, and
1, unit vectors parallel to the magnetization of the appropri-
ate films. Here H, measures the energy difference between
parallel and antiparallel alignments of adjacent films. The
coupling constant H, can be either positive (antiferromag-
netic coupling) or negative (ferromagnetic coupling). It is by
now well known that A, oscillates in sign as the spacer layer
thickness increases.! The exchange coupling just described,
in combination with the anisotropy and extemal magnetic
fields, can lead to rich magnetic phase diagrams. This is il-
lustrated by recent studies*™® of newly synthesized
Fe/Cr(211) superlattices.

It has been recognized recently that the interfilm exchange
coupling can be more complex than described above. In the
near vicinity of spacer thicknesses for which H, changes
sign, 90° orientations of the magnetization of the ferromag-
netic constituents of Fe/Cr/Fe trilayers were reported by Ri-
hring et al.’ These authors argued that this requires the pres-

_ence of biquadratic coupling between adjacent films we write
as H,,(fi; - fi,)? where H,>0. Shortly after this experimental
discovery of biquadratic exchange, Slonczewski® proposed
an extrinsic mechanism which leads to biquadratic exchange,
for the system studied in Ref. 5. Model calculations illustrate
that there are intrinsic mechanisms as well.” A recent review
of intrinsic and extrinsic mechanisms that lead to both linear
and biquadratic exchange has been provided by
Slonczewski.®

Until recently, biquadratic exchange has been found to be
rather weak, compared to the linear exchange H, . It is for
this reason that biquadratic exchange asserts itself only for
those spacer thicknesses close to zeros in H,. However, it is
the case that for the Fe/Cr(211) structures, one may synthe-
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size samples for which H,, is very large, comparable to H,
itself.” For such materials, we may expect phase diagrams
and magnetization curves very different than those discussed
previously.

This paper is devoted to a theoretical study of the influ-
ence of biquadratic exchange on the phase diagram of mag-
netic superlattices. We find its presence indeed leads to strik-
ing effects, including new magnetic phases with
magnetization in the ground state parallel to the hard direc-
tion. We consider first a superlattice of infinite extent in Sec.
II then tumn to finite superlattices in Sec. III.

II. INFINITE SUPERLATTICE

We consider an infinitely extended superlattice, whose
magnetic constituents are thin ferromagnetic films, with
magnetization inplane. We take this to be the x-z plane. As
the spins reorient in response to an external magnetic field,
the magnetization always lies in the x-z plane. The very
strong demagnetization field generate by tipping the magne-
tization out of plane will suppress any tendency for the mag-
netization to tilt out of plane. Let f; be a unit vector in the
direction of the magnetization of the ith film. We explore the
properties of the energy functional

E({n})= %Hin: 0,0+ %HbEi (8;- By p)2

—3H. 2 (B)—Ho 2. . @1

Here energies are measured in units of magnetic field. The
first term is the conventional linear exchange, which is anti-
ferromagnetic when H,>0. We confine our attention here to
the case H,>0. The second term is the biquadratic exchange.
Experimentally, one finds H,>0. The third term is the
uniaxial anisotropy, which renders the z direction an easy
direction. For the moment, we assume an external magnetic
field H, is applied along the easy axis.

When H,=0 we recover the energy functional used in
earlier work.?? In this limit, the magnetic phase diagram of
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the superlattice is identical to that of the classical two-
sublattice antiferromagnets such as MnF, and FeF,. For low
applied fields H,, we have a simple antiferromagnetic
ground state. As H, is increased, when H, reaches
H(c”=[Hﬂ(2HX—Ha)]”2, there is a first-order magnetic-
field-induced phase transition to the spin-flop state. As Hy is
increased further, one reaches the saturated ferromagnetic
state when H0=H(02)=2HX-Ha. Just at saturation, a
second-order phase transition is realized. This picture applies
for H,<H,, a limit for the systems of interest here. For
H,>H_, there is no spin-flop phase, but one passes directly
from the antiferromagnetic ground state to the saturated
state. In the finite superlattice and for an even number of
layers, one realizes the surface spin-flop state when H,=0,
as confirmed by experimental studies of Fe/Cr(211)
structures.”

