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Using extensive Monte Carlo simulations we have studied phase transitions in a fcc model with antiferro-
magnetic nearest-neighbor couplingsJ in the presence of different free surfaces which lead either to surface-
induced order or to surface-induced disorder. Our model is a prototype for CuAu-type ordering alloys and
shows a strong first-order bulk transition at a temperaturekTcb /uJu51.738 005(50). For free~100! surfaces,
we find a continuous surface transition at a temperatureTcs.Tcb exhibiting critical exponents of the two-
dimensional Ising model. Surface-induced ordering occurs as the temperature approachesTcb and the surface
excess order and surface excess energy diverges logarithmically. For a free~111! surface, the surface order
vanishes continuously atTcb accompanied by surface-induced disorder~SID!. In addition to a logarithmic
divergence of the excess quantities of order and energy, we find further critical exponents which confirm the
actual theory of SID and critical wetting and which can be understood in terms of rough interfaces. For both
cases of free surfaces, the asymptotic behavior of the squared interfacial width shows the expected logarithmic
divergence.

I. INTRODUCTION

Phase transitions in real crystals are affected by the pres-
ence of the surfaces as well as by possible interfaces between
ordered domains called antiphase boundaries~APB’s!. A
number of excellent theoretical studies1–7 have led to de-
tailed predictions for the properties of semi-infinite systems
and have been accompanied by some remarkable experimen-
tal work in recent years. A review of the related experimental
investigations has been given by Dosch.8 There are different
scenarios for how the phase transitions at the surface and in
the near-surface region depend on the order of the bulk phase
transition.

For second-order bulk transitions we now have a rather
good picture of the range of possible surface behavior.1,2 In
some situations the surface undergoes a transition at the bulk
transition temperature, but the surface critical behavior is
described by critical exponents which differ from both the
two-dimensional~2D! as well as bulk 3D values. In other
cases, when the exchange in the surface layer exceeds that
within the bulk by a sufficient amount, the surface may order
above the bulk transition, exhibiting 2D exponents.

The situation in which the bulk undergoes a first-order
transition has been considered by Lipowsky7,9–12 who
showed that surface-induced disorder~SID! and surface-
induced order~SIO! may then be associated with the bulk
transition. One of the most notable results is the continuous
decrease of the order parameter in the surface layer as the
bulk transition temperature is approached. Such a behavior
had already been found in 1973 by Sundaramet al. in a

low-electron electron-diffraction~LEED! study of a free
~100! surface of a Cu3Au alloy,13,15 and the critical surface
exponentb1 was later determined by spin-polarized LEED.

16

Monte Carlo~MC! simulations14 of an Ising model of this
alloy also indicated a possible continuous decrease of the
surface order as the bulk transition was approached.

From experiments on the same alloy using evanescent
x-ray scattering in grazing incidence evidence was found for
the increasing thickness of the disordered surface layer as the
transition temperature is approached.17 The related phenom-
enon of surface melting was observed in lead by ion
scattering18 and confirmed by LEED.19 In the case of SID
there is no clear quantitative experimental evidence up to
now for the predicted logarithmic divergence of the thickness
of a wetting layer of the disordered phase at the surface.
However, such behavior has been observed by transmission
electron microscopy for the analogous situation in the bulk
of a Cu-Pd~17%! alloy where the width of the antiphase
boundaries diverges~logarithmically! as the transition tem-
perature is approached from below.20Although discontinuous
order-disorder transitions are quite common in alloy systems,
most experimental examples consider simple structures
showing transitions from a cubic ordered (L12 in the ex-
amples above! to a cubic disordered phase thus avoiding the
complications due to the possible strain between ordered
variants of lower symmetry. However, as has been shown in
a previous Monte Carlo study, the fcc alloys having a Cu-
Au-type order (L10) and tetragonal symmetry are not only
candidates for the observervation of SID but also for SIO
which may occur because a free~100! surface reduces the
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frustration effects.21 It is the aim of the present work to con-
tribute to the understanding of both SID and SIO by Monte
Carlo simulation of a suitable model.

In this paper we consider a simple model for anAB bi-
nary alloy which can, of course, be reinterpreted as an Ising
magnet, or as a lattice-gas model for a fluid or alloy~spins
Si561 at lattice sitei corresponding to the site being occu-
pied or empty, or containing anA atom orB atom, respec-
tively!. For our Monte Carlo simulation, a thick-film geom-
etry is used in which there are two parallel free surfaces, and
the nature of the phase transitions in these surfaces forms the
subject of this study. By ‘‘thick film’’ we mean that the two
surfaces can be considered as essentially noninteracting and
that our study is meant to address the behavior of semi-
infinite bulk systems with free surfaces. Preliminary results
have been presented21 for the case where both nearest-
neighbor and next-nearest-neighbor coupling are present, but
only a single orientation of the surface~100! was considered
@Fig. 1~a!#. We now present results with only nearest-
neighbor coupling and two different orientations of free sur-
faces.

In the following section we describe the theoretical back-
ground on SID, to provide the framework in which our study
can be interpreted, and motivate the choice of quantities that
will be studied. In Sec. III we describe the model and meth-
ods used, and in Secs. IV and V we present results for~100!
and ~111! surfaces@Fig. 1~b!#, respectively. We conclude in
Sec. VI, while the ground-state behavior and the precise es-
timation of the bulk transition temperature are discussed in
the appendixes.

II. THEORETICAL BACKGROUND

A. Surface-induced disordering

In this section, we recall the basic theoretical predictions
on surface-induced disordering~SID! considering only the
standard situation which is equivalent to critical wetting3,7,22

and disregarding other situations which correspond to sur-
face multicritical points.7,9–12

The basic phenomenon of interest is the continuous decay
of the local order parameterc1 at the surface layer as the
first-order transition in the bulk~located atTcb) is ap-
proached from below,9 involving a power law with an expo-
nentb1

c1}t
b1, t[~12T/Tcb!→0. ~1!

This continuous behavior at a discontinuous bulk transition
occurs because a layer of the disordered phase gradually in-
trudes at the surface. For the three-dimensional systems gov-
erned by short-range forces it has been predicted that the
thicknessl̄ of this layer (jd being the correlation length of
order-parameter fluctuations in the disordered bulk phase!
should diverge as

l̄}jdln~1/t !, t→0, ~2a!

where one may define a critical exponent

l̄}jdt
2bs, bs50~ ln!, t→0. ~2b!

Since bs50 in d53 dimensions, the divergence ofl̄ as
t→0 is only logarithmic.3,7,9–12As a result, the disordered
layer increasingly ‘‘screens’’ the effective field acting on the
surface layer due to the still well-ordered bulk, and thus Eq.
~1! becomes plausible. The interfacial thickness or roughness
is expected to diverge as well but more slowly as follows
from22

j' /jd}@ ln~1/t !#1/2, t→0,

}t2n', n'50~A ln!. ~3!

As for more standard critical phenomena, one can define a
number of divergent response functions to ‘‘fields’’H ~con-
jugate to the order parameter in the bulk! andH1 ~conjugate
to c1). Note, that in this caseH andH1 are staggered fields.
In the theory of surface effects on bulk critical phenomena1,2

one distinguishes between the susceptibilities

FIG. 1. Section of the ordered lattice of theAB alloy in the
L10 ~CuAuI! structure. Frustrated nearest-neighbor interactions are
shown by dashed lines.~a! ~100! surface oriented such that there is
(232) order in the surface layer;~b! ~111! surface~shaded!. Note
that in this case a (231) order in the surface results, where one-
third of the bonds in the surface layer are still frustrated~thick
broken lines!. Unfrustrated nearest-neighbor interactions are not
drawn in order to avoid overcrowding of these pictures.
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x1,15S ]c1

]H1
D
t

}t2g1,1, t→0, ~4a!

x15S ]c1

]H D
t

}t2g1, t→0, ~4b!

and

xs5S ]cs

]H D
t

}t2gs, t→0. ~4c!

