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The dynamics of driven interfaces in a continuum model of growth by molecular-beam epitaxy has
been studied by means of the Noziéres-Gallet dynamic renormalization group technique. Relaxation
of the growing film is due to both surface tension and surface diffusion. In 1 + 1 dimensions, three
growth regimes have been found. The first is a linearly stable state with a positive surface tension,
which can be described by the Edwards-Wilkinson equation. The second is a purely diffusive state
with a dynamic exponent z, different from that given by the Wolf-Villain linear theory. The last is
a linearly unstable growth state in which the creation of large slopes in the interface configuration
is expected. In 2 + 1 dimensions, which is the critical dimension of the model, the purely diffusive
regime is absent at the one loop order. However, the other two growth regimes are still present. The
scaling properties of the growth states are discussed in detail.

PACS number(s): 05.40.+j, 68.55.Bd, 68.35.Fx

I. INTRODUCTION

The dynamics of vapor deposition processes has
aroused a tremendous amount of interest over the past
two decades [1-10], partly because of the technological
importance in understanding the physical properties of
the resulting thin film and partly because of the fun-
damental interest in the nature of kinetic roughening of
the interface involved in the process. It has been found
that, for a wide class of growth processes, the system
self-organizes itself in some cases into a self-affine fractal
morphology which belongs to a certain universality class,
but in other circumstances into a growth state with an in-
stability towards the creation of large slopes in the inter-
face configuration. In this context, two important tasks
are to identify the universality classes and to understand
the origin of the dynamic scaling properties and the in-
stabilities exhibited in these far-from-equilibrium growth
processes.

In actual vapor deposition processes, the morphology
of the interface depends sensitively on deposition condi-
tions, among which the substrate temperature is of par-
ticular importance. When the substrate temperature is
low, the mobility of the freshly landed particles is so small
that the particles cannot move too far from the posi-
tion where they first contact with the interface. Conse-
quently, overhangs and vacancies are developed and the
deposit is similar to an amorphous material [1-4]. In
such a deposition process, growth is locally perpendicu-
lar to the existing surface and relaxation is dominated
by the surface tension effect. It is generally believed that
the morphology of this kind of driven interface can be
described on large length scales by the Kardar-Parisi-
Zhang (KPZ) equation [11]. Indeed, the KPZ equation
provides a quantitative understanding of the fascinating
morphology generated in a broad range of nonequilibrium
processes [5-7, 9, 10].

On the other hand, many semiconducting devices or
metallic multilayers are grown by molecular-beam epi-
taxy (MBE) at fairly high temperatures [8, 14, 16]. In
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such a deposition process, the mobility of the recently
deposited particles is so large that the particles are able
to diffuse on the surface to find the lowest energy posi-
tion. Thus surface diffusion becomes the dominant re-
laxation process. To determine the scaling properties of
these nonequilibrium processes, many analytical and nu-
merical studies have been carried out. For example, the
conserved KPZ equation was proposed as a model for
these growth processes [12-15]. However, later it was re-
alized that it is difficult to understand the physical origin
of the nonlinear term appearing in this model. A more
relistic approach is to study the diffusion effect on the
curved interface [16-22]. Along this line, many extensive
numerical simulations have been performed [19-22]. An-
alytically, diffusion on a curved surface was first studied
by Mullins many years ago [23]. Since this original study,
much work has been done and the Mullins model has been
generalized to include both surface diffusion and surface
tension relaxation effects for all physically interesting di-
mensions [16, 18,19, 22]. Nevertheless, since this model is
intrinsically nonlinear and involves many degrees of free-
dom, only numerical solutions have been obtained and
some features are merely understood qualitatively [18].

We have performed a systematic renormalization group
analysis on this generalized Mullins model for both 1 + 1
and 2+ 1 dimensions. We find that, in the large-distance
and late-time limit, there are two growth regimes in the
system for all physical dimensions. The first is linearly
stable and falls into the Edwards-Wilkinson (EW) uni-
versality class [24]. The second is linearly unstable and
corresponds to the large slope configurations observed in
some numerical simulations [19,20,22]. Moreover, in 1+1
dimensions, we also find a strong-coupling purely diffu-
sive growth regime which is different from that described
by the linear model of Wolf and Villain (WV) [25]. The
purpose of this paper is to report on these calculations
and describe some relevant techniques in detail. Some of
the results reported here have been briefly presented in
a recent paper [26].

The outline of this paper is as follows. In Sec. II,

3370 ©1994 The American Physical Society



50 DYNAMICS OF INTERFACES IN A MODEL FOR MOLECULAR-...

we introduce the generalized Mullins model and discuss
some of its general properties. In Sec. III, the Noziéres-
Gallet dynamic renormalization group technique for sys-
tems where the fluctuation-dissipation theorem does not
hold is described in detail. In Sec. IV, we present the
renormalization group analysis for 1 + 1 dimensions and
the dynamic scaling properties of the fixed points are dis-
cussed. In Sec. V, we develop the renormalization group
analysis for 2 + 1 dimensions. The scaling property of
the fixed point governing the linearly unstable growth
regime is obtained. Finally, our conclusions and some
discussions of the results are given in Sec. VI.

II. THE MODEL

It is generally believed that in molecular-beam epitaxy
voids or overhangs are absent due to the fast diffusion of
the particles on the surface. Therefore, the morphology
of the interface can be described by a class of solid-on-
solid models driven by a flux of particles. Since sur-
face rearrangement through surface diffusion conserves
volume, a continuum description of these models begins
with an equation of continuity [14, 19-22, 25],

3h(al:,t) + V.j(x,t) =v(x,t) + n(x,t). 1)

In Eq. (1) the single-valued function h(x,t) is the inter-
face height variable at space-time point (x,t). The sur-
face current density j(x,t) is tangent to the surface and
the operator V must be computed in a local coordinate
system with axes parallel to the surface. The function
v(x,t) represents a deterministic vertical growth veloc-
ity. Here, we consider two kinds of contribution to v(x, ).
First, the average of the beam flux produces a constant
vertical growth velocity vo. However, this velocity disap-
pears from the equation of motion after transformation
to the comoving frame [11]. In discrete models in which
evaporation is allowed there is a contribution to v(x,t)
generated by an effective surface tension. This determin-
istic velocity takes the form [27],

SF[h]
Sh(x,t) ’ )

where C; is a constant. We will include such a term in
our model although it does not correspond to relaxation
through surface diffusion. The results of a number of sim-
ulations [19, 20, 22] can only be understood if such a term
is generated by the nonequilibrium nature of the growth
process. One of the objectives of the present work is to
investigate whether or not this term is produced under
renormalization. The noise function 7(x,t) represents
the fluctuation of the beam flux with zero mean value,
i.e., (n(x,t)) = 0 and obeying Gaussian statistics,

(n(x,t) n(x',¢)) =2D 6%(x —x') 6(t ~t') , 3)

where D is the noise spectrum strength.

