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A theory is developed for the specular reflection of thermal neutrons from an arbitrary smooth surface
or interface using a Green-function technique and leads to a family of Born approximations that includes
both the familiar plane-wave Born approximation (PWBA) and a generalized distorted-wave Born ap-
proximation (DWBA). The DWBA reduces to the PWBA if the wave-vector transfer, g,, is much larger
than the critical wave vector for total reflection, gq., and to Fresnel’s formula for reflection from a sharp
surface if ¢, is much less than the inverse surface thickness. Detailed numerical calculations of the
reflectivity for a number of symmetric model surfaces show that it is only when g, >>q. that the
reflectivity R is sensitive to the detailed shape and thickness of the surface potential. In particular, one
requires experiments with g, /g, ranging from about 3 to 30, where R decreases from about 1073 to 1077,
to obtain useful information on the shape and thickness of symmetric surfaces. From a comparison with
the exact reflectivity for one particular surface, we find that the DWBA is typically three orders of mag-
nitude more accurate than both the PWBA and an ad hoc model commonly used by experimenters for all
values of g,, and that the relative error in the DWBA is almost everywhere less than 0.01% which is,
therefore, of the same order of magnitude as the intrinsic error in the Fermi pseudopotential itself. The
high accuracy that we have found when the DWBA is applied to symmetric surfaces is in contrast to the
relatively low accuracy that others have found when they applied this kind of approximation to thin
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films on substrates of low intrinsic reflectivity. The reason for this is discussed.

I. INTRODUCTION

In the past ten years neutron reflectometry has proven
to be an increasingly useful technique for investigating
the structural properties of surfaces and interfaces at the
molecular level.!~* Most of the major neutron-scattering
centers now have dedicated reflectometers that are being
used for a wide variety of applications in physics, chemis-
try, biology, and materials science. The observed
reflectivity depends on the way in which the bound
coherent scattering length density f(z) varies with depth
z in the neighborhood of the surface. To interpret the
reflectivity measurements a common approach is to mod-
el the surface using an approximate staircase representa-
tion for f(z) which allows one to calculate the corre-
sponding reflectivity numerically using, for example, the
conventional matrix method.>® Any free parameters in
f(z) can then be determined by fitting to the measured
reflectivity curve.

Better insight into the factors that govern the
reflectivity profile is obtained if one can calculate it
analytically in terms of the assumed model for f(z). At
angles of incidence well above the critical angle for total
reflection, where the reflectivity is sufficiently small that
multiple scattering is negligible, one can use the conven-
tional plane-wave Born approximation (PWBA) in which
the interaction potential is treated as a perturbation. An
alternative approach is to use a distorted-wave Born ap-
proximation (DWBA) in which the reflection from a
sharp surface is taken as the zeroth approximation and
dealt with exactly, while the difference between the exact
potential and that for the sharp surface is taken as the
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perturbation. The DWBA usually provides a better
description of the reflectivity, especially at small angles of
incidence.

Various approaches to the DWBA have previously
been developed for calculating the reflectivity of rough
surfaces,’ 1 ferromagnetic surfaces, '>!? and thin films
on substrates.'*"!® In this paper we present a new for-
mulation of the DWBA to describe the specular
reflection of thermal neutrons from smooth but otherwise
arbitrary surfaces or interfaces. We begin in Secs. II and
IIT by developing a Green-function method that yields a
formally exact expression for the reflected amplitude.
This leads in Sec. IV to a family of Born approximations
that includes both the PWBA and a generalized DWBA.
For the particular case of a thin film on a substrate, this
DWBA reduces to an expression obtained by earlier au-
thors.!® In Sec. V we also demonstrate that our DWBA
reduces to the PWBA when the angle of incidence is well
above the critical angle for total reflection, and that it
reduces to Fresnel’s formula when the effective surface
thickness goes to zero. Detailed numerical calculations
of the reflectivity are performed for a number of sym-
metric model surfaces in Sec. VI to exhibit the depen-
dence of the reflectivity on the shape and thickness of
f(z). In addition, Airy’s formula® (which provides an ex-
act expression for the reflectivity of, for example, an ideal
thin film on a substrate) is used as a benchmark to test
the accuracy and range of validity of the PWBA, the
DWBA, and a simple ad hoc model that was introduced
some years ago by Pershan and Als-Nielsen,!” and is
often used to interpret x-ray and neutron reflectivity
data.
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II. REFLECTION OF NEUTRONS
FROM A SURFACE