In Eq. ~4c! we have used the surface excess ordercs which
in turn is defined as the derivative of the surface excess free
energy

cs52@]Fs~T,H,H1!/]H#T,H1
, ~5a!

while c1 can be obtained as a derivative with respect to the
local fieldH1 ,

c152@]Fs~T,H,H1!/]H1#T,H . ~5b!

Finally we mention that the correlation function for order-
parameter fluctuations in the surface layer can be used to
define a correlation lengthj i ,

^c1~0!c1~rW !&2^c1&
2}exp~2r/j i!, r→`, ~6!

whererW is a coordinate in the surface layer, and

j i}jdt
2n i, t→0. ~7!

In order to discuss the scaling relations between these critical
exponents for SID, and the theoretical predictions existing
for them, we recall that SID can be interpreted as a critical
wetting phenomenon.3,7,22 The scaling relations for critical
wetting with short-range forces follow from a scaling analy-
sis for Fs and for j i , in terms of scaling functionsF̃ and
X̃. We use here a superscript ‘‘w’’ in order to avoid confu-
sion between the exponents for critical wetting and the ex-
ponents for SID:

Fs5t22as
w
F̃~mt2Dw

!, ~8a!

j i5t2nwX̃~mt2Dw
!, ~8b!

wheret andm are temperaturelike and fieldlike variables for
the wetting transition,as

w ,nw andDw are the associated criti-
cal exponents. Ford<d*53, the upper critical dimension-
ality for wetting transitions, one has the standard hyperscal-
ing relation

22as
w5~d21!nw ~9!

for surface excess quantities. Now one can show3 that for
critical wetting there is in fact asingle independent expo-
nent, sinceDw also can be related tonw

Dw5~d11!nw/2. ~10!

In d53 dimensions the resulting equations forFs andj i can
hence be written as follows:

Fs5t2nwF̃~mt22nw!5m f̃ ~m21/2nwt! ~11a!

j i5t2nwX̃~mt22nw!5~m!21/2j̃~m21/2nwt!. ~11b!

In the last step we have redefined the scaling functions to
express the singularities in terms ofm instead oft.

Now a comparison of the free-energy functionals of SID
and critical wetting shows3,7,22 that these problems are
equivalent to each other if one approaches wetting criticality
along a special path~wherem}t) in the (m,t) plane. Since
it turns out that the singularities along these paths are the
same as along the path (t50,m variable!, we consider for
simplicity singularities along the latter path.

From Eqs.~8a!–~11b! it is easy to derive the critical be-
havior of the various response functions for this wetting
problem. We recall that for critical wetting temperaturelike
variables andH1 scale in the same way, since one can cross
the wetting transition lineH15H1c(T) either by variation of
T or of H1 . Therefore, taking a derivative of Eq.~8a! with
respect tot we get

c1}t12as
w
c̃1~tm21/Dw

!t50}~m!~12as
w

!/Dw
, ~12!

where we have indicated how the power law forc1 as func-
tion of m can be inferred by requiring that the corresponding
scaling functionc̃1 behaves as a power law for small argu-
ments such that the dependence ont cancels. From Eq.~12!
we can read off the value of the exponentb1

b15~12as
w!/Dw5

2~d21!22/nw

~d11!
. ~13!

Using Eqs.~5a! and ~8a! we obtain the critical behavior of
the excess quantities, in particular ofcs :

cs}m~22as
w

2Dw!/Dw
~14!

determining the critical exponentbs

bs5~22as
w2Dw!/Dw5~d23!/~d11!. ~15!

Because of the vanishingbs in d53 one expects a loga-
rithmic divergence of the surface excess order parameter
cs , as well as of other excess quantities like the surface
excess energyEs and the thickness of the wetting layerl̄ @Eq.
~2b!#.

Similarly one obtains the surface excess susceptibility, the
layer susceptibilities and their exponents, respectively,

xs}m2@22~22as
w

!/Dw#,

gs522
22as

w

Dw 5
4

d11
,~51 in d53! ~16a!

x1}m211~12as
w

!/Dw
,

g1512
12as

w

Dw 5
32d12/nw

d11
, ~16b!

x1,1}m2as
w/Dw

,

g1,15as
w/Dw5

22~d21!14/nw

d11
. ~16c!
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From Eqs.~13!–~16! one can read off the scaling laws

b11g151, ~17a!

bs1gs51, ~17b!

g1,11gs5
22d1614/nw

d11
52g1 , ~17c!

g1,112b15
2~d21!

d11
~51 in d53!. ~17d!

Some of the above relations can be obtained very directly, of
course, if we simply replacem by the temperature distance
t andt by H1 in Eqs.~11a! and ~11b!, to find

Fs5t f̃ ~ t21/2nwH1!, ~18a!

j i5t21/2j̃~ t21/2nwH1!, ~18b!

~remember that we have restricted ourselves tod53 here!.
From Eqs.~8b!, ~18b! one sees that the exponentn i defined
in Eq. ~7! for SID is

n i5nw/Dw52/~d11!~51/2 in d53!. ~19!

From Eq. ~18a! we can immediately recognize the scaling
structure ofc1 by taking a derivative with respect toH1 ,

c15tb1c̃1~ t
21/2nwH1!,

b15121/2nw, d53, ~20!

and a further derivative yieldsx1,1, the singular part of
which scales as

x1,15t2g1x̃1,1~ t
21/2nwH1!,

g1,152111/nw, d53. ~21!

These results contain the mean-field theory of SID,7,9–12as a
special case: for the mean-field theory of wettingnw51, and
hence~in d53)

b151/2, g151/2, g1,150, Dw52, as
w50,

~22a!

while the following critical exponents are~independent of
nw) universal and exact ind53:

bs50, gs51, n'50, ni51/2, as51. ~22b!

Note that Eq. ~18a! can also be interpreted as
Fs5t22asf̃ (t2D1H1), where the exponentsas andD1 have
the standard meaning as in the usual theory of surface critical
phenomena, see Ref. 1, and 22as5(d21)n i is satisfied
with as51, n i51/2 in d53. We also have 22as5b11D1

and 22as5(22as
w)/Dw, of course, andgs52n i . Since

d53 is the upper critical dimension for critical wetting, all
scaling laws Eqs.~17a!–~17d! are indeed satisfied with these
Landau theory exponents, Eq.~22!.

Now one knows that fluctuation corrections for critical
wetting are possibly very important, and the renormalization-
group theories22–27 predict thatnw depends on a nonuniver-
sal parameterv,

v5kBTcb /~4pS̃ l 2!, ~23!

whereTcb is the transition temperature of the bulk,S̃ is the
interfacial stiffness of the interface between the ordered and
disordered phase coexisting atTcb , and l is its intrinsic
thickness~Lipowsky7 identifies l5jd). The exponentb1 is
predicted to be

b151/21v/2, 0,v<1/2, ~24a!

b15A2v2v/2, 1/2,v<2, ~24b!

b151, v>2. ~24c!

@Note that because of Eq.~20! this prediction is simply
equivalent to those of Refs. 22–27 for the exponentnw dis-
cussed in the theory of critical wetting.# Results for other
exponents simply follow from the scaling relations written
down above. It is, however, of interest to show the relation
for the logarithmic relations for the thickness of the surface
near layerl̄ and the widthj' of the ~rough! interface7,22

l̄ /jd51/2@112v# ln~1/t !, 0,v<1/2, ~25!

j' /jd5Av@ ln~1/t !#1/2, 0,v<1/2. ~26!