An important question is how the current density
J(x,t) depends on the height function h(x,t). Accord-
ing to irreversible thermodynamics, the function j(x,t)
is proportional to the gradient of a local chemical poten-

v(x, t) =- 01

KXY)\

tial p(x,t),
(%, t) o< Vpu(x,t) . (4)

The local chemical potential is the amount of free energy
needed to increase height h(x,t) by a unit, i.e., u(x,t) =
0F[h]/é6h. Hence, from Eq. (4), we have [19, 22]

. = O0F[h
i) =CVu(xt) = v (%)
where C; is another constant.

The surface free energy functional of the system is as-
sumed to be proportional to the d dimensional area of

the interface [27],
Flh]=v / &z {1 + [Vh(x,t)]2}2 . 6)

Therefore, in the continuum limit, the evolution of the
interface h(x,t) at the d + 1- (d < 2) dimensional space-
time point (x,t), in view of Egs. (1), (2), (5), and (6), is
given by [16, 18, 19]

oh 2y Vh
i vV . W — k/g(Vh) V2V \/W

+n(x,1), (M

where the Laplace-Beltrami operator V2 enters because
the diffusion current is parallel to the interface rather
than to the substrate. For d < 2, we have [19, 22, 28]

Vih Vh _
~ g(Vh) )]VJ'
(8)

Here, the function g(z) = 1+z2, V; stands for 8/8z;, and
di; is the Kronecker §, and repeated indices imply a sum-
mation. Note that the constants C; and C, have been
absorbed into the coefficients v and «. Clearly, Eq. (7)
is invariant under the transformation h(x,t) — —h(x,t)
even though the particle beam breaks the up-down sym-
metry. Another property of Eq. (9) is that it is consider-
ably more complicated in 2 + 1 dimensions than in 1+ 1
dimensions.

Equation (7) is the generalized Mullins model which
is believed to describe the dynamics of interfaces in the
MBE growth process. The second term in Eq. (7), with
a coefficient k > 0, describes the surface diffusion relax-
ation effect, which was first derived by Mullins [23]. The
first term in Eq. (7) is the surface tension term discussed
above with a coefficient v, which can be both positive
and negative. The surface tension v could be due to dif-
fusion bias near step edges [14] and also arises if one takes
into account the nonzero size of incoming particles [16].
Analytically, as will be seen below, this term must be
included to obtain a consistent description of the long
wavelength properties of this model.

The 1+ 1-dimensional version of Eq. (7) has been stud-
ied by Golubovi¢ and Karunasiri (GK) [18]. By numeri-
cally integrating Eq. (7), GK found that the slope 8h/dx
of the interface profile behaves like the order parame-

=2 1

= WV,[ g(Vh) (5,'_1'
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ter of Ising-like systems in spinodal decomposition. Gol-
ubovi¢ and Karunasiri also argued that this model can
be approrimately transformed into an equilibrium model
possessing a double-well potential, suggesting that this
model would behave like Ginzburg-Landau models for
second-order transitions. They attributed these striking
properties of the system to the effects of the noise.

Following GK’s notation of m = Vh, Eq. (7) can be
rewritten as [18]

8m,~ _ V2 { mj;

a9\ Jgm)
m;my 2 my
~ g(m) )] VH o)

where the function g is given above. Note that we have
an extra symmetry: V;m; = V;m;. Obviously, expand-
ing the right-hand side of the Eq. (7) in powers of m,
one has two linear terms, i.e., a Laplacian term vV2m;
and a Laplace square term —xV*m;, arising from surface
tension and surface diffusion, respectively. For positive
v > 0, power counting shows that all nonlinear terms are
irrelevant to the long wavelength behavior of the model.
In this case, Eq. (9) reduces to the well-known Edwards-
Wilkinson equation [24] and the scale-invariant solution
can be easily obtained by solving this linear equation.
On the other hand, when v is negative, the whole sys-
tem is linearly unstable for wave vectors ¢ in the range

0 < g < g = y/—v/k. In this case, both the other

linear term —xV*m; and the higher order terms in the
expansion become important for determining the long
wavelength properties of the system. In fact, all non-
linear terms arising from surface diffusion have critical
dimension d. = 2 with respect to the Laplace square
term —kV*%m;, indicating that all nonlinear terms in the
power series are relevant (marginal) for d < 2 (d = 2).
Therefore, the important question is as follows: What is
the sign of v in the long wavelength limit?

To answer these issues, we have applied the pow-
erful dynamic renormalization group technique to Eq.
(9). However, as mentioned above, all nonlinear terms
are relevant in the physically interesting dimensions and
a renormalization group analysis would seem to be a
formidable task. We find that the calculation can be
truncated at the one-loop order and the results turn out
to be consistent. In other words, the renormalization
perturbation expansion can be controlled by the powers
of the leading nonlinear coupling parameters; the coef-
ficients of higher order nonlinear terms are higher pow-
ers of the leading nonlinear couplings and can be con-
sistently ignored to the required order. First we dis-
cuss the Noziéres-Gallet dynamic renormalization group
method [29], which will be used throughout this paper.

- ﬂ[\/g(—m)(fsj

}+ Vin(x,t) , (9)

III. NOZIERES-GALLET
RENORMALIZATION METHOD

In order to carry out a renormalization group anal-
ysis of the roughening transition, Noziéres and Gallet
(NG) developed an effective approach to deal with the
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Sine nonlinearity [29, 30]. The spirit of the NG renor-
malization group scheme is essentially the same as that
of the classical momentum-shell technique [31, 32]. Con-
sequently, this method is effective only to order one loop.
However, it has a remarkable advantage in dealing with
systems involving complicated nonlinearities. In fact, our
experience shows that this renormalization scheme is the
most effective and convenient one to study various non-
linear systems as long as the one loop order analysis is
adequate [33].

