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Finite-size effects on self-affine fractal surfaces due to domains
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We study the effects on the scaling properties of self-affine fractal surfaces due to domains where a dis-
tribution of domain sizes and shapes is simulated through a Gaussian function. Approximate expres-
sions for the roughness spectrum and surface width are confirmed with comparison to surface-width
data acquired by means of scanning tunneling microscopy.

I. INTRODUCTION

A wide variety of surfaces and interfaces occurring in
nature are well represented by a kind of roughness associ-
ated with self-affine fractal scaling as defined by Mandel-
brodt in terms of fractional Brownian motion.! Examples
of physical processes which produce such surfaces in-
clude fracture, erosion, and molecular-beam epitaxy, as
well as fluid invasion of porous media.

Let us denote by z(r) and r=(x,y) respectively the
vertical and horizontal surface coordinates, with z(r) be-
ing a single-valued function of the in-plane positional vec-
tor r. Self-affine fractal surfaces exhibit fluctuations in
the perpendicular direction which can be characterized in
terms of the height-difference correlation g(R)
=([z(r)—z(r')]*), with z(r)—z(r') assumed a Gaussian
random variable whose distribution depends on the rela-
tive coordinates R=r'—r. The notation { - -- ) means
an average over all possible choices of the origin, and an
ensemble average over all possible surface configurations.
If we assume an isotropic surface in the x and y direc-
tions and consider

g(R)=R?*! (0<H <1), (1.1)
the associated surface roughness can be attributed to
self-affine fractals as defined by Mandelbrodt in terms of
fractional Brownian motion.! The exponent H charac-
terizes the surface texture and is associated with a local
fractal dimension D =3—H."? In general, g (R) is relat-

ed to the height-height correlation function
C(R)={z(R)z(0)) by the following equation:
g(R)=20%2—2C(R) . (1.2)

If R—, g(R)— but g(R)/R*—0 (asymptotically
flat surface), which is a rather ideal case because on real
surfaces finite-size effects will cause g (R) at large length
scales to saturate to the value 202 [0 ={z(0)?)!/? being
the saturated value at large length scales of the rms sur-
face width], since a surface with such a power-law rough-
ness does not have a well-defined mean position. This im-
plies the existence of an effective roughness cutoff §. The
length scale £ is called the in-plane correlation length.
Therefore, g (R) for real self-affine surfaces has the fol-
lowing behavior*

0163-1829/94/49(15)/10544(4)/$06.00 49

g(R)x<R*M (R <«<§), (1.3a)

g(R)=20% (R>>§). (1.3b)

Furthermore, £ represents an intrinsic length scale,
which together with H controls how far a point can move
on a surface before losing memory of the initial value of
its z coordinate.

In general, finite-size effects impose effective cutoffs on
the long-wavelength surface fluctuations which cause the
surface roughness to be bounded. The aim of this work is
to correlate known information about various aspects of
finite-size effects observed on rough surfaces under a gen-
eral quantitative scheme. Its motivation lies in a recent
study concerning iron-film surfaces, where surface-width
measurements reveal scaling behavior which can be attri-
buted to the presence of domains.® If the surface consists
of a distribution of domain sizes and shapes, the various
surface quantities in general have to be averaged over the
domain distribution, which will affect their scaling prop-
erties in a manner that is determined mainly by the com-
petition between the in-plane correlation length &, and
some average domain size {. More specifically, if {>>¢&
the domain effect can be completely neglected, whereas
for { <& the average over the domain distribution will
have a significant effect on the scaling properties.

In the present study, we shall consider a distribution of
domains aligned parallel to each other and with the
domain terrace to possess self-affine surface roughness.®
In addition, following Dutta and Sinha,’ we shall simu-
late the effect of a distribution of domain sizes and shapes
through the radial Gaussian distribution function
e " ™R/E with £ the average domain size. Physically,
such a distribution can be understood from the fact that
the formation of a domain of size R costs energy which is
proportional to the domain area ~R?, and results in a
Boltzmann distribution of domain sizes e ~°R”. This kind
of distribution has been widely used in the literature to
accommodate finite-size effects in scattering theories, and
is inherently associated with the Warren approxima-
tion.*#”8 But so far its direct applicability to surface
quantities which are relevant from the experimental point
of view in surface-roughness studies remains un-
developed.
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II. DOMAIN FORMALISM

In our case, finite size manifests itself in two ways, first
through the correlation length £, and second through the
average domain size {. We define the height-height
correlation function C (R) by’

C(R)=— [ (z(P+R)z(P))d?P @1
and the height Fourier transform by
1 .
k)= (R)e “kRg2R | (2.2)
z(k) 2 ) f z(R)e
The notation { - -+ ) means an ensemble average, and the

constant A represents the macroscopic area of the aver-
age smooth surface over which the height-height correla-
tion is calculated for the case where no domains exist.
The Wienner-Khinchin theorem yields!®