We shall assume that in the presence of biquadratic ex-
change we still have a two sublattice configuration at all
fields. However, we allow for the possibility of an asymmet-
ric state, which we shall see is realized if H, is sufficiently
large. Thus, for all odd-numbered films, we let
n;=Xcos(B;)+z sin(B;) and for all even numbered films
we let 0;=Xcos(B;)+zsin(By). The choice B;=~ B, gen-
erates the classical spin-flop state of the two-sublattice anti-
ferromagnet.

By requiring the energy functional to be an extremum, we
find we must solve the set of equations

H,sin(B,— B,) + Hsin[2(8,— B)1- %HaSin(zﬂl)
— Hysin(B,)=0 (2.2a)

and

H,sin(B,— B,) + Hysin[2(B;— B2) ]+ 1 H ,sin(2 B,)
+ HQSiﬂ( 32) =(. (22b)

These equations always yield the antiferromagnetic
(AFM) state, where 8, =0 and 8,= ar or conversely, and the
ferromagnetically (FM) aligned state 8;=p8,=0. We also
have a ferromagnetic state with all moments antiparallel to
the field, but of course this state is always unstable.

It is possible to extract some information on the phase of
the system and its stability, through analytic methods. A
given phase is stable if the matrix 9°E/33;98, has positive
eigenvalues. We will encounter first-order magnetic-field-
induced phase transitions, in our final phase diagram. There
is necessarily hysteresis near such a phase transition. A phase
may be locally stable by the criterion just stated, while at the
same time there is a second phase of lower energy, under this
circumstance.

By analytical means, one may show that the low-field
antiferromagnetic state (8,=0, B, =) is stable for external
fields Ho<[2H,(H,—2H,)+HZ2]"2, provided H,<(2H,
+ Ha)/4=H§AF) . Similarly, the ferromagnetically aligned
state is stable when Ho=2(H ,+ 2Hb)—Ha=H(CFM) for any
choice of H,.

We also can realize a symmetric spin-flop configuration
for fields H, below H™  This state has 8,=—8,=¥, and
is stable whenever
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FIG. 1. Variations of the field AH=H%P — HSP a5 a function
of the strength H,, of the biquadratic exchange. The low-field anti-
ferromagnetic state is stable for external fields Ho<HSP, and the
spin-flop state is stable for H 0<H£AF) . We have chosen H,=2 kG
and H,=0.5 kG for this calculation.

Ne=Apt[Ap [ =0, (2.3)

where

Ay=(H, — H,) cos(28)~2H,cos(48)+ Hycos( )
2.4)

and

Ap=H cos(26)+2Hycos(46). (2.5)

Here 6 is determined as stated above and is found by solving
Hycos>(0)+(2H,—4H,—H_,)cos (8)—Hy=0. (2.6)

From the criteria stated in Eq. (2.3), we can find the
smallest external field necessary to stabilize the spin-flop
configuration, for any given choice of parameters.

So our results can be set alongside earlier studies of the
phase diagram,>* for our quantitative calculations we shall
choose H,=2 kG and H,=0.5 kG. If we call the smallest
field necessary to stabilize the spin-flop state HESF) , we find
HSP<HAP for H,<H, where H{®=(H,—3H,)/2. The
difference AH=H"P —~H§SF) is the width of the region
within which both the spin-flop state and the low-field anti-
ferromagnetic state are stable. As we increase H,, AH de-
creases. This difference approaches zero, to vanish as
H,—HY from below, and is negative for H »y>H . We
show the behavior of AH as a function of H, in Fig. 1. We
see, for the parameters chosen, Hﬁf) = 0.46 kG.

