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Using extensive Monte Carlo simulations we have studied phase transitions in a fcc model with antiferro-
magnetic nearest-neighbor couplingin the presence of different free surfaces which lead either to surface-
induced order or to surface-induced disorder. Our model is a prototype for CuAu-type ordering alloys and
shows a strong first-order bulk transition at a temperalkTg,/|J| = 1.738 005(50). For fre€l00 surfaces,
we find a continuous surface transition at a temperalyte- T, exhibiting critical exponents of the two-
dimensional Ising model. Surface-induced ordering occurs as the temperature appiiQgdras the surface
excess order and surface excess energy diverges logarithmically. For @ ¥ig¢eurface, the surface order
vanishes continuously ak., accompanied by surface-induced disor¢®ID). In addition to a logarithmic
divergence of the excess quantities of order and energy, we find further critical exponents which confirm the
actual theory of SID and critical wetting and which can be understood in terms of rough interfaces. For both
cases of free surfaces, the asymptotic behavior of the squared interfacial width shows the expected logarithmic
divergence.

I. INTRODUCTION low-electron electron-diffractiofLEED) study of a free
(100 surface of a CyAu alloy,"**® and the critical surface

Phase transitions in real crystals are affected by the presxponeni3; was later determined by spin-polarized LEED.
ence of the surfaces as well as by possible interfaces betwedfonte Carlo(MC) simulations* of an Ising model of this
ordered domains called antiphase boundafi&BB’s). A  alloy also indicated a possible continuous decrease of the
number of excellent theoretical studieshave led to de- surface order as the bulk transition was approached.
tailed predictions for the properties of semi-infinite systems From experiments on the same alloy using evanescent
and have been accompanied by some remarkable experimexray scattering in grazing incidence evidence was found for
tal work in recent years. A review of the related experimentalthe increasing thickness of the disordered surface layer as the
investigations has been given by DoSchhere are different  transition temperature is approachédhe related phenom-
scenarios for how the phase transitions at the surface and gnon of surface melting was observed in lead by ion
the near-surface region depend on the order of the bulk phaseattering® and confirmed by LEED? In the case of SID
transition. there is no clear quantitative experimental evidence up to

For second-order bulk transitions we now have a rathenow for the predicted logarithmic divergence of the thickness
good picture of the range of possible surface behdvidn  of a wetting layer of the disordered phase at the surface.
some situations the surface undergoes a transition at the bubkowever, such behavior has been observed by transmission
transition temperature, but the surface critical behavior islectron microscopy for the analogous situation in the bulk
described by critical exponents which differ from both theof a Cu-Pd(17%) alloy where the width of the antiphase
two-dimensional(2D) as well as bulk 3D values. In other boundaries divergefogarithmically as the transition tem-
cases, when the exchange in the surface layer exceeds thmtrature is approached from beléWAlthough discontinuous
within the bulk by a sufficient amount, the surface may orderrder-disorder transitions are quite common in alloy systems,
above the bulk transition, exhibiting 2D exponents. most experimental examples consider simple structures

The situation in which the bulk undergoes a first-ordershowing transitions from a cubic orderetd1, in the ex-
transition has been considered by Lipowsky'> who  amples aboveto a cubic disordered phase thus avoiding the
showed that surface-induced disord@ID) and surface- complications due to the possible strain between ordered
induced ordenSIO) may then be associated with the bulk variants of lower symmetry. However, as has been shown in
transition. One of the most notable results is the continuoua previous Monte Carlo study, the fcc alloys having a Cu-
decrease of the order parameter in the surface layer as thau-type order [ 1,) and tetragonal symmetry are not only
bulk transition temperature is approached. Such a behaviarandidates for the observervation of SID but also for SIO
had already been found in 1973 by Sundaratral. in a  which may occur because a fr¢g00) surface reduces the
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frustration effect$! It is the aim of the present work to con-
tribute to the understanding of both SID and SIO by Monte
Carlo simulation of a suitable model.

In this paper we consider a simple model for AB bi-
nary alloy which can, of course, be reinterpreted as an Ising
magnet, or as a lattice-gas model for a fluid or allspins
S ==*1 at lattice sitd corresponding to the site being occu-
pied or empty, or containing aA atom orB atom, respec- ! o
tively). For our Monte Carlo simulation, a thick-film geom- i Sl
etry is used in which there are two parallel free surfaces, and  S== e e S M R MU
the nature of the phase transitions in these surfaces forms the S TSt S e
subject of this study. By “thick film” we mean that the two
surfaces can be considered as essentially noninteracting and
that our study is meant to address the behavior of semi-
infinite bulk systems with free surfaces. Preliminary results
have been presentédfor the case where both nearest- (@)
neighbor and next-nearest-neighbor coupling are present, but
only a single orientation of the surfa¢®00) was considered z(001]
[Fig. 1(@]. We now present results with only nearest-
neighbor coupling and two different orientations of free sur-
faces. L e