Here we have restricted ourselves to the regimev<1/2,
which is of most interest. Note that while a direct determi-
nation of v from Eq. ~23! is difficult, since it is hard to
calculateS̃, one could infer its value indirectly if Eqs.~25!
and ~26! are used. However, in computer simulation studies
of wetting in the Ising model29–31it was already not possible
to verify the predictions22–27 for nw that correspond to Eqs.
~24a!–~24c!. The interpretation of these findings is uncertain:
It has been proposed that one must be extremely close to the
transition to see the asymptotic behavior,26 or that the wet-
ting transition is weakly of first order.27 ~Boulter and Parry
have recently proposed another explanation.28 This will be
further discussed later.! It is unclear to us whether these latter
predictions should apply to the present problems as well.

It should be stressed that Eqs.~23!–~26! can apply only if
the interface between the ordered and disordered phase is
rough. Lipowsky7 supposed that Eq.~22a! is valid if one is
below the roughening transition temperature of this interface.
In view of Monte Carlo studies and of molecular field calcu-
lations for semi-infinite Potts model33 on wetting near the
roughening temperature of the Ising model,32 we would like
to mention the possibility that for nonrough interfaces SID
might be replaced by a sequence of layering transitions. An
effective exponentbeff51

2 can then be defined only in the
sense that the sequence of steps in a log-log plot is approxi-
mated by a straight line.7

B. Surface-induced ordering

While SID and SIO are commonly discussed in the litera-
ture to be just equivalent phenomena, one has to note one
important difference, namely that for SIO the surface neces-
sarily orders at a different and higher temperature than the
bulk in order to wet the bulk phase. An estimate for the
surface transition temperature can be obtained from a com-
parison to the two-dimensional model. Hence, one expects
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Tcb,Tcs,Tc
2D . One important consequence is that the pre-

dictions for the surface properties, and also the scaling rela-
tions discussed above, can no longer be valid. Instead, at the
surface transition one expects a behavior which falls in the
universality class of the corresponding purely 2D system.
The exponentn i describing the singularity ofj i , j i
}(T2Tcs)

2n i, is simply the bulk 2D exponentn(d52),
and the exponentb1 describing the order parameterc1
}(T2Tcs)

2b1 is the bulk 2D exponentb(d52). Note that
at Tcs the susceptibilitiesx11,x1 , andxs all have the same
singularity @x}uT2Tcsu2g(d52),g(d52) being the 2D bulk
susceptibility exponent#. The scaling relations for the surface
exponents atTcs thus are just standard bulk scaling laws.

For T→Tcb the logarithmic law for the excess quantities,
e.g., those of the order, the energy, and the interface position,
should still be valid. Surface properties are expected to show
an ‘‘extraordinary’’ transition1,2 ~singularities in the second
derivatives, kink inc1).

III. MODEL AND SIMULATION TECHNIQUE

We study the Ising Hamiltonian on the face-centered-
cubic lattice in aL3L3D geometry, applying periodic
boundary conditions inx and y directions. The two free
L3L surfaces are oriented to be either~100! or ~111! faces.
The Hamiltonian used is

H52J(
^ i , j &

SiSj , Si561 , ~27!

where the sum is over all nearest-neighbor pairs (i , j ) with
antiferromagnetic nearest-neighbor coupling, i.e.,J,0. Note
that in the present case, the atoms in the surface layers do not
have any modified nearest-neighbor coupling, but they do, of
course, see fewer neighbors than do those atoms in the bulk.
We used a Metropolis, single spin-flip method with preferen-
tial layer sampling which was determined by the nature of
the order-parameter profile. We implemented an efficient,
vectorized single spin-flip algorithm on a CRAY-YMP com-
puter. Since our aim was to gain an overview of the system
behavior for a wide range of temperatures, excessively large
values forL were avoided. TypicallyL varied from 32 to
128, and thicknesses studied varied fromD540 toD5200
to ensure that the two surfaces were independent.

In principle, a complete description of the CuAu-type or-
der requires a three-dimensional order parameter
c5(cx ,cy ,cz) which refers to the three possible orienta-
tions of ordered domains, which are alternate layering of
pure Cu and pure Au planes in one of the three^100& direc-
tions. The components of the order parameter are necessarily
based on four sublattices and can be defined for bilayers
only. For example, the first componentcx,n the order param-
eter of the bilayern is defined as

cx,n5
1

L2 (
j e bilayer n

Sje
ik–r j , where k5

2p

a
~1,0,0!.

~28!

Using the sublattice magnetizationsm1 , m2 , m3 , andm4
one obtains

cx,n5
1

4
~m12m22m31m4!

cy,n5
1

4
~m12m21m32m4!

cz,n5
1

4
~m11m22m32m4!. ~29!

Similarly, one can define a total order parameter for the
whole film and a bulk order parameter for the inner part of
the film. However, in most cases, the anisotropy of the sys-
tems considered is sufficiently strong to single out only one
component of order, while the other two components, as well
as their fluctuations, are negligible. This holds throughout for
the case of SID at the free~111! surface. In other words, in
the ordered phase the symmetry is broken, and only one type
of domain is considered~which in the simulation is created
by preparation of the initial state!. Since the transition is of
first order in the bulk, the system does not ‘‘jump over’’ to
the orderings corresponding to the other types of domains, at
least not for the large lattice sizes studied. In these cases, it is
justifiable to confine ourselves to a two sublattice order pa-
rameter

cy,n5
1

2
~m12m2!, ~30!

which is simply a single layer order parameter and a scalar
quantity. Both types of order parameters, and their related
susceptibilities, were calculated in the simulations. The sur-
face excess order parameter is obtained by

cs5 (
n51

D/2

$cn2cb%. ~31!

The ~bi-!layer susceptibilitiesxn and xn,n were obtained
from the fluctuation relations34

xn,n5L2~^cn•cn&2^cn&•^cn&!/kBT, ~32!

xn5L2D~^cn•ctot&2^cn&•^ctot&!/kBT, ~33!

while the surface excess susceptibilityxs follows as

xs5 (
n51

D/2

$xn2xb%. ~34!

Here,xb denotes the~bi-!layer susceptibility in the bulk. The
surface layer susceptibilitiesx1 and the excess susceptibili-
ties xs were also calculated according to their definitions as
derivatives in Eqs.~4b! and ~4c!. As discussed in Appendix
C, there are no fluctuation relations analogous to Eqs.~32!
and ~33! for the excess quantities such asxs .

Furthermore, we considered the layer energiesEn ~nor-
malized per spin!, the bulk and total energiesEb andEtot ,
the surface excess energyEs , the layer specific heatCn , and
the surface excess specific heatCs :

Es5(
n

D/2

~En2Eb!, ~35!
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Cn5L2D~^EnEtot&2^En&^Etot&!/T2, ~36!

Cs5(
n

D/2

~Cn2Cb!. ~37!

For locating the transition of the first layer in case of SIO,
we used the reduced cumulant

U1,L512^c1
4&/~3^c1

2&2!. ~38!

In order to fit the layer profiles we used the following
formula:

cn5cmax@11exp„22j'
21~n2n̂!…#21, ~39!

wheren̂ is the interface position andj' the interface width.
Note, that the inverse of the gradient ofcn equals twice that
of j' . This formula is analogous to the tanh function of the
interfacial profile between two ordered domains at a second-
order bulk transition.39

The typical run length varied from an average of 104

Monte Carlo steps/site to an average of 105 Monte Carlo
steps/site nearTcb for the larger choices ofL. We speak of
an ‘‘average’’ number of spin flips because the different lay-
ers were not sampled equally. For studies of wetting, layer-
ing, and surface critical phenomena,29–32,34we have found it
useful to consider sites near the free surfaces more often for
a spin flip than sites in the bulk~‘‘preferential surface site
selection’’!. Here the situation is different; the surface fields
suppress fluctuations in the layers very close to the surfaces,
and the largest and slowest fluctuations donot occur in the
bulk. In many cases considered they also do not occur at the
surface but rather at, or near, the interface~which is typically
a few layers away from the surface!. Therefore, we choose
either a ‘‘preferential surface site selection’’ which decays
exponentially to a constant withn, or one in which the
choice is proportional to the gradient]cn /]n. We also car-
ried out multiple, independent runs with different random
number sequences to obtain estimates for the statistical er-
rors.