When we have H b>H(°) , it is no longer possible to have
a scenaric where one has a transition from a low-field anti-
ferromagnetic state to an intermediate state with the charac-
ter of a spin-flop phase. This is because when AH<0, the
field regime for which the AF state is stable lies below the
lowest field for which the SF phase is stable. As we see, there
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"FIG. 2. In (a)-(d), we illustrate magnetic configurations of the
infinite superlattice appropriate to the case where the biquadratic
exchange H, is large.

is thus a magnetic field gap of width | A H | within which
neither the antiferromagnetic nor the spin-flop phase is
stable. A new phase must enter the phase diagram. Below we
outline the nature of this phase, which we find striking, and
show how it enters the phase diagram.

The nature of the new phase may be appreciated by sup-
posing the external field Hy is zero, and also that H,, is very
much larger than both H, and H,. With H, only present,
clearly the angle between A, and f, must be 7/2, as found
in the studies which first noted the importance of biquadratic
exchange in magnetic multilayers.” With H, and H, both set
to zero at the moment, of course, the energy of the system is
unchanged if the pair fi; and @i, are rotated continuously
about the axis normal to the film surfaces, as long as the
angle between them is maintained at 7/2.

Now we turn on H,, supposing the linear exchange H,
remains zero. Continue to hold the angle between fi, and
fn, at precisely /2, for the moment. The presence of the
uniaxial anisotropy breaks the rotational symmetry just de-
scribed. We have two configurations with precisely the same
energy, as illustrated in Figs. 2(a) and 2(b). Of course, with
H,#0 and the angle between n, and n, held fixed at 90°,
quite clearly the two configurations illustrated in Figs. 2(a)
and 2(b) are not equilibrium configuration of the moments.
When the anisotropy is “turned on,” the moments will relax
as illustrated in Figs. 2(c) and 2(d), to a lower energy by
virtue of with the combination of anisotropy and biquadratic
exchange coupling. A short calculation shows that the con-
figuration in Fig. 2(c) is precisely degenerate in energy with
that in Fig. 2(d). While imposition of the anisotropy breaks
the continuous symmetry present in its absence, a twofold
degeneracy remains in its presence.

Now suppose we add the linear exchange H,, which is
antiferromagnetic in sign. The effect of this interaction is to
increase the angle between n, and n,, since H, acting alone
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would generate a simple antiferromagnetic state. Now if the
angle 86 in Fig. 2(d) is increased, there will also be a de-
crease in anisotropy energy, since f; and B, will be more
closely aligned with the easy axis. Addition of H, decreases
86 in Fig. 2(c), and this increases the anisotropy energy.
Thus the addition of linear exchange H, lifts the twofold
degeneracy discussed in the previous paragraph. If H, is an-
tiferromagnetic, as we have seen, for large biquadratic ex-
change, the ground state will be that illustrated in Fig. 2(d).

This is a remarkably unusual state, in our view. We have a
system with an easy axis, but the combination of anisotropy,
linear, and biquadratic exchange conspires to produce a
ground state with net magnetization perpendicular to the
easy axis. It would be intriguing to study properties of this
state experimentally.

If the linear exchange H, is ferromagnetic in sign, then
the configuration illustrated in Fig. 2(c) has the lower energy.
If H, is substantial, as we shall illustrate below, the energy
difference between the two states is quite modest. A conse-
quence is that for H, ferromagnetic in sign, a rather weak
external field applied normal to the easy axis will induce a
“flop” to the state in Fig. 2(d). Conversely, if H, is antifer-
romagnetic, a weak field along the easy axis will induce a
flop from the state in Fig. 2(d), to that in Fig. 2(c). We thus
have a magnetic switch.