Originally, Noziéres and Gallet presented the renor-
malization group theory both for statics and for dy-
namics. However, their dynamic renormalization scheme
is applicable only to systems where the fluctuation-
dissipation theorem (FDT) holds. It is well known that
for a dynamic system where the FDT does not hold, one
must study the renormalization of the response function,
the correlation function, and the vertex functions simul-
taneously in order to obtain the scaling properties of the
system [34-37]. To study these dynamic systems, we have
extented the original NG renormalization scheme to a
more general form [38]. Since we believe that this tech-
nique is useful for other similar problems, we describe the
general formalism of this method here in some detail. In
the following two sections, we will demonstrate the ap-
plication of this program to the model introduced in the
previous section.

Generally, the evolution of the interface height h(x,t)
is described by the following Langevin equation

Bh(x,t)
ot

where £ and N stand for linear and nonlinear terms,
respectively, and the noise function 7 satisfies Gaussian
statistics (3). The general NG renormalization group the-
ory consists of two parts. The first is the renormalization
of the equation of motion, through which all linear coeffi-
cients and nonlinear coupling constants are renormalized.
In fact, the renormalization of the equation of motion is
equivalent to the renormalization of the response func-
tion and the vertex functions in the usual renormalization
method. The second part is the renormalization of the
correlation function, from which the renormalized noise
spectrum strength is obtained.

First, let us discuss the renormalization of the equa-
tion of motion. Quite generally, the interface height func-
tion h(x,t) is a functional of noise 7(x,t). According to
Noziéres and Gallet, the coarse graining transformation
for the equation of motion can be defined through the
following steps.

(a) Split the noise 7(x,t) into two parts,

7 (x,t) =17 (x,t) + & (x,t), (11)

so that 7j(x,t) and dn(x,t) are statistically independent.
(b) Perform a partial average over §7n on the height
function h and define

h(x,t) = (h[A(x,t) + Sn(x,t)])sn , (12)
Sh(x,t) = h(x,t) — h(x,t) . (13)

= L[h] + N +n(x.1) (10)

Then the equations of motion for & and §h are obtained:
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aﬁg:, D) _ LR + W TR an + (%, 8), (14)
%ﬁ = L[6h] + (Nh] — (Nh])sn) + on(x,1).

(15)

Now the original equation has been split into two equa-
tions of motion for h and 8h, respectively.
(c) Solve the equation of motion (15) formally to obtain

Sh(x, t) = / ' d Go(x — x',t — ')
x[6n' + NR] — NThDsa)] (16)

where G| is bare response function depending on the lin-
ear term £ and where the primes on 7 and h indicate
that those are functions of (x’,t'). Then substitute the
formal solution (16) into the equation of motion (14). As
a result of nonlinear coupling terms in the dynamic equa-
tion, the parameters in the equation of motion for h are
modified.

We now discuss the renormalization of the correlation
function.

(a") Formally solve the original equation of motion (10)
and obtain a formal solution for h(x,t), which has form
similar to Eq. (16).

(b') Construct a formal correlation function in the fol-
lowing way:

C(x,x';t,t') = (h(x,t)h(x', 1))y, . (17)
Note that the average here is over 7, rather than én7.
Using the formal solution obtained in (a’), we have, ex-
plicitly,

C(x,x';t, t') = Go(x —x",t —t")

XGO(xI _ xlll’ tl — tlII) [(nlln"l)”
+(,'7/INIII)" + (nIIINII)”
+ NN 1, (18)

where we have used a convenient notation,

/ — / dd:z:" dt” dd :1:'" dt"' .

(c') Substitute Egs. (11) and (13) into the formal cor-
relation function, then cast the correlation function in
the original form. The noise spectrum strength is renor-
malized by calculating the constant terms in the square
bracket.

There are at least two ways to understand the meaning
of the above decomposition. One consists in regarding
the noise 77 and n as, respectively, the long and short
wavelength part of the original noise 7. The other con-
sists of the idea that both 7(x,t) and é7(x,t) have their
own Fourier components, viz. 7j(k,t) and dn(k,t), char-
acterized by different spectral functions in their corre-
lation relations. The spectral functions are finally cho-
sen so that 7j(x,t) and é7(x,t) are the long wavelength
part and the short wavelength part of the noise function
7(x,t). Both points of view lead eventually to the same
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physics. In the original paper by Noziéres and Gallet,
the latter is used. We will choose the former here, which
makes the split more intuitive. Mathematically, it can be
expressed as

‘(xt)—/ Bk p (k%) 7 (k,8)
T Jockenr (@) o
51 (%, 1) —/ B (k%) 7 (k1)
7 Ar<k<p (2m)? T

Note that we have chosen a sharp cutoff for mathemati-
cal simplicity [39]. In actual calculation, it is convenient
toset A =1, A’ = Ae~%, 6l being the width of the mo-
mentum shell. Clearly, as these expressions stand, the
long wavelength part of the noise function 7 and its short
wavelength counterpart d7 are statistically independent.

Next we proceed to discuss the renormalization group
analysis of Eq. (9) using the formalism described above.
Noting that the symmetry properties are different for
different dimensions, the traditional e-expansion method
cannot be applied here and the renormalization group
analyses must be performed individually for each dimen-
sion.

IV. RENORMALIZATION ANALYSIS
FOR 1 + 1 DIMENSIONS

We first consider the 1+ 1-dimensional case. Note that
the right-hand side of Eq. (9) is not a polynomial func-
tion of the field. In order to perform the renormalization
group analysis, it needs to be expanded in powers of the
field m. Setting d = 1 and expanding the right-hand side
of the Eq. (9) to the leading order nonlinear terms in m,
we have

om _ o'm
at " Bz?

3 20%m
—ugm® + uym®—

#m 82

—Kaa:“ + 8z Ox?