Previous calculations40–47 of the bulk transition tempera-
tureTcb for this model do not have the precision required for
the present study. Therefore, the transition temperature of the
bulk alloy was determined by standard thermodynamic inte-
gration of data for large systems with fully periodic bound-
ary conditions. We estimate thatkBTcb /uJu51.738 005
60.000 050. A more detailed description of this study is
presented in the Appendix A.

IV. RESULTS FOR „100… SURFACES

In Fig. 2~a! we show the temperature variation of the
surface layer order parameterc1 and the bulk order param-
eter cb . This figure clearly shows the large jump in bulk
order which occurs atTcb , but it is also obvious from this
plot that surface order begins to develop well above the bulk
transition. The surface order increases as the temperature is
lowered, and it smoothly alters when the bulk finally under-
goes a discontinuous transition. At the first-order bulk tran-
sition temperatureTcb one notices a kink inc1(T), as one
may expect for an ‘‘extraordinary transition.’’@In the
literature,1,2,48,49 the extraordinary transition of an ordered

surface at a second-order transition is primarily discussed:
then c1(T) has no kink, since the singularity ofc1 is the
same as that of the bulk free energy density,f b
}u12T/Tcbu22ab : c1 then has a singularity only in its cur-
vature atTcb .

48 At a first-order transition,f b has a kink
singularity, and so doesc1.]

Furthermore there are obvious finite-size effects at the
surface ordering transition. The nature of the surface order-
ing transition and the critical behavior of our model is ex-
pected to be same as for a two-dimensional Ising model,
since obviously the (232) order of the ordered surface
plane has this symmetry. Since the surface transition tem-
perature is above the first-order bulk transition temperature
Tcb the nature of the surface transition is, of course, indepen-
dent of any wetting properties which occur asT→Tcb .

The manner in which the surface order propagates into the
bulk as the temperature is lowered can be seen in Fig. 3
where we present some profiles of the order parameter and
layer energy for a thick film of sizeL3L with L580 and
thickness 80,D,200. These large thicknesses ensure that
the two free surfaces are independent of each other, as can be
verified very nicely from the pair-correlation function data
shown in Fig. 3~c!: correlations parallel and perpendicular to
the free surfaces are identical in the bulk. At the interface the
correlations remain anisotropic and do not obey the symme-
try properties of the disordered cubic phase. The perpendicu-
lar correlations across the interface determine the wetting
process. The related correlation length should remain finite
as T approaches the first-order transition atTcb ; however,
this correlation length is not simply the correlation length of
the disordered bulk phase as it is usually assumed in the
literature.7 Furthermore, even in the disordered phase the
correlations can be anisotropic, and this must be taken into
regard when choosing a ‘‘typical’’ bulk correlation length. In
particular, this is true for the present model as shown in Fig.
4. The largest correlation length is found for the^100& direc-
tions, j^100&'4.3 in units ofa/2 atTcb.

FIG. 2. Temperature dependence of the surface layer order pa-
rameterc1 ~broken curve! and the bulk order parametercb ~full
curve! for the case of our~100! surface. Two linear dimensions
(L580, 128! are included to show the onset of size effects at
Tcs .

8942 53W. SCHWEIKA, D. P. LANDAU, AND K. BINDER



The width of the ordered layer grows with decreasing
temperature and the profile develops into an S-shaped curve.
It can be seen, that the gradient gradually decreases as the
interface moves into the bulk with decreasing temperature.
While for temperatures slightly below the surface transition

Tcs the evaluation of the gradient needs a proper analysis of
finite-size effects, we found that finite-size effects are not so
important for lowerT aboveTcb ~at least for the large sys-
tems considered!. To a good approximation the order-
parameter profiles can be fitted to Eq.~39! as shown for
example in Fig. 5. Apart from slight deviations close to the
surface, this provides an accurate determination of the posi-
tion n̂ and width j' of the interfaces. The results for the
thickness of the ordered surface layerl̄ ~which equals
n̂21/2! and for the squared widthj'

2 versus the reduced
temperaturet reveal the theoretically expected asymptotic
logarithmic behavior for a rough interface in the limit
T→Tcb . However, the more detailed predictions given by
Eqs. ~25! and ~26! are in disagreement with the present re-
sults. Identifyingj^100& ~as obtained in Fig. 4! with jd yields
v50.16 which is conceivable in view of the results for the
interfacial properties in case of SID at the~111! surface dis-
cussed below. However, these values and Eq.~26! would
result in a slope]j'

2 /] lnt'23 which is inconsistent with
the data in Fig. 5~c! ~slope'25.2!. In recent work28 Boulter
and Parry pointed out that the theory of wetting phenomena
should not be formulated only in terms of the interfacial
position l̄ , but should include the coupling ofl̄ to a second
length scalel 1; this length scalel 1 describes the range over
which the surface causes deviations from the simple interfa-
cial profile, precisely as we see them in Fig. 5~a!. It is con-
ceivable that such effects influence the interpretation of some
of our results. Of course, one also has to discuss whether the
roughening transitionTR for the ~100! interface may be
aboveTcb , in which case a qualitatively different behavior
results, where the width remains finite and is determined by
the finite range of correlations of the homogeneous bulk
phases. A crude estimate forTR may be the transition tem-
perature of the purely 2D system, which is indeed above
Tcb , and even aboveTcs . For further comparison, model
calculations@MC and cluster variation method~CVM! for
the same interaction model#50 show that the width of the

FIG. 3. Profiles for the~100! surface case:~a! the layer order
parametercn ; ~b! the normalized layer energiesEn /uJu whereJ is
the nearest-neighbor exchange constant;~c! the nearest-neighbor

correlation functiong(rW1) both for rW1 parallel and perpendicular to
the free surface.

FIG. 4. Anisotropy of the correlations in the disordered~bulk!
phase atTcb shown for the three directionŝ100&, ^110&, and
^111& ~simulated with full periodic boundary conditions, size: four
sc sublattices, each ofL35693). The largest correlation length is
seen in^100& directions,j^100&'4.3 a/2.
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~100! interface for the Cu3Au stoichiometry is large~10 fcc
cubes! but finite atTcb . Our data are not sufficient to give a
clear and definite answer to this aspect whether the interface
eventually becomes rough or not.

While in our preliminary communication21 on a related
model~including a next-nearest-neighbor interaction as well!
the behavior of the profiles of order parameter and energy
was qualitatively very similar to the data shown in Fig. 3, the
statistical accuracy of these old data simply was not good
enough to locate the surface transition temperatureTcs with
sufficient precision to make any meaningful statement about
the critical behavior of that model. Thus, in the present work,
we take up this problem again: Fig. 6 shows that our present
data~which span a range of linear dimensions fromL 5 32
to L 5 200! can locateTcswith reasonable precision, namely

kTcs /J51.89660.001. ~40!

The cumulant intersections~see Refs. 35–37 for the finite-
size scaling background that justifies this method! also are
compatible with a valueU1*50.6160.01, i.e., within our
accuracy this number is compatible with the value for the
two-dimensional Ising universality class.38 This conclusion is
supported by a finite-size scaling33–37 analysis: Fig. 7~a!
shows that the variation of the order parameter atTcs is
compatible withb/n51/8, as expected; furthermore, the op-
posite curvature for temperaturesT.Tcs and T,Tcs sup-
ports our belief that our estimate ofTcs is correct. From the
slope of the cumulants atTcs @see Fig. 7~b!# we extract an
exponentn50.960.1 which is consistent with the 2D Ising
value. Of course, the accuracy of our exponent estimates still
clearly is not yet very impressive, but since the data in Figs.
6 and 7 have already required a large CPU effort, it will not
be easy to improve these estimates further.

