Volume: Page/Article: ------------------------------------------------------------------------ Article Collection: View Collection Help (Click on the Check Box to add an article.) ------------------------------------------------------------------------ Phys. Rev. B 49, 10544?10547 (1994) [Issue 15 ? 15 April 1994 ] [ Previous article | Next article | Issue 15 contents ] Add to article collection View Page Images or PDF (616 kB) ------------------------------------------------------------------------ Finite-size effects on self-affine fractal surfaces due to domains George Palasantzas Physics Department, Northeastern University, Boston, Massachusetts 02115 Received 20 September 1993 We study the effects on the scaling properties of self-affine fractal surfaces due to domains where a distribution of domain sizes and shapes is simulated through a Gaussian function. Approximate expressions for the roughness spectrum and surface width are confirmed with comparison to surface-width data acquired by means of scanning tunneling microscopy. ©1994 The American Physical Society URL: http://link.aps.org/abstract/PRB/v49/p10544 DOI: 10.1103/PhysRevB.49.10544 PACS: 68.55.Jk, 68.90.+g, 68.60.-p ------------------------------------------------------------------------ Add to article collection View Page Images or PDF (616 kB) [ Previous article | Next article | Issue 15 contents ] ------------------------------------------------------------------------ References (Reference links marked with dot may require a separate subscription.) 1. B. B. Mandelbrodt, The Fractal Geometry of Nature (Freeman, New York, 1982). 2. M. W. Mitchell and D. A. Bonnell, J. Mater. Res. 5, 2244 (1990) [dot SPIN ][dot INSPEC ]; E. A. Eklund et al., Phys. Rev. Lett. 67, 1759 (1991) ; J. Krim et al., 70, 57 (1993) ; D. A. Kessler et al., 69, 100 (1992) ; M. A. Rubio et al., 63, 1685 (1989) ; V. K. Horvath et al., J. Phys. A 24, L25 (1991) [dot INSPEC ]. 3. S. Alexander, in Transport and Relaxation in Random Materials, edited by J. Klafter, R. Rubin, and M. F. Schlesinger (World-Scientific, Singapore, 1987). 4. S. K. Sinha et al., Phys. Rev. B 38, 2297 (1988) ; R. Pynn, 45, 602 (1992) . 5. J. Krim, I. Heyvaert, C. Van Haesendonck and Y. Bruynseraede, Phys. Rev. Lett. 70, 57 (1993) . 6. F. Lancon and J. Villain, in Dynamics of Ordering and Growth at Surfaces, edited by M. Lagally (Plenum, New York, 1990), p. 369. 7. P. Dutta and S. K. Sinha, Phys. Rev. Lett. 47, 50 (1981) . 8. B. E. Warren, Phys. Rev. 59, 693 (1941) . 9. Strictly speaking we have to take the limit A -> inf; however, with A being the average macroscopic substrate area app 1014 nm2, there will be no effect for quantities showing fluctuations on microscopic length scales. 10. J. S. Bedat and A. G. Piersol, Engineering Applications of Correlation Functions and Spectral Analysis, 2nd ed. (Wiley, New York, 1993). 11. For a specified shape of the domains, see F. Willing and A. Griffin, Phys. Rev. Lett. 46, 353 (1981) . 12. For a calculation of higher-order terms, see G. N. Watson, Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge University, Cambridge, 1966). 13. G. Palasantzas, Phys. Rev. B 48, 14472 (1993) . 14. G. Palasantzas and J. Krim, Phys. Rev. B 48, 2873 (1993) . 15. For a review, see Dynamics of Fractal Surfaces, edited by F. Family and T. Vicsek (World Scientific, Singapore, 1991). 16. T. Nattermann and L.-H. Tang, Phys. Rev. A 45, 7156 (1992) . ------------------------------------------------------------------------ Add to article collection View Page Images or PDF (616 kB) [Show Articles Citing This One] Requires Subscription [ Previous article | Next article | Issue 15 contents ] ------------------------------------------------------------------------ [ APS | APS Journals | PROLA Homepage | Browse | Search ]