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We use the dynamic renormalization group technique to study a continuum model for molecular
beam epitaxy for both one- and two-dimensional substrates. Relaxation of the growing film is due to
surface tension and surface diffusion. In 1 4+ 1 dimensions we find a purely diffusive strong-coupling
fixed point with a dynamic exponent z different from that given by the linear theory as well as
the Edwards-Wilkinson fixed point and a fixed point corresponding to unstable growth. In 2 + 1
dimensions the purely diffusive fixed point is absent at the one loop order but the other two fixed

points are still present.

PACS numbers: 68.55.Bd, 05.40.+j, 68.35.Fx

Deposition processes in which surface diffusion con-
stitutes the dominant relaxation mechanism have been
studied intensively during the last five years [1-13].
These studies were motivated by a desire to model tech-
nologically important growth processes such as molecu-
lar beam epitaxy (MBE) and to explore the notion of
universality in nonequilibrium growth processes. In this
context, an interesting class of models are solid-on-solid
models driven by a flux of particles. If evaporation of
particles is forbidden, a continuum description of these
models begins with an equation of continuity

RtV i=vot, W
since the absence of voids or overhangs allows a descrip-
tion of the surface in terms of a single-valued function
h(x,t) and the absence of evaporation insures that sur-
face rearrangement conserves volume. In Eq. (1) vo
represents the average growth velocity and 7(x,t) rep-
resents Gaussian white noise with (n(x,t)) = 0, and
(n(x,t) n(x',t")) = 2D §%x — x') §(t —t'). An impor-
tant question is how the current j(x,t) depends on the
function h(x,t).

In this Letter we consider a particular model for the
surface diffusion current [1,7,10] and study the Langevin
equation

oh Vh ~ Vh

— = vV ———— — kv/g(Vh ViV ———

ot N RN Ja(Vh)
+n(x,t) , (2)

where the Laplace-Beltrami operator

V= e VA (5 -
V9(Vh)
enters because the diffusion current is parallel to the in-
terface rather than to the substrate. Here the function
g(z) =1+ 2%, V, stands for 8/8z;, 6;; is the Kronecker
delta, and repeated indices imply summation. The sec-
ond term in Eq. (2), with a positive coefficient, &, de-
scribes relaxation through surface diffusion and was first
derived by Mullins [14]. Finally, the first term in Eq. (2)
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is a surface tension term with a coefficient v, which can
be positive or negative. The reason for including this
term in Eq. (2) is that numerical simulations seem to
indicate that it is generically present when the deposi-
tion rate is nonzero [10]. The surface tension v could be
due to diffusion bias near step edges [3] and also arises if
one takes into account the nonzero size of incoming par-
ticles [1]. Analytically, as will be seen below, this term
must be included to obtain a consistent description of the
long wavelength properties of this model.

The (1 + 1)-dimensional version of Eq. (2) has been
studied by Golubovié and Karunasiri (GK) [7]. By nu-
merically integrating Eq. (2), GK found that the slope
Oh/Ox of the interface profile behaves like the order
parameter of Ising-like systems in spinodal decomposi-
tion. GK also argued that this model can be approzi-
mately transformed into an equilibrium model possess-
ing a double-well potential, suggesting that this model
would behave like Ginzburg-Landau models for second-
order transitions. We have performed a systematic renor-
malization group analysis on Eq. (2) for both 1+ 1 and
2 + 1 dimensions. This is an involved calculation, and in
this Letter we present mainly the results. The technical
details will be given elsewhere [15].

We first discuss some general properties of the model.
Clearly, Eq. (2) is invariant under the transformation
h(x,t) — —h(x,t) even though the particle beam breaks
the up-down symmetry. Another interesting property of
Eq. (2) is that it is considerably more complicated in
2 + 1 dimensions than in 1 + 1 dimensions. This can be
seen from the structure of the Laplace-Beltrami operator,
i.e., in 2 + 1 dimensions, it contains cross terms (i # j)
that do not appear in 1 4+ 1 dimensions. Following GK’s
notation of m = Vh, we rewrite Eq. (2) in the form