2
om 0
+u2m(§) +] +gon(@,t) (19)

where (---) indicates higher order terms and uo, u;, u2
are nonlinear parameters whose bare values are v/2, 2k,
3k, respectively. As Eq. (19) stands, the leading non-
linear terms are cubic terms and the conserved lateral
driving force proportional to 82m?2/8x? [12-14] does not
appear. As has been pointed out previously [19], this is a
consequence of the assumption that deposition does not
change the nature of the diffusion process, i.e., it is still
driven by energy differences and can be described using
a surface Hamiltonian. If only the lowest order nonlinear
terms are taken into account, the structure of Eq. (19) is
quite similar to that of the Langevin equation describing
dynamic critical phenomena. This similarity implies that
the diffusive system will have an instability similar to a
second-order transition. Therefore, a standard strategy
used in the discussion of dynamic critical phenomena [31,
32] can be directly applied to study Eq. (19). Namely,
regarding v and u4(a = 0, 1, 2) as parameters of the same
order, we determine the fixed point values v* and u, to
leading order.
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A. Coarse graining of the equation of motion

Now we apply NG’s approach described above to study
Eq. (19). Performing the partial average over 47 on every
term of Eq. (19), we obtain the following equation of
motion for the long wavelength height field m(z,t):

ot ox? Ozt  Ox2 Ox?

Subtracting Eq. (20) from Eq. (19), we arrive at the
equation of motion for the short wavelength height field
ém,

= 2= 4.~ 2 2
om _ o'm  Om & l_%(ma) +ul<mzm>

+ a%f,(z,t) . (20)

2

ox'2

om (z,t) = /dm'dt'Go(a: —z'it—t')

_15026m(®)'

2,7/
+uy |:m 572 - /3 m Jm'(o)

oz'?

where the primes on the m’s and dm’s mean (x’,t'). Note
that in Eq. (24), we ignored constant terms and linear
terms in 7n’, which do not contribute to the one-loop or-
der renormalization. The bare response function is given
by the following equation:

Go(z,t) =0(t) / % expikz — (v + kk?)k*t] , (25)

where 0(t) is the unit step function.

As a consequence of the nonlinear terms appearing in
the equations, the two equations of motion (20) and (21)
couple each other. This becomes more apparent when
the field m(z,t) in the nonlinear terms is written as the
sum of m(z,t) and dm(z,t) explicitly. Since the noise
on(z,t) is Gaussian, (dm(z,t)) disappears in the equa-
tions. Accordingly, Eq. (20) can be rewritten as

om uazm &'m  9?

9%
_ - 2
ot Voxz "ozt T 922

Ozx?

[—uoﬁz3 +um

B 2
+U2ﬁl(aa—1:) +R[‘ﬁl] ] + a_ax‘ﬁ(m) t) ) (26)

where R[m] represents coupling terms of the two equa-
tions of motion, which can be written as in the pertur-
bation formalism,
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8%6m  9*%m 02 3 3
% U oaz "o +ﬁ{’”°(m = (m)

+u mz——azm —(m? &m
! Ox? oz?
2 2
| m [ O Om +
=) —(ml = e
2 oz oz
g
— t) .
+5-0n(2,1)
Now, the original equation of motion (19) has been split
into two, one for the long wavelength part height field m
and another for its short wavelength counterpart ém.

Equation (21) can be solved perturbatively in power of
U, = 0,1,2. Namely,

(21)

{—3u0m'25m(0)l

om(z,t) = 6mO(z,t) + dmM(z,t) + O(x?), (22)
where
(23)
o' 0om©@ (oam'\" o
+ ug 2m 51—57-8——:1:’— + 92! ém N (24)
[
Rim] = RW[m]+ RP[m] + ---, (27)

where R() is proportional to O(u), R‘® proportional
to O(u?), and so on. Since there are three perturbation
parameters in the present case, it is convenient to express
RY) in the following form:

2
RO =" RPMm], i =1,2,.., (28)
=0

where the R(V)s are given by

RV [m] = —3uo m ((5m®)?) |

926m(®
)= _
Rs )[m] = 2u1 m <5m(0)—652—~

o%m,
5z (6m©)?)

+ u

(1) _ 35m(°) :
Ry'[m]=us m e )

and in a similar way the R(?) s can be expressed as

RP[m] = —6uo m (6m©@sm™)y |
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25m (1)
R®[m] =2u, m [<5m(°)%—>

T

826m®)

8%m
+2u o (6m©@sm®)y |

o 925m)
R[] = 2u, 3—’:[ <6m(°)————a:; >

826m(®

_ [/ 86m©® 8sm™)
+2uzm oz oz ’

where the expressions for §m(®) and §m(?) are given in
Egs. (23) and (24), respectively, and we also ignored
terms which contribute to two-loop order.

Now our task is to calculate the averages in the expres-
sions. This can be done in three steps. First, substitute
Egs. (23) and (24) into the above expressions. Then per-
form the gradient expansions [31] to extract terms of the
original form. Finally, carry out the momentum shell in-
tegrals, which are the coefficients of the relevant terms.
These manipulations are straightforward but tedious. In
Appendix A, we have listed final results for all R(!) and
R®), Here, we comment briefly on the momentum-shell
integrals. Our aim is to find fixed points which are in-
frared stable under the dynamic renormalization group
transformation in the parameter space. Physically, this
stability comes from the infinite correlation length in the
system. Mathematically, it is revealed in the divergence
of the integrals. In the calculation, we find that some of
the integrals are not divergent in the infrared limit due
to the gradient operators in this model. We ignore these
finite terms [40].

When these steps are performed, we have the following
results:

Mn _ L o%m
R [m] = —311.0&',(61)’”1. + ’U.IK,((SI)W 5 (29)
8%
RD[m] = Ao (S)m3 + A, (8l)ym? a—;‘
o 2
_ m

where
J

C(z,z';t,t') =

"o

x{(r’(mll, tll)n(mlﬂ’ t”’))n + f[m”, 7’”; mlll’ nlll] + f[m”’, 7”"; mll’ 17//] } ,

where we have used the notation

/ — / d:c" dtll d xm dtlll
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Do = —3ug(3to + 41) — 6uyiip + 3uaio ,

Ay =3ug (3o — 1 + 3i2) + ua (1240 + 4, + 612)
+ua(—3a0 + #, — 342) ,

Ag = 3ug(3to — 51y — 4ii3) + uy (9o — 44, + 81z)
+uz(2a0 + 54, — 41;) ,

where the reduced coupling parameters @, = KiuoD/k?
with K; = 1/, and 4l is the width of the momentum
shell.