In the following section we describe the theoretical back- = (M surface
ground on SID, to provide the framework in which our study =
can be interpreted, and motivate the choice of quantities that
will be studied. In Sec. lll we describe the model and meth-
ods used, and in Secs. IV and V we present result$1fo0)
and (111) surfaceqFig. 1(b)], respectively. We conclude in P S0 2 e
Sec. VI, while the ground-state behavior and the precise es- RS g S

timation of the bulk transition temperature are discussed in = —or [ =1= xtmo

the appendixes. P S APET
y[010)

i

Il. THEORETICAL BACKGROUND (0)

A. Surface-induced disordering
FIG. 1. Section of the ordered lattice of t#eB alloy in the

n In t:]fls sei(r:]téon, \(/jve d{ecf:jll t”hr? ?S)S'C tze%rertilrfal pr:?d'frflonsi_lo (CuAul) structure. Frustrated nearest-neighbor interactions are
on surlace-induce sorderiné consiaering only the — on by dashed linega) (100 surface oriented such that there is

standard situation which is equivalent to critical wetfifg? (2x2) order in the surface layefb) (111) surface(shaded Note
and disre_ga!r_ding o'_cher gsi;[gations which correspond 10 SUfgqt i this case a (1) order in the surface results, where one-
face multicritical points’®~ . . _ third of the bonds in the surface layer are still frustratéuick
The basic phenomenon of interest is the continuous decayoken liney. Unfrustrated nearest-neighbor interactions are not
of the local order parametef, at the surface layer as the drawn in order to avoid overcrowding of these pictures.
first-order transition in the bulklocated atT,) is ap-
proached from below,involving a power law with an expo-

nent g, Since B,=0 in d=3 dimensions, the divergence bfas

t—0 is only logarithmic>"°~12As a result, the disordered
8 B layer increasingly “screens” the effective field acting on the
Yot t=(1-T/Tp)—0. @ surface layer due to the still well-ordered bulk, and thus Eq.

(1) becomes plausible. The interfacial thickness or roughness

This continuous behavior at a discontinuous bulk transitior]S expected to diverge as well but more slowly as follows
occurs because a layer of the disordered phase gradually iﬂ'om22
trudes at the surface. For the three-dimensional systems gov-

erned by short-range forces it has been predicted that the 2
thicknessl of this layer ¢, being the correlation length of £ /&g In(1At) 175
order-parameter fluctuations in the disordered bulk phase xt=",  p, =0(yn). 3)

should diverge as

t—0,

— As for more standard critical phenomena, one can define a
locgqin(1), =0, (23 number of divergent response functions to “fieldd” (con-
jugate to the order parameter in the budindH, (conjugate

to #41). Note, that in this caskl andH, are staggered fields.

_ In the theory of surface effects on bulk critical phenonténa
locggt™Ps,  Bs=0(In), t—0. (2b) one distinguishes between the susceptibilities

where one may define a critical exponent
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i/, In the last step we have redefined the scaling functions to
express the singularities in terms pfinstead ofr.
Y1= (a_%) “t=7 10 (4b) Now a comparison of the free-energy functionals of SID
YloH ]/, ’ ' and critical wetting shows?? that these problems are
equivalent to each other if one approaches wetting criticality
and along a special pattwherep ) in the (u,7) plane. Since
it turns out that the singularities along these paths are the
:(a_‘ps) ot~ 7%, t—0 (40) same as along the pathr=€0,u variable, we consider for
Xs ) . . L . .
aH ], simplicity singularities along the latter path.

From Egs.(89—(11b) it is easy to derive the critical be-
havior of the various response functions for this wetting
ﬁroblem. We recall that for critical wetting temperaturelike
variables andH, scale in the same way, since one can cross

Y= —[IF(THH)IH ] 4., (58 the wetting transition linéd;=H,(T) either by variation of
Tt T or of H,. Therefore, taking a derivative of E(8a) with
while ¢, can be obtained as a derivative with respect to theespect tor we get
local fieldH,

In Eqg. (4c) we have used the surface excess orglewhich
in turn is defined as the derivative of the surface excess fre
energy

e TS g () e ()Y, (12)

where we have indicated how the power law figr as func-
Finally we menti_on th_at the correlation function for order- tion of u can be inferred by requiring that the corresponding
parameter fluctuations in the surface layer can be used tgba“ng functionlpl behaves as a power law for small argu-

Y1=—[dF(T,H,H)/H ]y 4. (5b)

define a correlation lengt§ , ments such that the dependencerocancels. From Eq(12)
R 5 we can read off the value of the exponght
(41(0) 41 (p)) — (1) xexp —pl§), p—=,  (6)
- . . 2(d—1)—-2/v"
wherep is a coordinate in the surface layer, and ,81:(1—agv)/AW=W (13
§céqt™ ", t—0. (7