il g o v (o 510

ot
} + vi'r/(xv t): (3)
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where the function g is given above. Note that we have
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an extra symmetry: V;m; = V;m;. Obviously, expand-
ing the right-hand side of Eq. (3) in powers of m, one
has two linear terms, i.e., a Laplace term vV?m; and a
Laplace square term —xV4m;, arising from surface ten-
sion and surface diffusion, respectively. For v > 0, power
counting shows that all nonlinear terms are irrelevant to
the long wavelength behavior of the model. In this case,
Eq. (3) reduces to the well-known Edwards-Wilkinson
(EW) equation [16] and the scale invariant solution can
be easily obtained for this linear equation. On the other
hand, when v is negative, the system is linearly unstable
for wave vectors q in the range 0 < ¢ < ¢, = /—v/k.
Then both the other linear term —xV4m; and the higher
order terms in the series become important for determin-
ing the long wavelength properties of the system. Finally,
if v = 0, all nonlinear terms arising from surface diffu-
sion have critical dimension d, = 2 with respect to the
Laplace square term —xV%m;, indicating that all non-
linear terms in the power series are relevant (marginal)
for d < 2 (d = 2). Therefore, the long wavelength prop-
erties of the system depend crucially on the Laplacian
term. Now a natural question arises: Is this Laplacian
term generated by the nonlinear terms in the large length
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scale limit and, if so, what is the sign of the coefficient v
for this model?

To answer this question, we have applied the pow-
erful dynamic renormalization group (DRG) theory to
Eq. (3). However, as mentioned above, all nonlinear
terms are relevant in the physically interesting dimen-
sions and a renormalization group analysis would seem
to be a formidable task. We find that the calculation
can be truncated at the one loop order and the results
turn out to be consistent. In other words, the renor-
malization perturbation expansion can be controlled by
the powers of the leading nonlinear coupling parameters;
the coefficients of higher order nonlinear terms are higher
powers of the leading nonlinear couplings and can be con-
sistently ignored to the required order. We now proceed
to sketch this renormalization group analysis. Since the
structure of the equations is different for different dimen-
sions, the traditional e-expansion method cannot be ap-
plied here and the renormalization group analyses must
be performed individually for each dimension.

We consider first 1 + 1 dimensions. Set d = 1 and
expand the right-hand side of Eq. (3) in powers of m to
obtain

2
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where ug, u1, uz are nonlinear parameters whose bare
values are v/2, 2k, 3k, respectively. As Eq. (4)
stands, the leading nonlinear terms are cubic terms
and the conserved lateral driving force proportional to
8%m?/0z?% [9,17] does not appear. As has been pointed
out previously [10], this is a consequence of the assump-
tion that deposition does not change the nature of the
diffusion process; i.e., it is still driven by energy differ-
ences and can be described using a surface Hamiltonian.
If only the lowest order nonlinear terms are taken into
account, the structure of Eq. (4) is quite similar to that
of the Langevin equation describing dynamic critical phe-
nomena. This similarity implies that the diffusive system
will have an instability similar to a second-order transi-
tion. Therefore, a standard strategy used in the discus-
sion of dynamic critical phenomena [18] can be directly
applied to study Eq. (3). Namely, regarding v and u,
(a = 0,1,2) as the same order perturbation parameters,
we determine the fixed point values v* and u}, to leading
order.

Because of the complexity of the nonlinear terms, it
is convenient to use Noziéres and Gallet’s (NG) dynamic
renormalization [19] technique. Generally, the interface
height function h(x, t) is a functional of the noise n(x, t).
Therefore, according to NG, the coarse graining proce-
dure of the DRG can be realized by performing the fol-
lowing steps. First, we split the noise n(x,t) into two
parts n(x,t) = 7j(x, t) + én(x,t) so that 7 and &7 are sta-
tistically independent. Next, we perform a partial aver-
age over 67 on the height function h and define h(x,t) =

r(h[ﬁ(x,t) + 6n(x,t)])sn, h(x,t) = h(x,t) + 6h(x,t). As a

consequence, the original equation is decoupled into two
equations of motion for h and 6h, respectively. Finally,
we solve the equation of motion for 6h formally and sub-
stitute this formal solution into the equation of motion
for h. Because of the nonlinear terms, the parameters in
the equation of motion for A are renormalized.