Substituting Eqs. (29) and (30) into Eq. (26) and re-
arranging the equation into the original form, we obtain
the coarse grained equation of motion which has exactly
the same form as Eq. (19) with the intermediate renor-
malized parameters v;, k7, and u, 1, @ = 0,1,2, which
are given by the following recursion relations

vr =v — 3igkdl (31)
KI=K — U1K8l, (32)
Ug [=Uq + Do 6l , a=0,1,2, (33)

where A,,a = 0,1, 2, are given in the above equations.

B. Coarse graining of the correlation function

As mentioned above, to understand the dynamics of
systems where the fluctuation-dissipation theorem does
not hold, one must study the renormalization of the two-
point correlation function separately. Now we discuss the
renormalization of the correlation function, from which
the recursion relation for the parameter D is obtained.

Following a similar manipulation as the one leading to
Eq. (22), we obtain the formal solution of Eq. (19),

’

m(a,t) = [ de'dtGo(e— o'\t =¥) {gg
62

oz'?

2
tupm! om'
2 oz’ ’

where the bare response function Gy is given in Eq. (25).
The two-point correlation function in real space can be
defined as follows:

. azm;

+ oz'?

’
I:—-uom 3 +um

(34)

C(z,z';t,t') = (m(z,t) m(z',t')), . (35)

Substituting the formal solution (34) into this definition,
we arrive at the formal expression for the correlation
function:

Ga(z —z" t— t")G:)(zl —z" ¢ — t”')

(36)
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and f is a functional of m and 7, which can be expressed in leading order as,

y g 62mm

1o} "
f[m”,'f]”;m’”, nlll] — az", [_u0<m 3,'7/!) + Uy <T] m

2
am'"
oz > + u2<7]”m”’ ( oz ) > + O(uz) ] ) (37)
n n

where m" and 7" stand for m(z",t") and n(z",t"), respectively. In Eq. (36), we integrated by parts and G}, stands

for 0G,/0x.

We now demonstrate the procedures for renormalizing the correlation function (36). Substituting the decompositions

1 =7+ 0n and m = m + dm into Eq. (36), we have

C(z,z';t,t') =

"o

:,(1: _ :1:",t _ tll) G’f,(a:’ _ zlll,tl _ t/u)

X{('r];(:l:”, t”)"][ (:E”I, t”’)),—, + f[’ﬁl", ﬁ"; Th”’, ﬁ”l] + f['ﬁll”, 1—’”/; mll’ ﬁ”]} , (38)

where f[m",7";m'",7""] is given in Eq. (37) with the replacements m — m and  — 7 and the correlation of the

intermediate-stage noise function is given by

(’l)[(l'”,t”)’f”(.’l,"”,t”I)),’ — (n(z",t")n(m"’,t"’)),, + g(il)”,t”; z/’l,t”l) + g(:l:’”,t”l;l'”, t“) , (39)

where the function g(z”,t"”;z'",t""") can be expressed as follows:

0o, Ny
g(:l: ,t y T ’t )—

Note that we have ignored two-loop terms and irrelevant
terms.

To obtain a coarse grained version of the correlation
function, we must require that

<7’I(z”,t”)nl(x’”,t’”))f, — 2DI 6($I/ _ :B’I')(S(t” _ tlll) X

(41)
Equations (39) and (41) together will give the expression
of Dy up to order O(u). To see this clearly, we need to
carry out the integrals

Cor(z—2a',t-t)= Go(z — =", t —t")

XGG(.’L’I — " — tl//)
X(WI(“’"at")'ll(-’””',t"’)lh ) (42)

using Eqgs. (39) and (41), respectively. After some simple
algebra, one finds that, to one-loop order, the parameter
D is not renormalized, i.e.,

D;=D. (43)

This completes the coarse graining transformation for the
1 + 1-dimensional case.

C. Flow equations

The above procedures show that, to order O(u?), be-
sides the original-type terms, no additional terms of dif-
ferent form are generated. This means that our original
parameter space {v,k,D,uq,a = 0,1,2} is complete to
this order. In other words, the higher order terms are of
order O(u3) and can be consistently ignored. Using the
recursion relations given in Egs. (31)—(33), and (43), and

2
0 "’ 012 026m(®" o [ 36m©"
32" —u (8™ (6m®")3) 4+ u1<5n/u(5m(0) )2%—>+u2<6n”'6m(°) ( g;” '

(40)

f

the traditional rescaling of =’ = ze™%, t' = te==%! and
h' = he=Xx8! on taking the limit of 61 — 0, we find the
following flow equations:

dlnug o«
nu=z+2x—6+25ao+A—y

dl Uq

a=0,1,2, (44)

dinv Uo

e L (45)
dlnn_ _4— 46

dl =z u , ( )
dlnD

7 =z —2x — 1, (47)

where the reduced perturbation parameters i, and the
renormalization of the nonlinear couplings Ay, = 0,1, 2
are given above. In Eq. (44), o0 = 1 when a = 0;
otherwise, do0 = 0.

From the flow equations, we have a renormalization
picture to O(u) for the 1 + 1-dimensional system. The
nonlinear couplings, arising from both surface tension
and surface diffusion, renormalize each other, which ul-
timately determine the fixed point value of v*. The pa-
rameter x is renormalized but its fixed point value cannot
be determined in the present order. This is a common
feature of the renormalization of the cubic nonlinear cou-
plings [31]. This does not affect our discussion of the lin-
ear stability of the system as long as we assume that the
positive sign of the bare x is not changed by the renor-
malization group transformation [41]. The noise strength
D is not renormalized in the one-loop calculation. From
Eq. (45), the value of surface tension at fixed point, i.e.,
v*, is proportional to @§. Therefore, the values of @g de-
termine the stability of the system in the long wavelength
limit.
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D. Fixed points and instability

To find the fixed points it is convenient to consider
reduced flow equations for 44, = 0,1,2. Taking deriva-
tives with respect to ! on both sides of In, = Inu, +
InD — 2Inx and using Eqs. (44)-(47), we readily arrive
at
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dlZIﬁa =1+25ao+2ﬁ1+% ,@=0,1,2.  (48)

It is easy to check that there are three strong-coupling
fixed points of Eq. (48): (I) @4 = 0, @} = 4} = —3,
(I1) @y = 0.2397, u} = a3 = —0.6447, and (III) 45 =
—1.0633, 4} = uy = 0.8212. The eigenvalues of these
fixed points are given in the following table, from which
we can analyze the stability of the fixed points.