The coherent wave ¥(r), which describes the coherent
elastic scattering of thermal neutrons in macroscopic
media and, hence, all neutron optical phenomena,
satisfies a one-body wave equation'®

Y(r)=Ey(r) , (2.1

2
k~ﬁ—A+ V(r)
2m

in which m is the neutron mass, E=(#k)?>/2m the
incident-neutron energy, and ¥V (r) the optical potential
that represents the effective interaction of the neutron
with the system. To a good approximation, '8 the optical
potential is given by the equilibrium value of the Fermi
pseudopotential,

_ 2mH?
m

V(r)

f(r), (2.2)
where f(r)=p(r)b(r) is the bound coherent scattering
length density, p(r) being the average number of atoms
per unit volume, and b (r) the average bound coherent
scattering length per atom. For a chemically homogene-
ous system, such as a liquid-vapor interface, b (r) is con-
stant, and the r dependence of f (r) is due entirely to the
variation of p(r) in the neighborhood of the surface.
However, for a heterogeneous system, such as a thin film
(or a thin-film multilayer) on a substrate, p(r) and b (r)
both depend on r.

We are concerned specifically with the specular
reflection of neutrons from a plane surface. The z direc-
tion is taken normal to the surface, and the surface is as-
sumed to be smooth in the sense that f(r)=f(z), in-
dependent of x and y. More generally, the effect of sta-
tistical surface roughness on the specular component of
the reflected wave could be included implicitly in an
effective f(z), but the calculation of the additional diffuse
reflection from rough surfaces would require that the
three-dimensional nature of f(r) be taken properly into
account. In the present paper we confine our attention to
specular reflection, and assume only that

pb, z—

f(z)— lo (2.3)

zZ—— o0,

where p and b are the values in the bulk material or sub-
strate. The shape of f(z) is otherwise arbitrary. The
solution of the wave equation (2.1) is then of the form

Y(r)=expli(k,x +kyy)])((z) R (2.4)
where
dZ
F+kz2 xX(z)=4mf (z)x(z) , (2.5)
z

and k=(k,,k,,k,) is the incident-neutron wave vector.

It follows from property (2.3) that, as z— — o, Eq.
(2.5) reduces to a free-particle wave equation and, hence,
that

x(z)— explik,z)+r exp(—ik,z) (2.6)
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in this limit, and

Y(r)— exp(ik-r)+rexp(ik’'-r) , (2.7

in which k'=(k,,k,, —k,). The first term in the asymp-
totic wave function (2.7) represents the incident wave
(normalized to unit amplitude), and the second term the
reflected wave with relative amplitude » and wave vector
k’. The reflectivity, which is defined as the fraction of in-
cident neutrons that are reflected, is then given by
R =|r|%. Since neutron momentum is conserved in the x
and y directions, the momentum transfer is in the z direc-
tion: g=k—k’'=(0,0,q,), where g, =2k,.

III. INTEGRAL FORM OF THE WAVE EQUATION
We begin by putting

f(2)=fola)+fi(2),

where f(z) is some as yet arbitrary unperturbed part of
the scattering length density, and f,(z) is the perturba-
tion. Then the wave equation (2.5) becomes

(3.1)

Lx(z)=4mf (z)x(2), (3.2)
where .L is the following linear differential operator:
2
L= k2 tnfoo) . (3.3)
dz

Let xo(z) denote the solution of the unperturbed wave
equation,

Lxo(z)=0, (3.4)
and G (z,z') the solution of the equation
LG(z,z')=47wd(z —2z') (3.5)

that represents an outgoing wave from the point z =z’,
i.e., the retarded Green function. Then one can easily
verify that the integral equation

x(2D=xo2)+ [ * Glzz)f (2" )x(z")dz’ (3.6)

is equivalent to the original differential equation (3.2) and
is a special case of the Lippmann-Schwinger equation in
scattering theory. !%1°