Applying the above procedure to Eq. (4) with only the
cubic terms included we find that, to order O(u?), no new
terms of different form are generated. This means that
our original parameter space {v,k, D,uq,c = 0,1,2} is
sufficient to this order. In other words, the higher or-
der terms are of order O(u3) and can be consistently
ignored. Including all terms to leading order and using
the traditional rescaling of 2’ = ze~%, ¢’ = te~ %%, and
h' = he~X8 on taking the limit 6 — 0, we find the
following flow equations:

dl’;l“a =z+2x—6+25a0+%, a=0,12, (5
d—{d%z=z~2—3fe%0-, (6)
%=2—4_ﬁ17 (™)
ﬂ;‘lﬂzz—:zx—L (8)

where @, are reduced perturbation parameters i, =
ueD/mKk? and Ay, a = 0,1,2, are given by
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Do = 3uo (3o + U1) + 6u1o — 3ugdp ,

N = 3U0(3ﬂ0 — %ﬂl + 3ﬂ2) + u1(12ﬂ0 + U + 617,2)
+ U2(—%ﬂ0 +uy — 317,2) ,

Dy = 3ug(3to — 20y + 42) + u1 (%o — 411 + 81p)
+ 'U,Q(%ﬁo + 543 — 4ig) .

From the flow equations, we have a renormalization
picture to O(u) for the (1 + 1)-dimensional system. The
nonlinear couplings, due both to surface tension and sur-
face diffusion, renormalize each other and ultimately de-
termine the fixed-point value of v*. The parameter k is
renormalized but its fixed-point value cannot be deter-
mined at the present order. This is a common feature of
the renormalization of cubic nonlinear terms [18]. This
does not, however, affect our discussion of the linear sta-
bility of the system as long as we assume that the positive
sign of the bare k is not changed by the DRG transfor-
mation [20]. The noise strength D is not renormalized
in the one loop calculation. From Eq. (6), the fixed-
point value of the surface tension v* is proportional to
ug. Therefore, the values of % determine the stability of
the system in the long wavelength limit.

To find the fixed points it is convenient to consider
reduced flow equations for 4,,a = 0,1, 2. Taking deriva-
tives with respect to I on both sides of Inty = Inuy +
InD — 2Ink and using Egs. (5)—(8), we readily arrive at

) A
dnta _ 4 4 o5 o v2m +2% a=01,2  (9)
dl U
It is easy to check that there are three strong-coupling

fixed points of Eq. (9): (I) @y = 0, 4} = 4} = —4;
(I) @ = 0.2397, @} = u% = —0.6447; and (III) @} =
—1.0633, u} = @4 = 0.8212. The fixed point (I) is sta-
ble with respect to the Gaussian fixed point and controls
the scaling behavior of purely diffusive (but nonlinear)
relaxation. At this fixed point the dynamic exponent
z = 4—1 ~ 3.867 which may be compared to the value of

3.6F0.3 found in simulations of the driven discrete Gauss- |

8mi
ot

+ugmgV ;mpVimy + ugmyVimpVimg + - - -) + Vin(x, t).

The bare values of the nonlinear couplings are ug = v/2,
u; = up = ugz = K, and uq4 = 2k. Compared to Eq.
(4), two more cubic terms appear here due to the added
complexity. Therefore, to order O(u), the dimension of
the original parameter space is 8, rather than 6, as in the
(1 + 1)-dimensional case. Another important difference
from the (1 + 1)-dimensional case is that the four cube
terms with second-order derivatives are not “complete.”
That is, there are other terms, for instance, mzvzmj,
m;VimeVimy, m;ViemiVemy, and so on which do not
show up in the original expansion. After the manipu-
lation of the DRG, these terms are generated by the
coarse graining procedures. However, a close examina-
tion reveals that they are irrelevant at the one loop or-
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FIG. 1. Schematic renormalization group flow diagram in
the %o and w12 plane for d = 1.