Fized point I Ao | Alz
I 1.85714 - 1.0000
II -0.77649 + 2.31758 ¢ -0.77649 - 2.31758 ¢
111 -14.3675 -1.84419

The distribution of the fixed points and their flow dia-
gram is shown schematically in Fig. 1 in the #g,u;2 plane,
where u12 = (@1 + @2)/2. The fixed point (I) is stable
with respect to the Gaussian fixed point and controls
the scaling behavior of purely diffusive (but nonlinear)
relaxation. At this fixed point the dynamic exponent
z=4- % ~ 3.86. Clearly, the growth regime governed
by this fixed point is different from that described by
the WV linear diffusion model [25]. The fixed point (II)
with positive v* is in fact unstable with respect to the
EW fixed point at which all nonlinear terms are irrele-
vant in the long wavelength limit. An interesting feature
of this fixed point is that its eigenvalues are complex so
that the flow lines in the parameter space are vortexlike,
see Fig. 2. On the other hand at fixed point (III), one
has a negative v*, and the system is linearly unstable.
The eigenvalues at this fixed point are negative and the
flow lines are shown in Fig. 3. In this circumstance, a
finite system will eventually evolve into a steady state
with large slopes. The precise morphology may depend
on details such as boundary conditions. This fixed point
is stable and has a rather large basin of attraction which

Y o ] Ui,

FIG. 1.
the %o and u,2 plane for d = 1.

Schematic renormalization group flow diagram in

!

is bounded by the %y = v = 0 axis. At this level of ap-
proximation it therefore seems that, although the entire
v = 0 axis is unstable, finite v is not produced by renor-
malization. Furthermore, since the flow cannot cross the
v = 0 axis, a negative surface tension does not become
positive under renormalization nor does a positive one
become negative. Note that the ratio of the two nonlin-
ear couplings arising from the surface diffusion, @, /42,
has changed from the bare value 2/3 to the fixed point
value 1, implying that GK's transformation [18] is exact
at the fixed points.

V. RENORMALIZATION ANALYSIS
FOR 2 + 1 DIMENSIONS

Now we turn to the of 2+ 1-dimensional case, in which
the algebra is more involved than the 1 + 1-dimensional
case. Setting d = 2 and expanding the nonlinear terms
in power of m, Eq. (9) becomes

38":'- =vV3im; — kVim; + V?j N;[m] + Vin(x,t),
(49)
where the nonlinear terms
Nj[m] = —ugm;jm? + uym;jmie Vimy + uzmiemiVam;
+'u.3m;,ijkV;ml + u4m1V1mijmk + -
(50)

The bare values of the nonlinear couplings are up = v/2,

FIG. 2. The vortex flow line sinking in the fixed point II.
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e

FIG. 3. The flow lines in the neighborhood of the fixed
point III.
u; = ug = uz = K, and ug = 2k. Compared to Eq.

(19), two more cubic terms appear here due to the added
structural complexity. Therefore, to order O(u), the di-
mension of the original parameter space is 8, rather than
6, as in the 1 + 1-dimensional case. However, following
exactly the same method used in 1 + 1 dimension, the
renormalization analysis can be done without any essen-
tial difficulty, after some rather tedious calculations.

A. Coarse graining of the equation of motion

The equation of motion (49) can be renormalized by
using the scheme discussed in Sec. III. First, by splitting
the noise 7 into two statistically independent parts, n =
71+6mn, the original equation of motion (49) can be divided
into two equations for 7 and dm, respectively. Namely,
for 7 we have
om;

at

=vVim; — kV*m,; + V2 (Nj[m]) + Viidi(x,t) .

3
(51)
Subtracting Eq. (51) from Eq. (49) and defining ém =
m — m. we have
a‘;tni =vV2im; — kV4m;
+VE (Njlm] — (Nj[m]) + Vidn(x,t)
(52)

where Nj[m] is given in Eq. (50). Next, we solve the
equation of motion for dm formally and obtain

dm;(x,t) = /dzx'dt'Go(x —x',t—t') {Vidn(x',t")

+VEWNGm] = (N[} (53)

where the bare response function Go(x,t) is given by
Go(x,t) = 0(t) / ﬁ exp [ik - x — (v + kk?)k?t] .
(2m)?
(54)
Finally, writing m = m + dm in the equation of motion

for 7 and arranging the linear terms in the original form,
we may write the equation of motion for 7 in the form
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om; = szﬁl,' - K,V‘i‘ﬁ’t,'
ot

+VELW;lm] + R;[m]) + Vii(x,t) ,  (55)

where Nj[m] is given in Eq. (50) with the replacement
of m — m, and R[] represents the nonlinear coupling
terms, which are given in the following equations

Rjo[m] = —uo(m;((6m)?) + 2mi(émidm;))

Rj1[m] = uy (m; (mi VEdmy) + m;(dm; V28m;)
-+-V2'rh,-(5m,-5mj)) ,

Rj2[m] = uz (2 (6mi VE6m;) + Vim;(dmidms)) ,

Rj;;[’r?l.] = u3(mi(Vj6min6mk) + Viemy (JmiVij,-)
+V jm; (dm; Vi dmy)) ,

Rj4[m] = ug(mi(Viém Vj0me) + Vimp (6m;V ;0my)
+V,~ﬁzk(5m,-V,-6mk)) .

The central task is to calculate these coupling terms.
Similarly to the 1 + 1-dimensional case, we first write
dm in perturbation form

om(x,t) =dm@(x,t) + dmW(x,t) + ---, (56)

where §m(® is proportional to O(u°), and §m!) propor-
tional to O(u), and so on. Consequently, the R terms
can be expressed perturbatively in power of u

Rja[m] = RiJ[m] + RJ[m] + -, (57)

where R(!) is proportional to O(u), R(® proportional to
O(u), and so on. To one-loop order, it is sufficient to
calculate R to order of R(?). The calculation is straight-
forward but quite tedious. Here we only cutline the main
steps and make some related comments.

