APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. E 50, 3370–3382 (1994)

[Issue 5 – November 1994 ]

Previous article | Next article | Issue 5 contents ]

Add to article collection View Page Images or PDF (1910 kB)


Dynamics of interfaces in a model for molecular-beam epitaxy

Tao Sun and Michael Plischke
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A||1S6
Received 9 May 1994

The dynamics of driven interfaces in a continuum model of growth by molecular-beam epitaxy has been studied by means of the Nozières-Gallet dynamic renormalization group technique. Relaxation of the growing film is due to both surface tension and surface diffusion. In 1+1 dimensions, three growth regimes have been found. The first is a linearly stable state with a positive surface tension, which can be described by the Edwards-Wilkinson equation. The second is a purely diffusive state with a dynamic exponent z, different from that given by the Wolf-Villain linear theory. The last is a linearly unstable growth state in which the creation of large slopes in the interface configuration is expected. In 2+1 dimensions, which is the critical dimension of the model, the purely diffusive regime is absent at the one loop order. However, the other two growth regimes are still present. The scaling properties of the growth states are discussed in detail.

©1994 The American Physical Society

URL: http://link.aps.org/abstract/PRE/v50/p3370
DOI: 10.1103/PhysRevE.50.3370
PACS: 05.40.+j, 68.55.Bd, 68.35.Fx


Add to article collection View Page Images or PDF (1910 kB)

Previous article | Next article | Issue 5 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. K. L. Chopra, Thin Film Phenomena (McGraw Hill, New York, 1969).
  2. D. Henderson, M. H. Brodsky and P. Chaudhari, Appl. Phys. Lett. 25, 641 (1974) [dot INSPEC].
  3. H. J. Leamy and A. G. Dirks, J. Appl. Phys. 49, 3430 (1978) [dot SPIN][dot INSPEC].
  4. H. J. Leamy, G. H. Gilmer, and A. G. Dirks, in Current Topics in Materials Science, edited by E. Kaldis (North Holland, Amsterdam, 1980), Vol. 6.
  5. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).
  6. F. Family and T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).
  7. F. Family, Physica A 168, 561 (1990) [dot INSPEC].
  8. Molecular Beam Epitaxy 1990, edited by C. W. Tu and J. S. Harris, Jr. (North Holland, Amsterdam, 1991).
  9. Solids Far From Equilibrium, edited by C. Godréche (Cambridge University Press, Cambridge, 1991).
  10. Surface Disordering: Growth, Roughening and Phase Transitions, edited by R. Jullien, J. Kertész, P. Meakin, and D. E. Wolf (Nova Science, Commack, NY, 1992).
  11. M. Kardar, G. Parisi and Y. C. Zhang, Phys. Rev. Lett. 56, 889 (1986) [SPIRES]; E. Medina, T. Hwa, M. Kardar and Y. C. Zhang, Phys. Rev. A 39, 3053 (1989).
  12. T. Sun, H. Guo and M. Grant, Phys. Rev. A 40, 6763 (1989); A. Chakrabarti, J. Phys. A 23, L919 (1990) [dot INSPEC]; Z. Ràcz, M. Siegert, D. Liu and M. Plischke, Phys. Rev. A 43, 5275 (1991).
  13. Z. W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).
  14. J. Villain, J. Phys. I (France) 1, 19 (1991) [dot INSPEC].
  15. S. Das Sarma and P. Tamborenea, Phys. Rev. Lett. 66, 325 (1991).
  16. A. Mazor, D. J. Srolovitz, P. S. Hagan and B. G. Bukiet, Phys. Rev. Lett. 60, 424 (1988).
  17. S. Das Sarma and S. V. Ghaisas, Phys. Rev. Lett. 69, 3762 (1992).
  18. L. Golubovic and R. P. U. Karunasiri, Phys. Rev. Lett. 66, 3156 (1991).
  19. M. Siegert and M. Plischke, Phys. Rev. Lett. 68, 2035 (1992); J. Phys. I (France) 3, 1371 (1993) [dot INSPEC].
  20. J. Krug, M. Plischke and M. Siegert, Phys. Rev. Lett. 70, 3271 (1993).
  21. M. Plischke, J. D. Shore, M. Schroeder, M. Siegert and D. E. Wolf, Phys. Rev. Lett. 71, 2509 (1993).
  22. M. Siegert and M. Plischke, Phys. Rev. E 50, 917 (1994).
  23. W. W. Mullins, J. Appl. Phys. 28, 333 (1957).
  24. S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982) [dot INSPEC].
  25. D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990) [dot INSPEC].
  26. T. Sun and M. Plischke, Phys. Rev. Lett. 71, 3174 (1993).
  27. M. Grant, Phys. Rev. B 37, 5705 (1988).
  28. A. Maritan, F. Toigo, J. Koplik and J. R. Banavar, Phys. Rev. Lett. 69, 3193 (1992).
  29. P. Nozières and F. Gallet, J. Phys. (Paris) 48, 353 (1987) [dot INSPEC].
  30. F. Gallet, S. Balibar and E. Rolley, J. Phys. (Paris) 48, 369 (1987) [dot INSPEC].
  31. S. K. Ma, Modern Theory of Critical Phenomena (Addison Wesley, Reading, MA, 1976).
  32. B. I. Halperin, P. C. Hohenberg and S. K. Ma, Phys. Rev. Lett. 29, 1548 (1972).
  33. In some cases where the one loop calculation is not adequate, one must use field theory renormalization group method. The KPZ equation in 2+1 dimensions is an example, see T. Sun and M. Plischke, Phys. Rev. E 49, 5046 (1994).
  34. P. C. Martin, E. D. Siggia and H. A. Rose, Phys. Rev. A 8, 423 (1973).
  35. D. Forster, D. R. Nelson and M. J. Stephen, Phys. Rev. A 16, 732 (1977).
  36. T. Hwa, M. Kardar and M. Paczuski, Phys. Rev. Lett. 66, 441 (1991).
  37. Y. C. Tsai and Y. Shapir, Phys. Rev. Lett. 69, 1773 (1992) [SPIRES].
  38. We have discussed the dynamic roughening using the generalized NG method, see T. Sun, B. Morin, H. Guo, and M. Grant, in Surface Disordering: Growth, Roughening and Phase Transitions ( Ref. 10), p. 45; and (to be published).
  39. In some cases one needs a smooth cutoff, see, Modern Theory of Critical Phenomena ( Ref. 31), p. 215; and also see Ref. 38.
  40. If we do include these terms in the calculation (even though this complicates the algebra substantially, it still can be done in the 1+1 case, but appears to be barely feasible in the 2+1 case), we find that the physics is not changed. That is, no new stable fixed point is found.
  41. A negative kappa corresponds to a locally unstable situation, which would be unphysical.
  42. M. Siegert and M. Plischke, Phys. Rev. Lett. 73, 1517 (1994). .


Add to article collection View Page Images or PDF (1910 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 5 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org