ian model [10]. The fixed point (II) with positive v* is
in fact unstable with respect to the Edwards-Wilkinson
fixed point at which all nonlinear terms are irrelevant in
the long wavelength limit. On the other hand, at fixed
point (IIT), one has a negative v*, and the system is lin-
early unstable. Under this circumstance, a finite sys-
tem will eventually evolve into a steady state with large
slopes. The precise morphology may depend on details
such as boundary conditions. This fixed point is sta-
ble and has a rather large basin of attraction which is
bounded by the %y = v = 0 axis. The renormalization
group flow diagram is shown schematically in Fig. 1 in
the (@o,u12) plane, where uip = (41 + 42)/2. At this
level of approximation it therefore seems that, although
the entire v = 0 axis is unstable, finite v is not produced
by renormalization. Furthermore, since the flow cannot
cross the v = 0 axis, a negative surface tension does not
become positive under renormalization nor does a posi-
tive become negative. Note that the ratio of the two non-
linear couplings arising from the surface diffusion, @; /4o,
has changed from the bare value 2/3 to the fixed point
value 1, implying that GK’s transformation [7] is ezact at
the fixed points. Now we turn to the (2+ 1)-dimensional
case, in which the algebra is more involved than for the
(1 + 1)-dimensional case. Setting d = 2 and expanding
the nonlinear terms in power of m, Eq. (3) becomes

=vV2m,; — kV4m,; + ij(—uomjm2 + ulmjmkVka + ugmklebmj

(10)

der. Following exactly the same method outlined above,
the flow equations can be obtained without any essential
difficulty, after some rather tedious calculations. Treat-
ing v and uy,a = 0,...,4 perturbatively, and including
all relevant terms to leading order, we have the following
flow equations:

dlNta _ | oy 642600+ 22, 0=0,1,2,3,4, (1)
dl Ug
dinv Up
0y _o9_9.% 12
T z—2 2;91/, (12)
dlnk 1 _ _
722—4—§(U1+U2), (13)
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dinD
dl

=2z-—2x —2,

(14)

where @, = KousD/k? with K3 = 1/2m and the renormalization terms of the nonlinear couplings

— 95 95~ 15 =~ 5= 5=
No = UQ(-Q-UO + 3U1 + FU2 — JU3 — ZU4) ,

— = 5= 31 - 19 - 29 — 7= 5= = 15 ~ = 17 = 75
N = UO(—GU — zU1 — Fu2 =+ T U3 + -§U4)+u1(§u1 — gl2 + 243 + 1—GU4) + ’LLQ(-2U2 + U3 + -8-11’4)
55 9 = 1 —
+uz(—3Uz — 1504) + 15UaT4 ,

Do = ug(—51 + 482 + §U3 + F04)+ur(— 01 + 382 + 383 + §04) + ua (302 + 305 + 04)

5

+ug(— s — 3Us) — Suqtly ,

Az = ug(—Tz + 583 + 284) + w1 (— 382 + 183) + uz(—U2 + 3U3 + 304) + ua(—3ts — 30U4) + Fuaty ,

Dy = ug(—2T0 — 281 — $Tp + S0 + Lag)+ur(— 38 — 302 + 303 + JUa) + ua(—20z + JUs + Paa)

+U3(-—%ﬂ3 — 17,4) — %U4’E4 .

As for the (1 + 1)-dimensional case, we consider the
reduced flow equations

dlgl“a = 2600 + T2 + @y + i—: ,@=0,1,2,3,4. (15)
The fixed points of Eq. (15) are given by a group of four
second-order simultaneous polynomial equations. We
have solved this system of simultaneous equations nu-
merically and found one solution with negative %, which
is a5 = —0.1509, 4} = —0.2530, @5 = —0.0108, 43 =
0.0046, a3 = —0.1021. There are also several other solu-
tions with positive 4§. As argued above, these solutions
are superseded by the Edwards-Wilkinson fixed point.
An unfortunate feature of the (2 + 1)-dimensional case is
the absence of the purely diffusive strong-coupling fixed
point (I) although the Gaussian fixed point {@, = 0} is
unstable. This is due to the fact that for v = 0 all nonlin-
ear terms, including the ones retained in our expansion,
are marginal rather than relevant at the Gaussian fixed
point. To find the analog of fixed point (I) one would
need to go to higher order in the perturbation expan-
sion.

In conclusion, our dynamic renormalization group
analysis of the surface diffusion relaxation system shows
that it can evolve into two different morphological states.
The first state with a positive surface tension is linearly
stable, with the long-distance, late-time behavior of the
EW universality class. The second state with a neg-
ative surface tension is linearly unstable and probably
corresponds to the grooved state observed in numerical
simulations [10]. However, in contrast to these discrete
models, the drumhead model, driven by an external flux,
does not evolve to a state with finite surface tension if
the surface tension is initially zero it remains zero under
renormalization.
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