The first step is to obtain the expressions of R(Y) and
R® by substituting Eq. (56) into the R expressions.
Next we perform the gradient expansion [31] and extract
the relevant terms. At this step, one important difference
from the (1 + 1)-dimensional case is that the four cubic
terms with second-order derivatives are not “complete.”
That is, there are other terms, for instance, m2V2m;,
m;VemVim;, m;Vm;V,m;, and so on, which do not
show up in the original expansion. After the manipula-
tion of the dynamic renormalization group, these terms
are generated by the coarse graining procedure. How-
ever, a close examination reveals that they are irrelevant
at the one-loop order. Finally, we carry out the inte-
grals appearing in the coefficients of the relevant terms.
Once again, the infrared-finite terms are ignored for sim-
plicity. Taking all this into account, treating v and
Ug, = 0,...,4 perturbatively, and including all relevant
terms to leading order, we obtain the final results for the
coupling terms, which are listed in Appendix B. Sum-
ming them up, we have

1

R{Vm] = —2uon(8)m; + 5 (@ + w)s(8)V?m;

(58)
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RP[m] = —Do(dlymsm? + Ay (81)mjms Vi,
+ Ay (8 VEm;
+As (6!)77;,.V,-m,.V,ﬁu
+ Ay (5l)m1V;ﬁlijﬁ1k , (59)

where the coefficients A,,a = 0,1,2,3,4, are given by
the following equations

No = 9'+9‘+15ﬁ—§ﬁ—§1‘4
0= Ug 211'0 2“1 42 43 44 )

31 _ 19 _ 29
4 4 4 8

5
Al =Yg (—-6‘&0 - —ﬁl - —U2 + —Uus + —1-1.4

+ 7ﬁ 5ﬁ+2ﬁ+15ﬁ
u181 82 3 164

+u 24 +17ﬁ+zﬁ
2 2t gUst gl

+ S +3ﬁ +iuﬁ
us3 8"43 16 4 16 4U4
1 3
Az =Yg (——2];17.1 “+ 417,2 + E’l_ts + Zﬁ4)
+ 1 +1ﬁ +lﬁ +§ﬁ
uy 4u1 2 2 2 3 8 4
+u 317. +§ﬁ +u
2 2 2 2 3 4

+ la 5'& §uﬁ
us 4143 84 844,

As= iy + oy + 24 | +u -1 +z17,
3 = Uo U2 2‘”3 2 4 1 2 2 2 3
_ 3
+uz | —%2 + 3u3 + §u4

+ 31‘1. 517 + —u4qt
us 43 84 844’

5 5 21
FAVEESR TR (—21-10 - 24, — Z’l_l.z + —uz + —17.4)

-

4 4

+ 111 zﬁ +§ﬁ +gﬁ
Uy 21 42 43 44

+u. 24 +zﬁ, +1—5-ﬁ
2 2+ JUs+ Us

+u, 112 a iuﬁ
3 43 4 444,

where %, = KauaD/k? with Ky = 1/27.

Substituting Eqgs. (58) and (59) into Eq. (55) and
casting the equation into the original form, we obtain
the recursion relations for the parameters {v, K, uq,a =
0,1,2,3,4}
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vy =v — 2ioKdl (60)
Ki=rk — % (@y + diz)mél (61)

Ug [=Ug + Do dl,a=0,1,2,3,4, (62)

where Ay, = 0,1, ...,4, are given above.

B. Coarse graining of the correlation function

Similar to the 1 + 1-dimensional case, the correlation
function has also to be renormalized separately since
there is no obvious FDT in this dimension. Applying
the renormalization scheme presented in Sec. III to the
2+ 1-dimensional case, after some simple algebra, we can
easily obtain the recursion relation for the noise strength
to one-loop order, i.e.,

D;=D. (63)

That is, as in the previous case, the noise strength D
is not renormalized in the one loop order. In fact, fur-
ther examination reveals that the noise strength is not
renormalized in the one-loop order for cubic nonlinear
couplings.

C. Flow equations and fixed points

Using the recursion relations obtained above and per-
forming the traditional rescaling transformation, we have
the following flow equations:

M=z+2x—6+ 2600 + é‘1,

dl Ug

«=0,1,2,3,4, (64)

dlnv o

4 —z—2—2n7, (65)
dlnk 1 _ _

4 =z — 4 — §(u1+uz), (66)
d—l;ll£=z—2x-—2, (67)

where the renormalization of the nonlinear couplings
Ng,a=0,...,4 are given above.

As for the 1 + 1-dimensional case, we consider the re-
duced flow equations,

dnd, =25a0+ﬁ2+ﬂ'1+§ , «a=0,1,2,3,4.
dl Uq

(68)

The fixed points of Eq. (68) are given by a group of four
second-order simultaneous polynomial equations. We
have solved this system of simultaneous equations nu-
merically and found one solution with negative @§, which
is @) = —0.1509, @ = —0.2530, @} = —0.0108, @3 =
0.0046, a3 = —0.1021. There are also several other solu-
tions with positive #g. As argued above, these solutions
are superseded by the Edwards-Wilkinson fixed point.
An unfortunate feature of the 2 + 1-dimensional case is
the absence of the purely diffusive strong-coupling fixed
point (I) although the Gaussian fixed point {#, = 0} is
unstable. This is due to the fact that for » = 0 all nonlin-
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ear terms, including the ones retained in our expansion,
are marginal rather than relevant at the Gaussian fixed
point. To find the analog of fixed point (I) one would
need to go to higher order in the perturbation expan-
sion.

VI. DISCUSSION AND CONCLUSION

In conclusion, our dynamic renormalization group
analysis of the driven interface system in the simplest
continuum model for molecular-beam epitaxy shows that
it can evolve into two different morphological states. The
first state with a positive surface tension is linearly sta-
ble, with the long-distance, late-time behavior of the EW
universality class [24]. The second state with a negative
surface tension is linearly unstable and probably corre-
sponds to the grooved state observed in numerical simu-
lations [19,22,42]. However, in contrast to these discrete
models, the drumhead model, driven by an external flux,
does not evolve to a state with finite surface tension—if
the surface tension is initially zero it remains zero under
renormalization.