In general,

Xo(z)— explik,z)+roexp(—ik,z) asz—— o0 , (3.7)

where r is the unperturbed reflected amplitude, and

2

G(z,z')— exp(—ik,z)xy(z') asz——o . (3.8)

z

Hence it follows that the solution of Eq. (3.6) has the
asymptotic form (2.6) with

r=r0+;2klffwxo(z)fl(z)x(z)dz : (3.9)

This is a formally exact expression for the reflected ampli-
tude.?®
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IV. THE BORN FAMILY OF APPROXIMATIONS

The iterated solution of the integral equation (3.6) gives
the Born series, 1

XD =xo2)+ [ © Gz,2)f (2)xez'dz’+ -+, (@4.1)

and in the Born approximation we put Y(z)=Yx,(z), in
which case expression (3.9) for the reflected amplitude be-
comes

r=ro+ l—zkﬁ J7 xo2°f1(2)dz (4.2)

There is clearly a whole family of “Born approxima-
tions,” depending on how f(z) is chosen. The basic idea
is to choose it such that the effect of the perturbation
f1(z) on x(z) is small, subject to the requirement that the
equations for x(z) and G (z,z') are exactly solvable.

A. Plane-wave Born approximation
Let us first put
folz)=0, fi(2)=f(2), (4.3)

so that the entire scattering length density is regarded as
the perturbation. Then (3.4) becomes a free-particle wave
equation. Its solution is a plane wave,

Xo(z)= explik,z) , (4.4)

and the corresponding Green function is an outgoing
wave from the point z =z":

2T

ik

G(z,z')= explik,|z —z'|) . (4.5)

z

Note that this expression has the asymptotic property
(3.8). According to (4.4), r,=0, and the expression (3.9)
for the reflected amplitude now becomes

r= (4.6)

,-zkﬁ 7 explik,2)f (2)x(2)dz .

This is, of course, still an exact result. In the Born ap-
proximation, where Y(z)=YX,(z), it reduces to the familiar
result® 1416:21

_Am e .
sy il __ explig,2)f (2)dz , 4.7)

in which g, =2k, is again the z component of the momen-
J

z z

z z

Gl(z,z')= 2m
’ ik, |toexp[—i(k,z—K,z")], z<0<z’

toexpli(K,z —k,z')], z'<0<z .

exp[ —ik,(z —z')]+ryexp[ —ik,(z +2')], z<z'<O0
explik,(z —z")]+ryexp[ —ik,(z +2')], z'<z<0
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tum transfer. Thus in this “plane-wave” Born approxi-
mation (PWBA), the reflected amplitude is just the
Fourier transform of the scattering length density. (It
will be noted that, elsewhere in thermal neutron-
scattering theory, '%22 the term “Born approximation” al-
ways means the PWBA..)

B. Distorted-wave Born approximation
Let us now put

pb, z>0
fo(Z)_ 0, z<O0, (4.8)
so that the unperturbed scattering length density corre-
sponds to a geometrically sharp surface. Then

2
d—z +K2 z>0
| dz
L= p 4.9)
—— +kZ, z<0,
dz
where
K2=k2—4mpb . (4.10)
Alternatively, K, =n,k,, where
n,=vV'1—(q./q,7, 4.11)

in which ¢/ = 16mpb, and g, =2k, as before.

We look for a solution of the unperturbed wave equa-
tion (3.4) for which the incident wave is partially reflected
and refracted at the origin:

toexp(iK,z), z>0

Xo(2)= explik,z)+rqoexp( —ik,z), z<O. (4.12)

Since x((z) and its first derivative must both be continu-

ous at z =0, we then get the familiar Fresnel formulas®
1—n, 2

= , to=— .
1+n, ° 1+n,

o (4.13)
The Green function is an outgoing wave from the point
z=2z' that is also partially reflected and refracted at
z =0. Since G(z,z') and its first derivative must both be
continuous at z =0, we then find, in agreement with ear-
lier authors,*!® that

”
711— expliK,(z —z')]— n_O expl[iK,(z +2')], O0<z'<z

r
;L exp[ —iK,(z —z’)]—n—0 expl[iK,(z +z')], O0<z <z’

(4.14)
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Note in particular that

G(z,z’)=,2—7rexp(

p —ik,z)xy(z")

z

ifz<z' and z<0, (4.15)

so that, once more, the Green function has the general
asymptotic property (3.8). Hence, in the present
“distorted-wave” Born approximation (DWBA), expres-
sion (4.2) for the reflected amplitude becomes

r=ro+ Ow{[exp(—ikzz)+r0 explik,z)*f1(—2z)