To describe the new state, we must solve Egs. (2.2) for
general B8, and B,, without restrictions on the symmetry of
the resulting state. To do this, we proceed as follows. We let
§=cos(B1—B2) and a=(H,/2)sin(2B;)+Hysin(B;).
Upon rearranging Eq. (2.2a) and then squaring, we arrive at

(1= &) (H,+2H,8)*=a. @7

We proceed by guessing a value for 8;, which generates
a value for . We solve Eq. (2.6), a quartic, for the four
values of &, and from these we obtain eight values of 8,. We
check to see if each pair (By,8,) is a solution of Eq. (2.2b).
By scanning the input angle 8, we are able to locate all
possible (8;,8,) pairs which yield a possible state. The sta-
bility of each state is confirmed by diagonalizing the matrix
*EI BB ;» to check for negative eigenvalues. By this
means we find, for values of Hy where neither the antifero-
magnetic or spin-flop state is stable, an asymmetric state
with magnetization canted away from the easy axis. We con-
struct a phase diagram by searching for the lowest-energy
solution for each field Hy. In Fig. 3, for the choice
H,=0.5 kG and H,=2 kG, we show the complete magnetic
phase diagram of the system. When the biquadratic exchange
H,=0, application of the external field takes us from the
low-field antiferromagnetic (AF) state, to a spin-flop (SF)
state through a first-order magnetic-field-induced phase tran-
sition, and then to the saturated ferromagnetic state (FM)
state. As is usual in antiferromagnets, the transition from the
spin-flop state to the saturated state is second order, accom-
panied by a discontinuity in (dM/dH).

When H,/H . =0.55, the ground state in zero field is an
asymmietric state very similar to that depicted in Fig. 2(d).
We have, as discussed above, a net moment perpendicular to
the easy axis. As the external field is applied parallel to the
easy axis, a moment is induced along the easy axis by means
a rotation in the plane of the ‘“scissors structure” shown in
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FIG. 3. Hy-H, magnetic phase diagram of an infinite superlat-
tice with H,=2 kG and H,=0.5 kG. The labels FM, AF, SF, and
AS mean ferromagnetic, antiferromagnetic, spin flop, and asymmet-
ric configurations, respectively.

Fig. 2(d). At a certain field, i, and f, become symmetrically
disposed about the easy axis, in the spin-flop conformation.
The transition from the asymmetric configuration to the spin-
flop state has the character of a second-order phase transi-
tion. Note we have an interesting tricritical point at the value
of H, where the field gap AH illustrated in Fig. 1 vanishes.
There is a narrow regime of field where we have the antifer-
romagnetic ground state, and application of an external field
triggers a first-order transition to the asymmetric state, fol-
lowed by a second-order transition to the spin-flop state.

The behavior of the system in the limit where the ratio
(H,/H,) is large compared to unity is of interest. Arguments
given above show that as H,—0 (so H,/H,—%), in zero
magnetic field the configurations shown in Figs. 2(c) and
2(d) are degenerate. For finite H,, and also H, antiferromag-
netic, as we have argued the configuration in Fig. 2(d) has
lower energy than that in Fig. 2(c). The energy difference
between these two states is rather small, when
(H,/H,)>1. Thus, when we have H,<0 and Fig. 2(d) il-
lustrates the ground state, application of a rather weak exter-
nal field will rotate the total magnetization to align with the
easy axis, as in Fig. 2(c). Once this rotation has occurred, the
variation of magnetization with the field is remarkably insen-
sitive to whether the external field is applied parallel or per-
pendicular to the easy axis. In each case, the field pulls the
system to saturation, against the combined effects of the lin-
ear and biquadratic exchange.