In 1 + 1 dimensions, we also find a purely diffusive
regime with a dynamic exponent different from that de-
scribed by the WV linear theory [25]. In the 2 + 1 di-
mensions, this purely diffusive growth regime cannot be
found in the one-loop approximation due to the critical-
dimension feature. We believe that, in the long wave-
length and late time limit, the purely diffusive regime
is one of the growth states of the system studied here.
That is, for systems where both surface tension and sur-
face diffusion are dominant, there are generally three
steady growth regimes corresponding to v > 0, v = 0,
and v < 0, into which the systems will evolve. Since the
2 + 1-dimensional case is at the critical dimension of the
system, one must perform a two-loop analysis to find the
fixed point corresponding to zero surface tension.

Methodologically, we have systematically presented
the generalized Noziéres-Gallet dynamic renormalization
group theory. In this method, one can start the analy-
sis in real space and the perturbation theory can be de-
veloped without graphical techniques. Our experience
shows that where a one loop calculation is adequate,
the NG method is the most effective and convenient
renormalization group method, especially in dealing with
complicated nonlinearities. Most frequently, a one-loop
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renormalization group analysis is sufficient to obtain the
main features of a system in the long wavelength, late
time limit [33]. Therefore, we believe that the formal-
ism presented in this paper is applicable to a variety of
nonlinear systems.
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APPENDIX A: RENORMALIZATION
COUPLINGS FOR 1 + 1 DIMENSIONS

In this appendix we list all final results of the R(})’s
and the R(®)’s for 1 4+ 1 dimensions.

R$V[m) = -3 k (81)m , RV [m)
9%
=K (51);9:5—’;‘ ,

R [m) = —3uo (30 + 61) (81)7m3

R{V[m] = 0,

8%
+ — 3U() (—3'!7.0 + %17,1 - 317.2) (Jl)'rhza—zl

T
P 2
+ — 3uq (—3to + 3y — 41,) (51)m(£> ,

RP[m] = —6u; 6o (81)m3

9%m
+uy (1217.0 + u; + 61_1,2) ((Sl)'fhz—?’,;l

o 2
+uy (9% — 43 + 812) (Jl)rh(%) ,

RP[m] = 3u, 6 (51)m3
8%m
+ug (-3 + 4y — 312) (Jl)mzaz—

2
on
+uy (20 + 58 — 475) (51)m<£-) .

APPENDIX B: RENORMALIZATION COUPLINGS FOR 2 + 1 DIMENSIONS

In this appendix, we list all final results of the R(1)’s and the R(?)’s for the 2 4+ 1 dimensions.

R [m] = —2ao & (81) m; , R [m] =

R{P[m] =

DN =

|
]
-
a
=
q
N
3
<.

ay & (81) V2 m; , RY[m] = RPm] = 0,
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11 1 3
—ug (211.0 + -1 + vy Ug — Eu;; -3 Uy ) (8D)m;V;m, V jm,

1
—Uo (’ll.g - 5‘&4 + Z Uy ) (6l) . ﬁuVjﬁz;V,ﬁz, 5

13 3 7_ 5 _ 17 _ 15 _ _ _
R(z)[ ]— —Tul 'll,o(lSI)m m; + uy (—Eﬁo + §u1 - '8‘ Uz + ?u:i + 1_6‘ Ug ) (6l)m.‘imrvzmr

1 1_ 1 _ 3_ _ _
+u; (— 4—’2_141 - Zuz + Z uz + §’U.4 ) (Jl)mim"v?rmj

3 1 5 _ 1_ 3 _ _ _ _
+u; (—Z’l—l.o — 51_[,1 - Z U + Zua + Z Uy ) (él)miVim,ij,

1 3 1
+uy (—5’1—1,2 + Zﬂ:; - g Ug ) (Jl)ﬁz.-ij,-V,ﬁz, ,

5 11
(2)[ ]— —EU2 ’U.o((”)m m,uz (—?'L_Lo -2 Uz + 217.3 - % Uy ) (Jl)ﬁzjﬁz,.Vzm,.

9_ 3_ 3 _ 1_ 3 _ _ _
+ug (5“0 + i + i + 3 Us + 1 u4) (8)mim, V.,

3 1 1 3
+ug (an — 51‘11 — 21U+ 5173 + 2 ﬁ4) (6l)mivimrvjmr

3 1

+U2 (—’l_l.z + 5‘&3 - Z 174) (Jl)ﬁl.'VjﬁliV,-’ﬁl,- 5
5 7

R;g)[ﬁl] = Zu;; ﬁo(&l)ﬁlz’ﬁlj + ug (217,0 - %ﬂl + g Ug — gu3 + —16 Uy ) (Jl)ﬁlj’ﬁl,.vzﬁl,.

1_ 1 _ 1_ 3
+us (Zul + g2 3% —3 u4) 81y, V1

[
@
|
W

1 5
+us (—ﬁo + 5111 + Z Ug — 17.4) (6l)771,'V,"ﬁL,.Vj'ﬁ‘l.,-

3 3 1
+us (3'&0 + Uy + 51_1,2 — Z’l_l,;; + g ﬁ4) (Jl)ﬁziV,-ﬁL.-V,m, ,

_ 5 _ o 11 _ _ 5 1
R;i)[m] = Zu4 uo(d'l)mzmj + ugq (ZUO + Uz — g’u,3 + 1—6 Uy ) (Jl)mj'ﬁz,VZﬁz,

1 1 1 3
+uy (Z Uy + - Uy — —Uz — g ﬁ4) (él)mimfvtgrmj

4 4
15 _ 3_ 9 _ 1_ 3 _ _ _ _
+uy (zuo + §u1 + 2 g — Zu3 ~ 1 u4) (81)m; Vi, V jm,

3_ 1_ 5 _ 3_ 1 _ _ _ _
+uy (Zuo + gul + 3 Ug — Zu;; + 3 u4) (6D)m;V jm;V o1y .
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