T
ik,

+[to exp(iK,z)1*f1(2)}dz . (4.16)

C. Thin film on a substrate

For the particular case of a thin film (or a thin-film
multilayer) on a substrate it is natural to take f,(z) to be
the scattering length density for the substrate, and f(z)
the scattering length density for the thin film. If the total
thickness of the film is d, we then have f,(z)=0 unless
—d <z <0. The DWBA result (4.16) for the reflected
amplitude then reduces to!®

r=ro+ T fi)d[ explik,z)+ryexp( —ik,z)12f(z)dz

(4.17)

When people speak of the DWBA for reflection from
smooth surfaces they usually mean an expression such as
(4.17). To avoid confusion, we shall call (4.16) the gen-
eralized DWBA.

D. Fresnel reflectivity

Finally, we note for future reference that the unper-
turbed reflectivity is given by

2
1—n
Ry=|rol?= |—

z

(4.18)

In most materials the absorption is small enough that b
can be taken to be real. It is also usually positive, in

which case g, is real and
Ry=1 ifg,<gq, . (4.19)

Thus g, is the critical wave-vector transfer for total
reflection. On the other hand, regardless of the sign of b,

8
Ro= L 4| 1 |9 7_ |4
° 16 | g, 16 | g, 128 | g,
ifg,>lq,| . (4.20)

V. SYMMETRIC SURFACE

A. Reflected amplitudes for a symmetric surface

In this section we investigate and compare some of the
properties of the PWBA (4.7) and the generalized DWBA
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(4.16). We begin by putting
f(z2)=pbd(z) , (5.1)

in which ¢(z) is the normalized scattering length density,
which can be expressed as

$(2)=[" s(z")dz’, (5.2)
where
_délz) _ 1 df(z)
s(z)= dz b - (5.3)
It then follows from (2.3) that
$(o0)=[7 s(z)dz'=1, ¢(—0)=0. (5.4)

In what follows we shall assume for simplicity that the
surface is symmetric in the sense that s(z) is a real, even
function of z. We also introduce the auxiliary quantity

J(qz)=2fooo exp(iq,z)s (z)dz
=pibfo°° expliq,z) dj;(zZ) dz (5.5)
Let
J(g,)=J"(g,)+iJ"(q,), (5.6)
where
J'(q, )=2fwcos(qzz)s(z)dz
=J 7 explig,2)s (2)dz (5.7)
and
J"(q,) 2_[ sin(q,z)s (z)dz . (5.8)
Finally, let
a2=2f0°°z2s(z)dz = f:oz?‘s(z)dz (5.9)
and
§,la”=2f0wz”s(z)dz, n=0,1,2,..., (5.10)

so that £,=&,=1. The quantity a provides a measure of
the “thickness” of the surface (or surface layer), while the
quantities &, characterize the detailed shape of the sur-
face.

The PWBA expression (4.7) for the reflected amplitude
now becomes

=ﬁrg_bJ,(qz)’

q;

(5.11)
and the DWBA expression (4.16) becomes

r=ro+ 22 111 (—g,)—1]—2ire[£,4,a]
q;
t3
—r%[J(qz)—1]+n—[J(nzqz)—~1]

z

(5.12)
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Note that the same function J(g,) determines the
reflected amplitude in both the PWBA and DWBA.

B. Dimensionless variables

We demonstrate below that the reflected amplitude can
be regarded as a function of two dimensionless variables:

x=(q./q9,” y=q,a . (5.13)
With these definitions, the PWBA (5.11) becomes
X 5
rZZJ (q,), (5.14)
and the DWBA (5.12) becomes
X .
":"0"'? [J(—=q,)—1]=2ir,[§y]
£2
2 0
—rO[J(qz)—1]+n—[J(nzqz)-—1] (5.15)

z

Since n,=V'1—x, we see from (4.13) that r, and ¢, de-
pend only on x, and from (5.5) that J(q,) depends only
on y. Thus in both the PWBA and DWBA, r =r(x,y).