The second layer remains disordered atTcswhich justifies
the choice of the scalar two sublattice layer order parameter
for the consideration of the surface transition and explains
why the exponents we found agree with those of the 2D Ising
universality class. Using the same method of analyzing the

FIG. 5. ~a! Fit ~dotted line! of the order-parameter profile
for a ~100! surface using Eq.~39!. Data refer to a simula-
tion at T51.739uJu/kB for L3L3D5803803180. ~b! Semi-
log plot of thickness of the ordered surface layerl̄ (5n̂21/2)
vs t; ~c! semi-log plot of the squared width of the interfacej2

vs t. l̄ and j2 have the expected asymptotic behavior, however,
the more detailed predictions of Eqs.~25! and ~26! are not
confirmed.

FIG. 6. Variation of the fourth-order cumulant for the surface
layer with temperature for different values ofL for the ~100! case.
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finite-size effects we again found, within the accuracy of our
simulations, a continuous ordering transition of the second
layer atkTc,n52 /J51.79160.003, with exponentsb andn
which are still compatible with those of the 2D Ising model.

However, the wetting phase does not further proceed via a
sequence of continuous layer transitions, since as mentioned
above the gradient at the interface becomes finite and de-
creases asT approachesTcb . More precisely, we found that
the transition in the first layer is accompanied by the transi-
tion in the third layer~and further odd layers!, although the
amplitude is much smaller. With the ordering of the second
layer there is an analogous transition in the subsequent even
layers again with exponentially decaying amplitudes. This
picture appears to be at least plausible, since the competing
L10 ordering variantscx andcy of the full four sublattice
order parameter lead the same scalar order parametercn for
odd layersn, but tocn which are different in sign for even
layers n. Furthermore, the additional degeneracy of the
ground state, which could lead to APB’s and would disturb
this type of ordering, is already lifted at finite temperatures
~as it is for the infinite system!.

Finally, we consider the surface induced ordering in more

detail. Figure 8 shows that the surface excess quantities are
compatible with the behavior expected theoretically7,9–12 for
a SIO transition:cs andEs are compatible with logarithmic
divergences ast→0 (T→Tcb). Here, for the case of SIO we
define the reduced temperature variable ast (1)512Tcb /T.
The excess specific heat was obtained by use of the appro-

FIG. 7. ~a! Log-log plot of the~100! surface order parameter
c1 vsL where four different temperatures close toTcs are included;
straight line shown has been drawn with the theoretical slope of
21/8. ~b! log-log plot of the derivative of the cumulant versus the
ratio of sizesL/L8 ~squares:L85128, dots:L8522). Straight line
shown has a slope of 1/n with n50.9.

FIG. 8. Semi-log plot of~a! the surface excess ordercs vs t and
of ~b! the surface excess energyEs vs t ~total, parallel, and perpen-
dicular parts!; log-log plot of ~c! the surface excess specific heat
Cs for the ~100! case. For comparison the slope21 corresponding
to as51 is given.
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priate fluctuation relation@see Eqs.~36! and ~37!# and is
compatible with a Curie-Weiss-like divergence,Cs}t

21, i.e.,
as51.

In Fig. 9 we analyze the asymptotic behavior of the sus-
ceptibilities xs and x1 . The data forxs are essentially the
same if one considers the fluctuation of a scalar two sublat-
tice layer order parameter or of the full 3D order parameter
for bilayers. They are in agreement with the theoretical ex-
pectation for the exponentgs51. The statistical accuracy of
the layer susceptibilitiesx1 is not overwhelming. However,
both layer and bilayer data seem to approach a constant
value in the asymptotic limitT→Tcb , which means that
g150. Any comparison with the theoretical predictions dis-
cussed in Sec. II A have to be made with care, since here
~and generally for SIO! Tcs andTcb do not coincide. Instead,
there is only an extraordinary transition atTcb and hence a
vanishing exponentg1 may be expected.

FIG. 10. Temperature dependence of the surface layer order
parameterc1 ~broken curve! and the bulk order parametercb ~full
curve! for the case of an~111! surface.

FIG. 11. Profiles for the~111! surface case:~a! layer order pa-
rameterscn ; ~b! normalized layer energiesEn /uJu plotted versus
layer numbern.

FIG. 9. Log-log plot of~a! the surface excess susceptibilityxs

vs t and of ~b! the surface susceptibilityx1 vs t in case of a~100!
surface. Full dots~open squares! represent data based on the scalar
two sublattice order parameter~the 3D four sublattice order param-
eter!. xs slowly enter the asymptotic region, where the theoretically
expected modulus of the slope is given bygs51.
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V. RESULTS FOR „111… SURFACES

The behavior in this case is quite different from that seen
in the previous section. There is no surface order above
Tcb ~Fig. 10! and only finite-size short-range order can be
seen in the data. As the transition temperature is approached
from below, order-parameter profiles~see Fig. 11! reveal that
a somewhat disordered layer appears at the surface and the
interface between this layer and the bulk order moves into
the bulk as the transition is approached. The disordering be-
havior is reflected in the disappearance of surface order as
T→Tcb even though the bulk remains quite well ordered. We
have analyzedc1 for power-law behavior and find, from Fig.
12, that as the bulk transition temperature is approached, the
data slowly enter an asymptotic regime where they are well
described by

c1}~12T/Tcb!
b15t0.64~2!. ~41!

Three different lattice sizes were used in the simulation.
However, even close atTcb there are no obvious finite-size
effects forc1 parameter. In order to look more closely to
possible finite-size effects, we studied the size dependence of
uc1u at Tcb as shown in Fig. 12~b!; assuming a finite-size

scaling lawuc1u}L2b1 /n i @which is plausible in view of Eqs.
~6! and ~7!# we find n i'0.6060.02. Note, that the theoreti-
cal value isn i51/2 @see Eq.~19!#, which assumes that the
fluctuations in the surface plane are still governed by the
fluctuations along the interface. The comparison with the
data for a completely disordered film reveals that, at least for
large systems, there remains only a trivial finite-size effect,
which may have nothing to do with SID. One has to con-
clude thatc1 is not affected byn i and that the scaling law
assumed above does not apply here. Remember, that
^c1

2&5(1/L2)( i^c0c i&>1/L2 and that̂ uc1u& is of the same
order aŝ c1

2&1/2. Therefore finite-size scaling ideas are appli-
cable only ifb1 /n i,1.

We also attempted to locate the transition from the cumu-
lant crossings for different sizes~Fig. 13!; however, we find
no well-defined intersection point for any nonzero value of
U1 . This result can already be expected from the missing
finite-size effects above, and further, as will be shown below,
also because the layer susceptibilitiesx1,1 do not diverge as
T→Tcb .

In Fig. 14 we analyze the surface excess order parameter
and surface excess energy. Both quantities are nicely com-
patible with the expected7,9–12 logarithmic variation as T ap-
proachesTcb . Similarly, the behavior of the surface excess
specific heat is compatible withCs}t

21, as expected@see
Eqs.~36! and ~ 37!#.