In Fig. 4, we show the field variation of the magnetization
component parallel to the external magnetic field for two
cases. For one the magnetic field is parallel to the easy axis,

FIG. 4. For the case H,=2 kG, H,=0,5 kG, and H,=4 kG, we
show the variation of the magnetization with external field for the
case where the field is applied parallel to the easy axis (solid curve),
and this is compared to the case where the field is applied perpen-
dicular to the easy axis (dotted curve).

and for the other the magnetic field is perpendicular to the
easy axis. The calculations are for H,/H,=2, and H, anti-
ferromagnetic in sign. The zero-field ground state is thus that
illustrated in Fig. 2(d). When the field is parallel to the easy
axis, the magnetization initially increases linearly with field,
with (dM/8H,) quite large. In this low-field regime, fi; and
n, are rotating, with the angle between them roughly 7/2.
At the point where there is a break in slope, ii; and i, are
symmetrically disposed about the easy axis. Above this field,
the magnetization is virtually identical for the two external
field directions. This is a striking result, in our view. The
underlying physics is that of a highly anisotropic magnetic
material, yet its macroscopic magnetization is remarkably
isotropic, except at the very lowest fields.

If we had chosen the linear exchange to be ferromagnetic
in sign, the magnetization curves would be remarkably simi-
lar to that in Fig. 4, except the ground state will have the
form illustrated in Fig. 2(c). Thus the curve with the break in
slope will be that for which the field is applied normal to the
easy axis. The response will be quite isotropic at higher
fields, however, as in the antiferromagnetic case.

This completes our discussion of the influence of biqua-
dratic exchange on the infinitely extended superlattice. Quite
clearly, as we have seen, when the biquadratic exchange be-
comes comparable to the linear exchange, there are major
modifications of the response characteristics of these struc-
tures.

ITI. INFLUENCE OF BIQUADRATIC EXCHANGE
ON THE FINITE SUPERLATTICE

In Ref. 2, both experimental data and theoretical calcula-
tions show that the magnetic phase diagram of finite

Fe/Cr(211) is richer than that expected for the idealized in-
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finitely long superlattice. Most particularly, if the finite struc-
ture contains an even number of layers, in the low-field AF
state, if one outermost film has magnetization directed along
+1Z, then the second outermost film has magnetization di-
rected along —Z. If an external magnetic field H, is directed
along +2, the outer film antiparallel to H, “flops” at a field
well below that required to initiate the spin-flop state
throughout the structure. We thus have the surface spin-flop
state which evolves into the bulk spin-flop state, by means of
the mechanism outlined in Ref. 2. There is thus a dramatic
even-odd effect, since a superlattice with an odd number of
layers will not display the surface spin-flop phase. Clearly,
this scenario will be modified dramatically by the presence
of strong biquadratic exchange.

In this section, we explore the influence of biquadratic
exchange on the magnetic phase diagram of finite structures
with an even and odd number of layers. We have found the
numerical calculation reported here to be very demanding for
large values of H),, it should be remarked. Thus we begin by
summarizing the scheme we have employed.

We consider the same geometry used to study the infinite
superlattices to obtain information on the finite one. There-
fore, for a system with N magnetic films, the energy func-
tional is
N—1 N-1
i—zl ﬁi'ﬁi-!-l'l'%Hbzl <(fy-fi;1p)?
N
5>
=1

E({nl}) = %Hx

N—-1

—LiH, >, (/)*~H, El A, (3.1)
“

where the various parameters have the same meaning as in
the infinite case. By requiring the energy functional to be an
extremum, we find the set of equations

sin( By — Bo)[H+2Hycos( B — B,)]— H,sin(2 B)
= Hgsin(f3,)=0, (3.2a)

sin( B;— 1 = B[ H,+2Hycos(B;— 1 — B)1—sin(B;— B+ 1)
X[H,+2Hycos (B;— Bi+1)]
—H,sin(2B;)— Hysin(B;)=0 for 2<isN—1,
(3.2b)
and finally

sin( By—1— By)[H+2H ,cos(By—1— By)]— H,sin(2 By)
—Hysin( By) =0. (3.2¢)

Hence the equilibrium configuration of the system is ob-
tained by searching for solutions from Eq. (3.2). To do this,
we let §=cos(B8,—B,) and a,=H_sin(283;)+ Hysin(B,)
to rewrite Eq. (3.2a)