C. Validity of the PWBA

We shall see in Sec. VI that the DWBA is sufficiently
accurate for all g, to be used as a basis for answering
questions such as those posed in this section and Sec.
VD. The variable x depends on the value of g, relative
to the critical wave vector q.. If x <<1 the expression
(5.15) for the DWBA has the expansion

:i
4

2
r=271"(g,)+%

8
(5.16)

in which the first term is the PWBA (5.14), i.e., the con-
tribution from single scattering, and the remaining terms
give the contribution from multiple scattering. We see
that as x —0 multiple scattering is negligible and the
DWBA reduces to the PWBA. Thus the PWBA will be
valid for essentially any surface as long as g, >>gq,.

D. Validity of Fresnel’s formula

The variable y depends on the value of g, relative to
the surface thickness a. If y <<1 the expression (5.15) for
the DWBA has the expansion

2

r:ro—yT

xn,

Tan)t |70

(5.17)

in which the first term is the reflected amplitude for a
sharp surface (Fresnel’s formula) and the remaining terms
give the correction for the finite surface thickness a. We
see that as y —0 the effect of the finite surface thickness
is negligible and the DWBA reduces to Fresnel’s formula.
Thus this formula will be valid for essentially any surface
as long as g, <<1/a.
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E. Ad hoc model of Pershan and Als-Nielsen

Neutron and x-ray reflectivity experiments are often
analyzed on the basis of the ad hoc model
r=ryJ’'(q,) (5.18)
introduced by Pershan and Als-Nielsen.!” We note that,
since
m:%+ou%, (5.19)
this model, like the DWBA, reduces to the PWBA (5.14)
as x —0, and since J'(0)=1 it also reduces to Fresnel’s
formula as y—0. Pershan later remarked?® that “even
though (the ad hoc model) cannot be formally justified
. it is often applicable over all angles.” In Sec. VI we
determine the accuracy of both the DWBA and this ad

hoc model by comparison with the exact reflectivity for a
particular model surface.

VI. MODEL CALCULATIONS

For a given value of g,, which depends on the experi-
mental conditions, the reflectivity is uniquely determined
by p and b, which are properties of the bulk material, and
by the function s(z) that characterizes the shape of the
scattering length density in the neighborhood of the sur-
face. In this section we consider a number of models of
s(z) for which the integrals in the PWBA and DWBA
can be calculated analytically. We then use these models
to illustrate how the reflectivity depends on the shape of
s(z), and to test the accuracy of the PWBA, the DWBA,
and the ad hoc model of Pershan and Als-Nielsen.

A. Sharp surface

For a sharp surface,

s(z)=8(z) (6.1)
and
1, z>0
#(z)= 0, z2<0. (6.2)
Hence £,=0and J(g,)=1.
B. Step-function surface
For a step-function surface,
s(z)=41[8(z +a)+8(z —a)] (6.3)
and
1, z>a
#(z)= 13 —a<z<a (6.4)
0, z<—a
Hence £;=1 and
J(q,)= explig,a) , (6.5)
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so that
J'(q,)= cos(g,a) (6.6)
and
J'"(g,)=sin(g,a) . (6.7)
C. Ramp-function surface
For a ramp-function surface,
0, z>V3a
1 — —
= — —V3a<z<V3 6.8
s(z) VP a<z a (6.8)
0, z< —1v3a
and
1, z>V3a
H(z)= % + 1/23(1 , —V3a<z<V3a (6.9)
0, z< —V3a .
Hence &, =V'3/2 and
exp(i\/§qza)~— 1
J(g,)=—F——F=F— (6.10)
4 i\/3qza
so that
J'(q)= sin(13:a) (6.11)
qz ‘/‘jqza .
and
T )= 1— cos(V'3g,a) 6.12)
1 V3q,a )
D. Error-function surface
For an error-function surface,
2
1 1|z
=— —= |= 6.13
s(z) Vooa P > |2 (6.13)
and
<;'>(z)=l 1+ erf |2 (6.14)
2 v2a ’ '
where erf(x) is the error function?*
erf(x)=‘/i7-7_ exp(—12)dt . (6.15)

Hence §;=V'2/7 and

_ . 2 .9q9:a
J(g,)=exp[ —1(q,a)’] 1 — erf —1‘/_2 , (6.16)

so that

V. F. SEARS 48

J'(g,)= exp[ —L(g,a)?] (6.17)
and

vy 2 . |4:9

J"(q;) \/}F VAE (6.18)

in which F (x) is Dawson’s integral, 2*

__.‘/17' . _ x
F(x)—-zT exp(—x?')erf(—tx)—fO exp(t?—x2)dt .

(6.19)