The critical behavior of the different surface related sus-
ceptibilities is analyzed in Fig. 15. Similar to the slow as-
ymptotic behavior ofc1 and the excess quantitiescs and
Es , for t,0.003 the surface susceptibilityx1 and the surface
excess susceptibilityxs become at least compatible with the
expected exponents,g150.36 as determined fromb1 and the
scaling relation Eq.~17a!, andgs51 ~universal! as theoreti-
cally predicted7,9–12 @see Eq. ~16a!#. In our simulations
agreement was obtained for estimates of these two suscepti-
bilities from the appropriate fluctuation relations as well as
from the variation with the conjugate fieldH @shown in Figs.
15~c! and 15~d!# according to their definition as derivatives
in Eqs. ~4b! and ~4c!. We have not presented as much data
for the susceptibilities as we did for the order parameters,

FIG. 12. ~a! Log-log plot of the surface layer order parameter
for the ~111! case vs t;~b! log-log plot of the surface layer order
parameter atTcb vs L. Here open or filled symbols refer to runs
where the bulk is disordered or ordered, respectively. Straight lines
have slopes of about -1.04 and -2.06, respectively.

FIG. 13. CumulantsU1,L for the order parameter at the~111!
surface plotted vs temperature, for different choices ofL as indi-
cated.
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because the derivatives need longer MC runs and more CPU
time. Our valueb1'0.64 would imply alsog11'20.28, a
result which is nicely compatible with the data which are
shown in Fig. 15~e!. In order to analyze the critical behavior

of x11, we have subtracted the susceptibility contribution to
x11 in a disordered bulk, estimating this constant simply
from a simulation of a disordered system atTcb ~which is
equivalent to the case when the interface disappears towards
infinite distance from the surfaces!.

All results are in accordance with the scaling relations
@Eqs.~17a!–~17d!# although one can see that the asymptotic
region is approached rather slowly by the susceptibility data.
One may also note that the verification of critical wetting
theory for the standard Ising model has been notoriously
difficult.29–31

In view of the exponents which we find, our model sys-
tem belongs to the first scaling regime of Eq.~24a! for a
rough interface. At this point, we recall that Lipowsky7,9–12

has predicted~universal! mean-field exponents for SID for
the case of smooth interfaces only, i.e.,b151/2, g151/2,
g1,150, etc. That the interface is not smooth may be obvious
from the layer profiles~see Fig. 12! which reveal finite and
modest gradients at the positions of the interface. However,
as opposed to the situation of an interface in the bulk~APB!
for T,Tcb , the interface is bound to the surface and is not
rough in the sense of the Kosterlitz-Thouless theory that it
makes arbitrary excursions with increasing size of the sys-
tem. Therefore, we examined the interfacial roughness in the
limit T→Tcb where the interface becomes unbound from the
surface. From the layer profiles we obtained a fit to Eq.~39!
the interface positionn̂ and the interface widthj' . A typical
example in case of a free~111! surface is shown in Fig.
16~a!. The slight deviations near the surface~being unimpor-
tant for the present considerations! stem from the missing
bonds at the free surface. AtT5Tcb ,

51 the procedure is car-
ried out for a wide range of lateral dimensionsL parallel to
the surface, and the logarithmic divergence ofj2 is clearly
seen@Fig. 16~d!#. Of course, this divergence is only possible
in the limit T→Tcb , wheren̂ also diverges, but for the tem-
peratures considered the saturation ofj at a finite value~due
to the finiteness ofn̂) is not yet seen for the range ofL
displayed here.

Finally, our analysis of the interface profiles enables us to
check the validity of the theoretical predictions7 of the tem-
perature dependence of the interface position~and thus of the
surface layer thickness of the wetting phase,l̄5n̂21/2) and
the width of the interface itself, as given in Eqs.~25! and
~26!. The results shown in Figs. 16~b! and 16~c! confirm both
a logarithmic law for the position~which already followed
from the behavior of the excess quantitiescs andEs) as well
as a root logarithmic law for the interfacial thickness. How-
ever, while Eqs.~25! and~26! can be fitted to the data in this
case, there are some problems with the numbers that follow.
One may note, that there is an additional constant term
~which is related to the depinning temperature of the inter-
face!. While further the proportionality is even consistent
with the value forv50.28 @using our value ofb150.64 and
Eq. ~24a!#, the bulk correlation length,jd57.3~5! @in units of
~)/4!a#, is obviously larger than the bulk correlation length
as determined from independent simulations of the disor-
dered bulk phase~see Fig. 4!. As already discussed for the
case of a free~100! surface, the problems may arise from the
strong anisotropy of the correlations even in the disordered
phase. And we again draw attention to the corrections that

FIG. 14. ~a! Semi-log plot of~111! surface excess order param-
eter vst512T/Tcb . Different symbols show different lattice sizes
L; ~b! same as~a! but for the surface excess energy;~c! Log-log
plot of the surface excess specific heat vs t. Straight line with slope
21 corresponding toas51 is included for comparison.
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FIG. 15. Log-log plot of the~111! surface susceptibilitiesx1 ~a! and xs ~b! vs t. Filled dots are data calculated according to the
fluctuation relations using Eqs.~33! and~34!; open squares represent equivalent data obtained as the derivatives ofc1(H) andcs(H) which
are shown in~c! and~d!, respectively;~e! shows the singular part ofx1,1 vs t using Eq.~32!. Straight lines indicate the expected exponents
~a! g150.36, ~b! gs51, and~e! g1,1520.28, respectively. In parts~c! and~d! the broken straight lines indicate the error estimates for the
fits, while the dotted curves through the data points are intended to guide the eye.
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may result from the coupling of the interface positionl̄ to the
length scalel 1 over which the surface modifies the tanh pro-
file, Fig. 16~a!, which were discussed by Boulter and Parry.28

VI. CONCLUSIONS

We have presented an extensive Monte Carlo study of
surface phase transitions in a very simple model forAB bi-
nary alloys on a face-centered-cubic lattice. For the case of a
~100! surface we have found a continuous surface transition
atTcswhich is above the bulk transition temperatureTcb and
surface-induced ordering asTcb is approached from above.
Qualitatively, the occurrence of this SIO is plausible due to
the existence of ‘‘frustrated’’ interactions in the bulk ordered
structure, while no frustrated interactions occur in the~100!
surface. We find that the surface transition belongs to the
universality class of the two-dimensional Ising model.

For ~111! surfaces we find instead that the surface order
parameter vanishes continuously right at the bulk transition

temperature. In this case interactions are frustrated both in
the bulk and in the surface plane. All of the various quanti-
ties which we studied confirm the essential predictions of the
actual wetting theory that there is only a single independent
critical exponent, further the values of the expected universal
exponents, and also the scaling relations derived for SID. We
find clear evidence that the exponentb1 differs from its
mean-field value. This fact implies that the fluctuation cor-
rections proposed for critical wetting are indeed relevant
here. Concerning the possible interfaces in the bulk, we ex-
pect that slightly belowTcb the APB’s in ~111! planes to be
more rough than those in~100! planes, while the latter
should occur more often because of their lower energies.

We hope that this work will stimulate corresponding ex-
perimental studies. While there are quite a number of experi-
ments related to SID, in particular there is no experimental
work showing SIO in alloys. We have no doubt that this may
be a quite typical phenomenon and does not result merely
from the special choice of the interaction model. SIO may be

FIG. 16. ~a! Determination of the interfacial widthj' for the case of a~111! surface by fitting the observed profile~data points, and
broken curve! to Eq. ~39!, for T51.734. Here a system of size 12031203160 is used, and fit parameters aren̂58.22, j'56.94. ~b! The
thickness of the disordered surface layerl̄ vs t, and~c! the squared thickness of the interfacej' vs t exhibit asymptotically a logarithmic
divergence.~d! Semi-log plot of the squared width vs the lateral linear dimensionL at Tcb to demonstrate the logarithmic divergence
expected for rough interfaces. HereT51.738 is shown where forL5200, n̂ was about 3066.
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expected, for instance, in particular in those alloys where
long period ordered structures have been observed indicating
the low energy of antiphase boundaries. SIO may occur
whenever a free surface favors a particular ordering variant,
in particular, if the ordered ground state has a lower than
cubic symmetry. Therefore, at first sight one would not ex-
pect SIO in alloys like Cu3Au. However, the presence of a
surface always lowers the symmetry of the bulk state, and
depending on the interaction model SIO may take place for
any alternating order-parameter profile perpendicular to a
free surface. As will be discussed in another publication, the
presence of sufficiently strong~uniform! surface fields can
also lead to SIO. In Appendix B we present arguments, how-
ever, that weak uniform surface fields~which are expected to
occur in real alloys! would not change the phenomena quali-
tatively.
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APPENDIX A: DETERMINATION OF THE BULK
TRANSITION TEMPERATURE

A precise determination of the bulk transition temperature
Tcb is needed in order for us to accurately extract the various
critical exponents as given in this paper. Since the asymp-
totic region is reached very slowly (t,0.01) the uncertainty
in t should be considerably less than 1024 for there to be two
decades int for the determination of the exponents. Existing
results in the literature are either incorrect or of insufficient
accuracy for this purpose, as can be seen from Table I.