(1=-&)(H,+2H,¢)*=al. (3.3)

We select a trial value of B, and then Eq. (3.3) gives four
values for £; from which one obtains eight possible values
for B,. We choose the value of B, that gives the smallest
value for the energy of the first two pairs of films, by exam-
ining
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Ey=H,cos( B~ B)+ Hycos*( B — B,) — Hy[cos?(B,)
+c0s?(B,)]—2Ho[ cos?(B;) +cos?(3,)]. (3.4)

We continue on by defining, for 2<isN-—1,
&= cos(Bi—Bi+1) and  a;=H,sin(2B;) +2Hsin(B;)
+sin (B;—1— B[ H,+2H,cos(B;—;— B;)]. Then we rear-
range Eq. (3.2b) to read

(1-E)(H,+2H, &) =0a?. (3.5)

At this point we know B; and 3;_ and then we calculate the
four values of £; that satisfy the Eq. (3.5). From these values
of §; we obtain eight values for B;,; and we choose that one
that gives the smallest value for

E;=H[cos(B;—1— B;) +cos(B;— Bi+1)]+ Hy[cos?( By
— B:)+cos*(Bi— Bis1)]1— Hy[cos’(B;) +cos*(Bir1)]
— Ho[cos(B;)+cos(Bi+1)]. (3.6)

By following the procedure described above, we arrive at the
equation for i=N—1, where we find B, which depends on
the trial value of B,. When we find a B, value that satisfies
the Eq. (3.2c) we have a magnetic configuration {8;} that
provides an extremum for the energy functional. The equi-
librium configuration is one that gives the minimum value
for E. The procedure just described provides the set of
{B;} which minimize the energy.

We used the method described above to obtain the mag-
netic configuration of finite superlattices with N=7 and 8 for
different values of H,. For both superlattices we use
H,=2 kG, H,=0.5 kG as in Sec. II. We remark that it has
proved difficult for us to generate accurately determined con-
figurations for larger finite structures, when H, is large.
However, these values of N are sufficiently large for us to
appreciate the nature of the modifications provided by the
biquadratic exchange.

In Fig. 5 for the case N=8, we show the variation of the
magnetization of the finite superlattice, as a function of ex-
ternal field H,, for several values of the ratio
Ry=H,/H,. The solid lines give the component of magne-
tization parallel to the easy axis. For R;=0.8, we have a
state where the net magnetization is canted away from the
easy axis in low field. The dotted line gives the magnitude of
the total magnetization. For R,=H, =0, the results are quite
similar to those presented in Ref. 2, for the superlattice with
N=16 layers.!® The magnetization is zero in the low-field
antiferromagnetic state, until the surface spin-flop transition
is initiated near H¢=0.9 kOe. The fine structure present
above the onset of the surface spin-flop state has its origin in
the domain wall jumps discussed in Ref. 2. The system
evolves into a bulk spin-flop configuration out of the surface
spin-flop state, again as discussed earlier.

The inclusion of biquadratic exchange initially lowers the
threshold for nucleation of the surface spin-flop phase, as we
see from the curves in Fig. 5 labeled Ry=0.2 and
Ry=0.4. By the time we reach Ry=0.8, the ground state is
no longer the antiferromagnetic state. We have a configura-
tion similar to that discussed in Sec. II, where in zero field
the net magnetization is along the hard direction. Application
of an external field initially twists the film magnetizations,
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FIG. 5. Variation of the magnetization of a finite superlattice
with eight films as a function of external field Hy for H,=2 kG,
H,=0.5 kG, and different values of Ry=H,/H, . The dotted curve
is the variation of the magnitude of the total magnetization for
R H=O.8.

and so the structure acquires a net moment parallel to the
easy axis. Thus, at least initially, we have a linear suscepti-
bility for the structure in the asymmetric ground state.