E. Dependence of the reflectivity on the nature of s (z)

Figure 1 shows the normalized scattering length densi-
ties ¢(z) for the models introduced above: the sharp sur-
face (long-dashed line), the step-function surface (short-
dashed line), the ramp-function surface (dotted line), and
the error-function surface (solid line). In the latter three
cases the surface thicknesses a are all the same
(g.a =0.2). The corresponding reflectivities are shown
in Fig. 2. The results for the first two of these models are
exact, given by Fresnel’s (4.18) and Airy’s formula,’
while those for the latter two were obtained using the
DWBA (5.12). This figure illustrates the variation of
reflectivity with surface shape for a fixed surface thick-
ness. Conversely, Fig. 3 shows the variation of
reflectivity with surface thickness for a given shape.
Here, the DWBA results for the error-function surface
are shown by the dashed lines for g.a =0.1, 0.2, 0.3, and
0.4. The exact result (4.18) for a sharp surface is shown
by the solid line, and can be regarded as that for an
error-function surface with g.a =0.

Figures 2 and 3 demonstrate clearly the well-known
fact that it is only when the momentum transfer g, is well
above the critical wave vector g, that the reflectivity R is
sensitive to the detailed shape and thickness of the sur-

®z) o.6

FIG. 1. Comparison of the normalized scattering length den-
sities ¢(z) for a sharp surface (long-dashed line), a step-function
surface (short-dashed line), a ramp-function surface (dotted
line), and an error-function surface (solid line). In the latter
three cases g.a =0.2.
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FIG. 2. Comparison of the reflectivities for a sharp surface
(long-dashed line), a step-function surface (short-dashed line), a
ramp-function surface (dotted line), and an error-function sur-
face (solid line). In the latter three cases g.a =0.2. The first
two cases are exact results, given by Fresnel’s formula (4.18) and
Airy’s formula, and in the latter two the DWBA (5.12) was
used.

face potential. In particular, one requires experiments
with g, /q. ranging from about 3 to 30, where R de-
creases from about 1073 to 1077, to obtain useful infor-
mation on the shape and thickness of the surface poten-
tial. If g, =~¢, the reflectivity depends only on the height
of the potential barrier and is independent of the detailed
shape of the potential near the surface.

F. Accuracy of the PWBA, DWBA, and ad hoc model

Since Airy’s formula® provides an exact expression for
the reflectivity of the step-function surface, it can be used

1
107 ¢ e ey |
100 ——o00] -
10.1; — -0.1 N
: — —o2] ]
-2 _
E 1077 ¢ \ ----03 3
> _ E AN
E ot F N il I
W4 [ B ]
.| E BN E
w E "
oo | DWBA ‘\\\\ ]
A \ 3
1078 [ N 4
E B E
107 [ AN \ 4
? . \\\ \ ]
10°8 . | , T |
0.1 1 10

q,/qa,

FIG. 3. Comparison of the DWBA (5.12) for an error-
function surface with g.a =0.1, 0.2, 0.3, and 0.4 (dashed lines),
with the exact result (4.18) for a sharp surface (solid line). The
error-function surface reduces to a sharp surface in the limit
g.a =0.
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FIG. 4. Comparison of the exact reflectivity for a step-

function surface with g.a =0.2, which is given by Airy’s formu-
la (solid line), with the PWBA (5.11) shown by the dashed line.

to test the accuracy of the PWBA (5.11), the DWBA
(5.12), and the ad hoc model of Pershan and Als-Nielsen'’
(5.18).

Figure 4 compares the reflectivities calculated for a
step-function surface with g.a =0.2 using Airy’s formula
(solid line) and the PWBA (dashed line). It is seen that in
the region g, /q. >3, where the reflectivity is sensitive to
the detailed shape and thickness of the surface potential,
the PWBA differs only slightly from the exact result.
When the results for the DWBA are plotted as in Fig. 4,
there is no noticeable deviation from the exact result at
any value of g, and, for the ad hoc model, there is only a
barely perceptible deviation near q,.