Various ways exist to determineTcb for this first-order
transition~see Refs. 52–55 for recent discussions!. The MC
data for the finite system having either a~111! or a~100! free
surface could, in principle, be used for this purpose as well;

however, in all cases one must eventually extrapolate to a
system of infinite linear dimension perpendicular to the sur-
faces. Therefore, it is advantageous to consider the system
without free surfaces and with fully periodic boundary con-
ditions. A standard and well exploited method uses the inte-
gration with ~inverse! temperatureb of the specific heats.54

Starting from states of known entropy, i.e.,T5` and
T50, one determines the free energy for the disordered and
ordered branch. In order to obtain a reliable value forTcb , as
well as a reliable estimate for its range of confidence, one
needs to carefully consider not only the apparent statistical
errors but also all possible sources of systematic errors. We
therefore carefully examined size effects, the quality of ran-
dom numbers, and effects due to the manner in which the
MC algorithm sweeps and selects sites in the crystal. Hence,
~i! we studied the finite-size effects and different choices of
distances between selected sites sligthly aboveTcb , ~ii ! in
the high-T limit we compared the simulated results to exact
high-T series expansion,~iii ! we used different integration
schemes.

The simulations were performed using a single-site spin-
flip algorithm. The size of the system finally used was
43693, i.e., it consisted of four simple cubic sublattices
each of equal linear dimensionsL569, containing in total
more than 1.3 million Ising spins. For this size the correla-
tion length always remained much smaller thanL and finite-
size effects did not introduce any significant systematic error
@cf. Fig. 17,E(N) at T51.7391#. The number of MC steps
per site ranged from 1000 far from the transition temperature
to 5000 close toTcb ~this choice was determined by the
energy fluctuations!. Each update of the entire lattice was
used in computing averages; however, for a proper estimate
of the statistical error each MC run was analyzed in parts,
chosen such that the averages taken for these did not show
any correlations for subsequent data. We used 100 data
points for the energies of the disordered high-T branch and
134 values for the low-T branch. The density of points was
chosen approximately proportional to the curvature of the
smooth functionE(T) @or E(b)#, such that all contributions

TABLE I. Results forTcb in units of uJu/kb .

Tcb Method Reference

1.893 CVM-T ~cluster variation method,
tetrahedron approximation! 40

1.746~5! High- and low-temperature series 41
1.71 MC ~Monte-Carlo! 42
1.766~4! MC 43
1.810 CVM-TO

~tetrahedron-octahedron! 44
1.73 MC 45
1.745 ‘‘Mixed’’ CVM

~TO and 13–14 point clusters! 46
1.736~1! MC 47
1.738005~50! MC This work

FIG. 17. Energy E versus N21/3 slightly above Tcb , at
T51.7391, for the disordered phase. Here, full periodic boundary
conditions are used. Finite-size effects become negligible for data at
largeN.
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to the integral have a similar statistical variance. The large
number of data is a computational advantage, since by inte-
gration all data contribute to reduce the statistical error.

The high-T series for the nearest-neighbor pair-correlation
function is

^sisj& i2 j515( wntanh
n~bJ!, ~A1!

where the first leading coefficients arew1521, w254,
w35228 andw4568.

For the integration we used the simplest Newton-Cotes
formulas, i.e., the trapezoidal rule and Simpson rule, as well
as cubic spline approximations. The comparison of the dif-
ferent integration methods allows us to estimate any possible
systematic errors introduced by the integration procedures.
The integration based on cubic spline approximations is
more precise than the Newton-Cotes rules; however, since
the energy as a function of the~inverse! temperature is a
rather smooth function, the trapezoidal and Simpson rules
already yield quite similar results.~ For comparison, the trap-
ezoidal and Simpson rules yieldTcb51.738 16uJu/kB and
Tcb51.738 01uJu/kB , respectively!. While the cubic splines
have no specific requirements to the data basis, this allows us
to estimate systematic errors resulting from different choices
for the location and number of nodes. Figure 18 illustrates
the behavior of the two branches of the free energy near the
intersection point.

To summarize our results, we obtained the following:

Tcb5~1.738 00560.000 05!uJu/kB ,

Fcb5~22.030 9760.000 02!uJu,

E25~21.772960.0003!uJu,

E15~21.332360.0002!uJu,S25~0.148560.0003!kB ,

S15~0.402060.0002!kB . ~A2!

These error bars contain statistical as well as the estimated
systematic uncertainties at a 95% confidence level~twice the
standard deviations!. Statistical errors are twice as large as
the systematic ones.

APPENDIX B: DISCUSSION OF GROUND STATES AND
THE EFFECT OF A UNIFORM SURFACE LAYER

FIELD

As is well known, in an Ising-type description of a binary
alloy AB three pairwise interactions are present,EAB ,
EAA , andEBB , but for the description of bulk behavior only
the combinationEAB2(EAA1EBB)/2 matters~which trans-
lates into the exchange constantJ of the equivalent Ising
magnet!, since the other relevant combinationEAA2EBB can
be absorbed in the scale of the chemical potential difference
between the species. At a surface, however, this is no longer
true.1 The effect of missing neighbors is to generate a term
H1
(131)(Si in the Ising Hamiltonian, withH1

(131) propor-
tional toEAA2EBB with the sum restricted to the spins in the
surface plane.$ Note, that we use the superscript ‘‘(131)’’
to distinguish this uniform field from the staggered fieldH1
@Eq. ~4a!#, which is conjugated to the (232) superstructure
in the surface layer.% In addition, the surrounding medium
may act with different forces onA and B species in the
surface layer, and hence this again results in a contribution of
the above form,H1

(131)(Si . Here we restrict ourselves for
simplicity to short-range forces only, ignoring possible ef-
fects on more distant layers in this qualitative discussion.

Since in a real system the effect of a termH1
(131)(Si in

the Hamiltonian is always present, it is important to make
sure that it does not completely invalidate the description of
the phenomena of SIO and SID in our model, where such a
term was ignored so far. We first discuss the ground-state
behavior atT50, assuming our orientation of the ordered
domains as shown in Fig. 1~stacking of planesABABalong
the z axis!. Now simple bond counting yields the following
results for the energies per spin:

Ebulk522uJu, ~B1!

E~100!5E~010!522uJu, ~B2!

E~001!5H1
~131! , ~B3!

E~111!523uJu/2. ~B4!

