Article Collection: View Collection Help (Click on the to add an article.)
Phys. Rev. B 49, 368377 (1994)
[Issue 1 1 January 1994 ]
[ Previous article | Next article | Issue 1 contents ]
View Page Images or PDF (1622 kB)
Effects of interfacial roughness on the magnetoresistance of magnetic metallic multilayers
- Randolph Q. Hood and L. M. Falicov
- Department of Physics, University of California, Berkeley, California 94720
- Materials Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
- D. R. Penn
- Electron Physics Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Received 3 August 1993The Boltzmann equation is solved for a system consisting of a ferromagneticnormal-metallic multilayer. The in-plane magnetoresistance of Fe/Cr and Fe/Cu superlattices is calculated for (1) varying interfacial geometric random roughness with no lateral coherence, (2) correlated (quasiperiodic) roughness, and (3) varying chemical composition of the interfaces. The interplay between these three aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons. Properties of the interfaces relevant to the giant negative magnetoresistance are discussed.
©1994 The American Physical Society
URL: http://link.aps.org/abstract/PRB/v49/p368
DOI: 10.1103/PhysRevB.49.368
PACS: 73.40.Jn, 73.50.Jt, 75.70.-i
View Page Images or PDF (1622 kB)[ Previous article | Next article | Issue 1 contents ]
References
(Reference links marked with may require a separate subscription.)
- G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn, Phys. Rev. B 39, 4828 (1989).
- B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit and D. Mauri, Phys. Rev. B 43, 1297 (1991).
- A. Chaiken, P. Lubitz, J. J. Krebs, G. A. Prinz, and M. Z. Harford, J. Appl. Phys. 70, 5864 (1991) [ INSPEC].
- B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart and D. R. Wilhoit, J. Appl. Phys. 69, 4774 (1991) [ INSPEC].
- A. Chaiken, T. M. Tritt, D. J. Gillespie, J. J. Krebs, P. Lubitz, M. Z. Harford and G. A. Prinz, J. Appl. Phys. 69, 4798 (1991) [ INSPEC].
- A. Chaiken, G. A. Prinz and J. J. Krebs, J. Appl. Phys. 67, 4892 (1990) [ SPIN][ INSPEC].
- T. Miyazaki, T. Yaoi and S. Ishio, J. Magn. Magn. Mater. 98, L7 (1991) [ INSPEC].
- M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
- S. S. P. Parkin, N. Moore and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).
- S. S. P. Parkin, Z. G. Li and D. J. Smith, Appl. Phys. Lett. 58, 2710 (1991) [ INSPEC].
- F. Petroff, A. Barthélémy, D. H. Mosca, D. K. Lottis, A. Fert, P. A. Schroeder, W. P. Pratt, Jr., and R. Loloee, Phys. Rev. B 44, 5355 (1991).
- W. P. Pratt, Jr., S. F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder and J. Bass, Phys. Rev. Lett. 66, 3060 (1991).
- P. Baumgart, B. A. Gurney, D. R. Wilhoit, T. Nguyen, B. Dieny and V. Speriosu, J. Appl. Phys. 69, 4792 (1991) [ INSPEC].
- S. S. P. Parkin, Appl. Phys. Lett. 61, 1358 (1992) [ INSPEC].
- E. E. Fullerton, D. M. Kelly, J. Guimpel, I. K. Schuller and Y. Bruynseraede, Phys. Rev. Lett. 68, 859 (1992).
- R. Q. Hood and L. M. Falicov, Phys. Rev. B 46, 8297 (1992).
- R. E. Camley and J. Barnas, Phys. Rev. Lett. 63, 664 (1989).
- J. Barnas, A. Fuss, R. E. Camley, P. Grümberg and W. Zinn, Phys. Rev. B 42, 8110 (1990).
- P. M. Levy, S. Zhang and A. Fert, Phys. Rev. Lett. 65, 1643 (1990); S. Zhang, P. M. Levy and A. Fert, Phys. Rev. B 45, 8689 (1992).
- J. Inoue, A. Oguri and A. Maekawa, J. Phys. Soc. Jpn. 60, 376 (1991) [ INSPEC].
- K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).
- E. H. Sondheimer, Adv. Phys. 1, 1 (1952).
- E. C. Stoner, Proc. R. Soc. London Ser. A 165, 372 (1938).
- A. Fert and I. A. Campbell, J. Phys. F 6, 849 (1976); I. A. Campbell and A. Fert, in Ferromagnetic Materials, edited by E. P. Wohlfarth (North-Holland, Amsterdam, 1982), Vol. 3, p. 769.
- The boundary conditions (5) correspond to the situation discussed in BA, Ref. 16, of complete specular reflection at the outer surfaces, P=1.
- S. B. Soffer, J. Appl. Phys. 38, 1710 (1967).
- V. Bezák and J. Krempaský, Czech. J. Phys. B 18, 1264 (1968).
- V. Bezák, M. Kedro and A. Pevala, Thin Solid Films 23, 305 (1974) [ INSPEC].
- P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, Oxford, 1963), pp. 7098.
- It should be noted that the derivation of the equations in Refs. 2629 require a correlation length longer than the electron Fermi wavelength, so that a vector normal to the surface can be properly defined. In this sense the limit L -> 0 is not strictly valid. It should be understood as the limit in which L is still longer than the Fermi wavelength but shorter than all other lengths in the problem.
- If the geometric random roughness of the interfaces were the only source of scattering, the prefactors in Eq. (11) must all be taken to be S sigma =1. This is, however, not a realistic assumption. Impurities and other defects at the interfaces scatter electrons of opposite spin in a different way. Hence SM and Sm are not equal, and in general both less than one.
- It should be emphasized that ``roughness'' with a single, given periodicity, produces Bragg beams with well-defined directions of propagation, i.e., electron trajectories with their own (positive or negative) contribution to the current. For a smooth, nonuniform, quasiperiodic distribution of geometrical defects at the interface (i.e., a Fourier transform of the topography consisting of a peaked but continuous function), the distribution of velocities of electrons Bragg scattered over the Fermi surface tends to average down to zero, resulting in the electrons being effectively removed from the current-carrying distribution, i.e., relaxing back to equilibrium.
- As in Eq. (7), the masses mi sigma and mj sigma in Eq. (12) are assumed to be equal. All calculations presented in the paper have mi sigma =m, independent of the layer i and the spin sigma.
View Page Images or PDF (1622 kB)
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 1 contents ]
E-mail: prola@aps.org