Figure 5 shows the absolute error, and Fig. 6 the rela-
tive error, as a function of g,/q. for the PWBA, the
DWBA, and the ad hoc model. It is seen that in the re-
gion q,/q. >3, where the reflectivity is sensitive to the
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FIG. 5. Comparison of the absolute errors in the PWBA
(5.11), the DWBA (5.12), and the ad hoc model (5.18) for a step-
function surface with g.a =0.2.
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FIG. 6. Comparison of the relative errors in the PWBA
(5.11), the DWBA (5.12), and the ad hoc model (5.18) for a step-
function surface with g.a =0.2.

detailed shape and thickness of the surface potential, the
ad hoc model is no better than the PWBA, the errors in
both being typically of the order of 1%. The ad hoc mod-
el, however, is considerably more accurate than the
PWBA at smaller values of g,. The DWBA is typically
three orders of magnitude more accurate than both the
PWBA and the ad hoc model for all values of g,, and the
relative error in the DWBA is almost everywhere less
than 0.01%. The only exceptions are near points where
the exact reflectivity goes to zero and the relative error
(Fig. 6) diverges. However, the absolute error (Fig. 5) is
not anomalously large in these regions.

The expression (2.2) for the optical potential is itself
not exact, but neglects local-field effects'® which are also
of the order of 0.01%. Thus the accuracy of the DWBA
(5.12) is about the same as that of the Fermi pseudopo-
tential, and both are adequate for essentially all practical
purposes. Although we have only demonstrated this for
the step-function surface, we feel it should be generally
true for any symmetric surface.

VII. DISCUSSION

We have developed a theory for the specular reflection
of thermal neutrons from an arbitrary smooth surface or
interface using a Green-function technique that yields a
formally exact expression (3.9) for the reflected ampli-
tude. This leads to a family of Born approximations that
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includes both the familiar “plane-wave’ Born approxima-
tion or PWBA, Eq. (4.7), and a generalized ‘“‘distorted-
wave”’ Born approximation or DWBA, Eq. (4.16).

The DWBA is a function of two dimensionless vari-
ables x =(g,/q,)* and y =q,a, where g, is the wave-
vector transfer (which for specular reflection is normal to
the surface, i.e., in the z direction), g, is the critical wave
vector for total reflection, and a provides a measure of
the surface thickness. If x <<1 the DWBA reduces to
the PWBA, and if y <<1 the DWBA reduces to Fresnel’s
formula for reflection from a sharp surface.

To demonstrate the dependence of the reflectivity on
the shape and thickness of the surface potential, we have
performed detailed numerical calculations of the
reflectivity for a number of symmetric model surfaces: a
sharp surface, a step-function surface, a ramp-function
surface, and an error-function surface. These calcula-
tions show that it is only when g, >>q,. that the
reflectivity R is sensitive to the detailed shape and thick-
ness of the surface potential. In particular, one requires
experiments with g,/q, ranging from about 3 to 30,
where R decreases from about 1073 to 1077, to obtain
useful information on the shape and thickness of the sur-
face potential.

Since Airy’s formula provides an exact expression for
the reflectivity of the step-function surface, it can be used
as a benchmark to test the accuracy of the PWBA (5.11),
the DWBA (5.12), and the ad hoc model of Pershan and
Als-Nielsen (5.18) for this surface. We find that the
DWBA is typically three orders of magnitude more accu-
rate than both the PWBA and the ad hoc model for all
values of g,, and that the relative error in the DWBA is
almost everywhere less than 0.01%, which is, therefore,
of the same order of magnitude as the intrinsic error in
the Fermi pseudopotential itself.

The high accuracy that we have found when the
DWBA is applied to symmetric scattering length densi-
ties, such as those in Fig. 1, is in contrast to the relatively
low accuracy that Zhou, Chen, and Felcher'*!® found
when they applied this type of approximation to thin
films on substrates. These authors emphasized'® that the
DWBA is valid only if the substrate has a high intrinsic
reflectivity so that the Fresnel wave function (4.12) is a
good first approximation to the actual wave function.
This was not true for the models they examined, where
the scattering length density in the films was much larger
than in the substrates. However, it is true for the sym-
metric scattering length densities in Fig. 1. This evident-
ly explains why, in our case, f,(z) is effectively a small
perturbation and the DWBA works so well.
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