(lz(k)[2y = —2
(2m)
If the surface consists of a distribution of domain sizes
and shapes, we can proceed under a similar framework to
that used by Dutta and Sinha to derive an expression for
the scattering structure factor of a finite two-dimensional
lattice, as is outlined briefly below.” Thus, we write for
the roughness spectrum according to Eq. (2.3)

(|2(k)|2>d~fgC(R)e_“"RdZR :

JCR)e®R?R (2.3)

(2.4)

where the integration is confined over an area of size
~¢?%, and we Fourier-transform C(R) in terms of a wave
vector q. If we make the Warren approximation in the
continuum limit for the integral [ ,e ~*~9¥R4?R over a

finite area to the order of ~¢2 (Refs. 7,8)

f e—i(k—q)-kd2R~e—(k—q)2§2/41r 2.5)
4

we obtain, after Fourier-transforming back to the real-

space integral,

(lz(0)*)y~ [ C(R)e ™™ e ~kRg2R | (2.6)
where the integration can be extended over the whole x-y
plane due to the presence of the Gaussian term, which
expresses the average over the domain distribution of
sizes and shapes. This result cannot in fact be obtained if
the finite integral is performed over a single domain of
specified shape and size; rather, the previous approxima-
tion takes into account the smearing of the roughness
spectra due to the superposition from many domains.”!!
Assuming the surface to be isotropic in the x and y direc-
tions, angular integration in Eq. (2.6) finally yields

(|z(k)|2)d=(Z—A)—SfowC(R)e“”Rz/ngJo(kR)dR .
m

(2.7)

The knee regime of the roughness spectrum, Eq. (2.7), if
§ <& corresponds to a length scale (kR ~27) to the order
of £. If £ =&, with { and & of the same order of magni-
tude, the knee regime determines mainly the domain size
§; for £>>£ the corresponding length scale is approxi-
mately ~4¢& (Fig. 1).
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FIG. 1. Schematics of {|z(k)|?),/ 4 calculated by means of
Eq. (2.7) with ¢=0.7 nm and £=100.0 nm. For H =0.7,
£=70.0 nm: solid line; {=300.0 nm: dashed line. For H =0.3,
£=70.0 nm: long-dashed line. The inset depicts a comparison
of Eq. (2.8) with calculations performed in terms of Eq. (2.7) for
the correlation function Cg(R). For H =0.3, Eq. (2.7): solid
line; Eq. (2.8): circles; and for H =0.7, Eq. (2.7): solid line; Eq.
(2.8): squares.

Equation (2.7) for §{ <<§ after expansion of C(R) ac-
cording to Egs. (1.2) and (1.3), C(R)=~0*—DR*, yields
(z(K)[2) ~[ 4 /2m)810% % K5 /4T 40 (£2/€%). In the
oppositezasymptotic limit {>>§&, Eq. (2.7) after expansion
of e "™/ (=1—mR*/E) yields (|z(k)|*),=~(l|z(k)|?)
+0(£2/£%).12 Therefore, the previous limiting cases sug-
gest a crossover form for (|z(k)|?), whenever £ and ¢
are of the same order of magnitude,

A 021r§2§2 252
k 2 ~ k 2 + k°§* /4w .
(lz(x)?) = (|z(k)*) 2 nEte)

(2.8)

This form captures the essence of exact calculations in
terms of Eq. (2.7) for the regime of spatial wave vectors
k >2m/max(§,€) (Fig. 1, inset). In fact, the Gaussian
prefactor in Eq. (2.8) is an exact result for the case of the
Gaussian correlation function C(R)=c2% ~R*/¢’. In this
case, Eq. (2.7) yields (|z(k)|*),~&%¢%/ (wE+
£2)e ~K*EE/4mE+E) 1 addition, we shall consider in Eq.
(2.8) for {|z(k)|?) the analytic form

A o.2§2
2m)° (1+k2E2/2H)'HH ’

which is associated with the self-affine correlation func-
tion C(R)~RH"ky(R).13

However, in order to gauge the effect of any particular
choice of the correlation function C(R) and to justify the
adequacy of Eq. (2.8) in the regime of spatial wave vec-
tors k >2m/max(§,§), we performed comparisons be-
tween Eq. (2.8) and numerical calculations of {|z(k)|?),
in terms of Eq. (2.7) for the correlation function
Cs(R)=02% ~R/9™  This correlation function has been

(|z(k)|?)= ( 2.9)