As we increase H\ further, we reach a critical field where
there is a discontinuous jump in magnetization. This is pro-
duced by a discontinuous jump in the orientation of the mag-
netizations of the one outmost film, which has the conse-
quence that the system makes a first-order transition from an
asymmetric to a symmetric state. We summarize the evolu-
tion of the magnetization of the constituent films in Fig. 6.
Compare the spin arrangement with Hy=0.34 kOe with that
for Hy=0.32 kOe, to see the transition to the symmetric
state.

For an odd number of layers, N="7, we show in Fig. 7 the
evolution of the component of magnetization along the easy
axis (solid lines) and the total magnetization (dotted line) as
a function of Hy, for the values of Ry=H,/H, used for the
even case. For Ry =0, the system remains in the antiferro-
magnetic ground state until the bulk spin-flop transition is
initiated at Hy=1.5 kOe. The addition of biquadratic ex-
change initially lowers the threshold field for initiation of the
bulk spin flop. At R;=0.4, we find no first-order jump in the
magnetization. In effect, the first-order jump decreases in
magnitude with increasing Ry, until we reach the point
where it vanishes. We then find, as far as we can tell from
numerical work, (M ,/dH,) very large, and possibly infinite
at threshold. We again have a canted state at R5z=0.8, with
the magnetization nearly, but not quite, parallel to the hard
axis. We illustrate the film magnetization orientation for vari-
ous fields in Fig. 8. At zero field, we have a canted spin-flop-
like state, but with the two sublattices canted about the hard,
rather than easy axis. Application of H pulls those spins
with M, >0 into alignment with the field, as we see from the
panel labeled Hy=0.26 kOe. Once these moments achieve
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FIG. 6. Equilibrium configurations of the magnetization of the
constituent films of the finite superlattice of the Fig. 5, for
Ry=0.8 and different values of Hy.

alignment, further increases in H bring the downward point-
ing moment into alignment, and the resulting torques lead to
canting of the upward pointing moments; so the system
evolves into a state similar to a spin-flop state, where now
the two sublattices are arranged (almost) symmetrically
about the easy axis, as illustrated in panel labeled Hy=1.0
kOe.

5.0
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FIG. 7. Variation of the magnetization of a finite superlattice
with seven films as a function of external field H for same param-
eters used in Fig. 5. The dotted curve is the variation of the mag-
nitude of the total magnetization for Ry=0.8.
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FIG. 8. Equilibrium configurations of the magnetization of the
constituent films of the finite superlattice of the Fig. 7, for
Ry=0.8 and different values of Hj.

The striking “even-odd” effect described in Ref. 2 thus
remains in the presence of biquadratic exchange, though if
the biquadratic exchange is sufficiently large, we realize in-
triguing new magnetic configurations.

IV. FINAL REMARKS

Magnetic superlattices such as those modeled and dis-
cussed here display a rich and diverse variety of magnetic
phases in presence of an external magnetic field. There are
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dramatic “even-odd” effects for finite structures, which we
see persist in the presence of strong biquadratic exchange.
- The strength of the linear exchange can be controlled or al-
-tered through the choice of substrates upon which the films
are grown, growth conditions such as temperature, along
with the thickness of the ferromagnetic films, and the spacer
layers through which the linear and biquadratic exchanges

- -are transmitted.
. .. The calculations reported here, carried out for parameters

characteristic of Fe/Cr(211) superlattices, show _that the
magnetic-field-induced reorientation transitions occur for
very modest applied magnetic fields. These structures also
exhibit a collective spin-wave spectrum influenced strongly

""by the relative afrangements of the moments in the various

“layers. For H,=0, a detailed discussion of these modes has
been given elsewhere, for models of the Fe/Cr(211)
structure.> We thus have a new class of materials, both mag-
netization curves and response characteristics subject to de-
sign. We hope the present results stimulate the detailed study
of structures in which the biquadratic and linear exchange
are comparable in strength.
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