Note that for~100!, ~010!, and~111! surfaces the energies per
spin in the surface planes do not depend onH1

(131) , because
for the assumed stacking they all contain an equal number of
A and B atoms. From the fact thatE(111) is enhanced in
comparison toEbulk , it is already plausible that surface-
induced disordering should occur for~111! surfaces, since
they are energetically less stable than the bulk. On the other
hand, for~100! and~010! surfaces— which are equivalent by
symmetry, of course—the energy of spins in the bulk and at
the surface is the same. Thus, simple ‘‘bond counting’’ argu-
ments cannot prove that surface-induced ordering should oc-
cur, entropic effects are crucial to stabilize the order in the
surface plane at higher temperatures than in the bulk. Since

FIG. 18. Free energy versus temperature as calculated by ther-
modynamic integration for a large system (43693 atoms! with
fully periodic boundary conditions. The first-order bulk transition
temperatureTcb is determined by the crossing of the branches for
disordered and ordered phase.
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this is an entropic effect, it it not surprising that SIO exists in
our model only at temperatures up to about 10% higher than
Tcb .

For large enough fields the~001! surface is more stable
than the~100! and ~010! surfaces, namely for

H1
~131!.H1c

~131!52uJu. ~B5!

Alternating A, B planes parallel to the surfaces are more
stable than the (232) structure. Thus, when one cuts an fcc
crystal along an~100! plane such that one has a plate geom-
etry where two surfaces have much larger area than all other
surfaces, the degeneracy among the three types of domains
~stacking ofABAB . . . planes along thex axis, y axis or z
axis! is lifted by surface effects: if Eq.~B5! holds, the order-
ing of the crystal will be such that the planes of pureA and
pure B are parallel to the surfaces, while for
H1
(131),H1c

(131) , the arrangement shown in Fig. 1~a! ~and
studied at finite temperatures forH1

(131)50 in Sec. IV of
this paper! will be the energetically preferred one.

Of course, at finite temperature a fieldH1
(131).0 will

have interesting effects on the SIO and SID behavior. E.g., in
the case of the (232) structure in the~100! plane@Fig. 1~a!#
theA-rich andB-rich sublattice of the surface plane are no
longer equivalent~just as a magnetic field breaks the sym-
metry between the two sublattices of a simple antiferromag-
net, enhancing the sublattice magnetization along the field
direction and diminishing the sublattice magnetization with
opposite orientation!. However, we expect that the resulting
surface enrichment effect will only lead to a shift ofTcs , and
a short-range perturbation of the order parameter and energy
profiles should result, while qualitatively the phenomena re-
main the same.

APPENDIX C: FLUCTUATION RELATIONS
FOR THE SURFACE EXCESS SUSCEPTIBILITIES

AND SPECIFIC HEATS

We consider the free-energy density of a thin film of
thicknessD and a lateral size ofL3L ~in absence of any
surface fieldsH150 for simplicity!:

F

L2D
5 f b~T,H !1

2

D
f s~T,H !5 f film~T,H !. ~C1!

An analogous decomposition holds trivially for all deriva-
tives, in particular for the magnetization per spin in the film:

mfilm52
1

L2D S ]F

]H D
T

5mb1
2

D
ms~T,H ! as D→`,

~C2!

with

mb52S ] f b
]H D

T

,

ms52S ] f s
]H D

T

, ~C3!

and the susceptibility per spin

xfilm5S ]mfilm

]H D
T

52
1

L2D S ]2F

]H2D
T

5xb1
2

D
xs~T,H !,

~C4!

with

xb52S ]mb

]H D
T
S ]2f b

]H2D
T

,

xs52S ]ms

]H D
T
S ]2f s
]H2D

T

. ~C5!

SinceFfilm , mfilm , xfilm are densities of additive variables
@F(T,H) and its derivatives are extensive thermodynamic
variables#, we can write them as sums over layer quantities:

f film5
F

L2D
5

1

D(
n51

D

f n~T,H !, ~C6!

where f n(T,H) denotes the free energy per spin in thenth
layer. This also holds for the derivatives

mfilm5
1

D(
n51

D

mn~T,H !,

xfilm5
1

D(
n51

D

xn~T,H !, ~C7!

where

mn52S ] f n
]H D

T

,

xn5S ]mn

]H D
T

52S ]2f n
]H2D

T

. ~C8!

Now we know that in the considered limit (D→`) the pro-
files f n ,mn ,xn ultimately reach their bulk values in the cen-
ter of the film, and thus it makes sense to rewrite
f n(T,H), mn(T,H), xn(T,H) as follows:

f n5 f n2 f D/21 f D/2 , etc. ~C9!

and hence~assuming an even number of layers, but this is
not really essential!

f film5
2

D(
n51

D/2

f n~T,H ! ~C10!

5 f b~T,H !1
2

D(
n51

`

$ f n~T,H !

2 f b~T,H !%. ~C11!

Putting` instead ofD/2 in the last step is allowed, because
f n(T,H)2 f b50 nearn5D/2, so we add only zeros. Com-
paring Eqs.~C1! and ~C10! we see that

f s~T,H !5 (
n51

`

$ f n~T,H !2 f b~T,H !%. ~C12!
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Obviously this reasoning goes through for any derivatives,
e.g.,

mfilm5mb~T,H !1
2

D(
n51

`

$mn~T,H !2mb~T,H !%,

~C13!

ms~T,H !5 (
n51

`

$mn~T,H !2mb~T,H !% ~C14!

and

xfilm5xb~T,H !1
2

D(
n51

`

$xn~T,H !2xb~T,H !%,

~C15!

xs~T,H !5 (
n51

`

$xn~T,H !2xb~T,H !%. ~C16!

Of course, this is also compatible with the fluctuation rela-
tions, since we can simply start from the susceptibility fluc-
tuation relation for the total film

kBTxfilm5
1

L2D H K S (
n

snD 2L 2K (
n

snL 2J
5

1

L2D(
mn

$^smsn&2^sm&^sn&%. ~C17!

Due to the translational invariance in the directions parallel
to the free surfaces we can decompose the summation over
m in a sum over them8 spins in the layer, and the sumn over
layers:

xfilm5
1

D(
n

xn , with

kbTxn5(
0,n

~^s0sn&2^s0&^sn&!. ~C18!

wheren denotes any site in the system and 0 an element of
thenth layer. The formula forxn can also be written as

kbTxn5L2D~^CnC&2^Cn&^C&! ~C19!

~derivation exactly as shown before forn51). The order
parameter in thenth layer has to be correlated with the order
in the whole film. Of course, the exactly analogous formulas
hold for derivatives with respect to temperature, and hence
since the energy per spin of the whole film

efilm5eb1
2

D
es5

1

D(
n51

D

en , ~C20!

we have for the specific heats per spin

cfilm5cb1
2

D
cs5

1

D(
n51

D

cn ~C21a!

and for the surface excess specific heat

cs5 (
n51

`

~cn2cb!. ~C21b!

Since

c5
]e

]T
5

]e

]b

]b

]T
52

1

T2
]e

]b

(kB51), from e5^H& or L2Den5^Hn&5TrHne
2bH/

Tre2bH we conclude

T2cn5~L2D !21~^HnH&2^Hn&^H&!,

whereH denotes the total Hamiltonian, while bothHn and
H are unnormalized Hamiltonians. The correct expression
for cs hence is

T2cs5
1

L2D(
n

$^HnH&2^Hn&^H&2^HD/2H&

2^HD/2&^H&%. ~C22!

Note thatcb has to be calculated as

T2cb5
1

L2D
$^HnH&2^Hn&^H&%n5D/2 , ~C23!

andnot as

T2cn,n5
1

L2D
$^HnHn&2^Hn&^Hn&%n5D/2 , ~C24!

which is the analog of a layer susceptibility in the bulk. For
calculating the specific heat in the bulk, one must correlate
the energy in the bulk layern5D/2 with the total energy
H of the film, not just with the energy in that layers~other-
wise transverse energy-energy correlations would be miss-
ing!. Apparently, neither the surface excess specific heatcs
nor the surface excess susceptibilityxs would be correctly
obtained by considering@instead of Eqs.~C15! and ~C21b!#
the fluctuation relations of the surface excess energy or the
surface excess magnetization, respectively.
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