10 546

used widely in the analysis of diffuse x-ray reflectivity
data,*!* and its associated roughness spectrum coincides
with that of Eq. (2.9) for H =0.5.'>!* Comparison shows
that Eq. (2.8) is in better agreement with the direct calcu-
lation by means of Eq. (2.7) for small values of H for the
whole regime of spatial wave vectors k >27/max(&,€).
However, Eq. (2.8) depicts the correct physical behavior
rather well, taking also into account the fact that we con-
sidered for the roughness spectrum (|z(k)|?) (no
domains), a specific model which will cause additional de-
viations from Eq. (2.7). Furthermore, Eq. (2.8) contains
no adjustable parameters and its simple analytic form
permits explicit calculation of the surface width, which is
an experimentally important quantity in surface-
roughness studies. > !*

III. SURFACE-WIDTH DOMAINS

When the surface height z(r) is single valued as a func-
tion of position, its variance or surface width o (L) is well
defined and can be analyzed for self-affine fractals accord-
ing to the form o (L)« L¥, where H is the roughness ex-
ponent and L a linear size on the surface.’> In the
present study, we shall examine the effect of domains on
th?()surface width, which in the continuum limit is given
by

2 — ’ 2 21,1
oXL), ka<k’k,<kc(z(k)z(k ), dkdXk', (3.1
with k; =27 /L, k. =m/a,, a, the atomic spacing, and

(2m)*
A

Substituting in Eq. (3.1) from Egs. (2.8), (2.9), (3.2), and
carrying out the integration, we obtain

H
222 2_g2
H% +%%e'”§2“2’ 3.3
T

(z(k)z(k')) = 8(k+k")(|z(k)*), . (3.2)

oXL);~o?

since £,{>>a.

Calculations of o(L); versus scan size L in terms of
Eq. (3.3), are shown in Fig. 2. From these schematics,
the effect of the competition between the characteristic
length scales £ and & on the self-affine fractal behavior at
large L can be observed. The first term in Eq. (3.3)
represents the surface width when there is no domain
effect, and its applicability is illustrated in terms of a fit to
surface-width data (Fig. 2 in Ref. 5), acquired by means
of scanning tunneling microscopy (STM) from a gold film
with H =0.96, £=2000.0 nm, and 0 =450.0 nm [Fig. 2,
inset (A)]. The Gaussian term will cause the surface
width to have a rather sharp rise for linear sizes L =§
and §{ <£&. Such a behavior can be seen in Fig. 2, and has
been also observed in real surface-width data (Fig. 3 in
Ref. 5). These data were acquired by means of STM from
rough iron-film surfaces fabricated with ion-beam ero-
sion.> The observed sharp increment cannot be explained
only by the existence of the effective roughness cutoff &.
A second length scale is required, which can be identified
as a domain effect. Such an explanation can be under-
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FIG. 2. Schematics for the surface width in terms of Eq. (3.3)
with 0 =1.7 nm, £=400.0 nm. {=100.0 nm: short-dashed line,
£=300.0 nm: solid line, and {=500.0 nm: long-dashed line.
The inset (A) shows the fit to surface-width data (squares) from
a gold film when no domains exist with H =0.9610.02,
0=450.0 nm, and £=2000.0 nm. The inset (B) shows the fit to
surface-width data (squares) from an iron film after ion bom-
bardment, with H =0.53+0.02, £=650.0 nm, and {=260.0 nm.
The value of the roughness exponent H has been determined in
both cases in terms of a power-law fit.

stood also from the fact that the iron-film surface prior to
ion bombardment revealed atomically stepped terraces
with typical terrace area of the order of 5—10X 102 nm?.
This might favor the creation of domain boundaries dur-
ing ion bombardment, obscuring therefore the expected
power law o(L)~L¥, H=0.5340.02, above 200.0 nm.
Furthermore, the picture of domains is supported also by
the fact that the surface-width data acquired prior to ion
bombardment approach those after erosion at length
scales of the order of 200.0 nm, which supports the
obscuring of the power-law behavior due to pre-existing
roughness, as explained in terms of domain formation.
The moderately sharp increment above 200.0 nm, accord-
ing to previous results, signals a domain size { smaller
than the correlation length &. The fit of the iron-film
width data in terms of Eq. (3.3) with H =0.53 (obtained
from a power-law fit) yields 0 =1.7 nm, {=260.0 nm,
and £=650.0 nm [Fig. 2, inset (B)]. The value of the
average domain size { is significantly close to the regime
where the sharp increment of the surface width is ob-
served, supporting therefore the consistency of the corre-
sponding formalism as well as its relevance to experimen-
tal studies.

IV. CONCLUSIONS

In conclusion, the aim of this work was to correlate
known information regarding finite-size effects due to
domains for the particular case of self-affine fractal sur-
faces. This is accomplished in terms of a simple formal-
ism which can be relevant in experimental studies of sur-
face roughness by means of scanning tunneling microsco-
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py. Direct fit to surface-width data shows the adequacy
of this formalism for a certain regime of length scales,
which is, however, sufficiently wide to capture the full
physical behavior of the fractal system, and to yield its
characteristic parameters.
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