Using Egs.(5a) and (8a) we obtain the critical behavior of
In order to discuss the scaling relations between these criticde excess quantities, in particular ¢f:

exponents for SID, and the theoretical predictions existing W

for them, we recall that SID can be interpreted as a critical Yo w2 as TADA (14)
wetting phenomenohn’?? The scaling relations for critical
wetting with short-range forces follow from a scaling analy-
sis for Fs and for &, in terms of scaling functian and Bs=(2—a¥— A™)/A%=(d—3)/(d+1). (15)
X. We use here a superscriptv” in order to avoid confu-

sion between the exponents for critical wetting and the ex- Because of the vanishings in d=3 one expects a loga-

determining the critical exponert

ponents for SID: rithmic divergence of the surface excess order parameter
- y s, as well as of other excess quantities like the surface
Fe=12 %F(ur %), (8a)  excess energl. and the thickness of the wetting layldfEq.
. (2b)].
=1 MX(ur A, (8b) Similarly one obtains the surface excess susceptibility, the

. N . layer susceptibilities and their exponents, respectively,
wherer andu are temperaturelike and fieldlike variables for y P P P ¥

the wetting transitione , v andA" are the associated criti- —[2-(2-a¥)/a%]

o
cal exponents. Fod<d* =3, the upper critical dimension- XsmH
ality for wetting transitions, one has the standard hyperscal- 2 oW 4
ing relation Ye=2— A—WS= g (=1ind=3) (163
2—ad=(d=1)»" (9) .
Xloclu—u(l—as)m ,

for surface excess quantities. Now one can shtvat for

critical wetting there is in fact &ingle independent expo- 1-a"  3—d+ 2"

nent, sinceA" also can be related t0" —1— -
AV=(d+1)»"/2. (10
P . . . Y MM—Q‘S”/AW
In d=3 dimensions the resulting equations Fayand & can 11 '

hence be written as follows:
—2(d—21)+4n"

d+1

Y11= ag/AY= (160

Fs= TZVWIE(,U.T_ZVW)=M?(M_1/2VWT) (11a
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From Eqs.(13)—(16) one can read off the scaling laws w=KgTep/ (473 12), (23
B1t+y1=1, (178 whereT,, is the transition temperature of the bukis the
interfacial stiffness of the interface between the ordered and
Bstvs=1, (17b disordered phase coexisting &t,, and | is its intrinsic
thickness(Lipowsky’ identifies| = &,). The exponenj3; is
—2d+6+4/" rledicted(tc;pb(\aN Y ldentiiest =4 xponenps
natvsem g 2% (arg P
B1=12+ wl2, 0<w<1/2, (249
_2d-1
vt 2B =57 (=1 ind=3). (17d Bi= 20— w2, 12<w<2, (24b)
Some of the above relations can be obtained very directly, of =1, w=2. (240
course, if we simply replacg by the temperature distance ’
t and 7 by H; in Egs.(119 and(11b), to find [Note that because of Eq20) this prediction is simply
. " equivalent to those of Refs. 22—27 for the exponehtdis-
Fo=tf(t Y2 H,), (183 cussed in the theory of critical wettingResults for other
. exponents simply follow from the scaling relations written
gllzrl’zg(t*/ZVWH ), (18p  down above. It is, however, of interest to show the relation

for the logarithmic relations for the thickness of the surface

(remember that we have restricted ourselvesl#a3 herg. near layer and the widthé, of the (rough interfacé?2

From Eqs.(8b), (180 one sees that the exponentdefined

in Eq. (7) for SID | -
in Eq. (7) for SID is ég=1Z1+20]n(1h), O0<w<1/2, (25

v =v"A"=2/(d+1)(=1/2 in d=3). (19
— 1/2
From Eqg.(18a we can immediately recognize the scaling gi/gd_\/a[ln(llt)] » O<os<172. (26)
structure ofy;, by taking a derivative with respect td,, Here we have restricted ourselves to the regiawe1/2,
PRy which is of most interest. Note that while a direct determi-
=71 (1 Ha), nation of w from Eq. (23) is difficult, since it is hard to
calculateX, one could infer its value indirectly if Eq$25
B1=1-1/2", d=3, (20) y if Eq$25)

and (26) are used. However, in computer simulation studies
and a further derivative yieldg,, the singular part of Of wetting in the Ising modét~!it was already not possible

which scales as to verify the prediction€ 2" for v" that correspond to Egs.
(249—(240). The interpretation of these findings is uncertain:
Y11=t 1% 1(t" Y2 H ), It has been proposed that one must be extremely close to the
' ’ transition to see the asymptotic behador that the wet-
y11=—1+1/", d=3. (21) ting transition is weakly of first ordé’. (Boulter and Parry

) ) ) have recently proposed another explanaffoithis will be
These results contain the mean-field theory of 8iD\?as @ fyrther discussed lateiit is unclear to us whether these latter
special case: for the mean-field theory of wettifg=1, and  pregictions should apply to the present problems as well.
hence(in d=3) It should be stressed that E4R3)—(26) can apply only if
w the interface between the ordered and disordered phase is
B1=112, y,=12, 71,=0, A"=2, ag=0, rough. Lipowsky supposed that Eq223 is valid if one is
(223 below the roughening transition temperature of this interface.
while the following critical exponents aréndependent of In view of Monte Carlo studies and of molecular field calcu-
v") universal and exact id=3: lations for semi-infinite Potts mod&lon wetting near the
roughening temperature of the Ising motfelye would like
Bs=0, vs=1, » =0, y=1/2, as=1. (22b  to mention the possibility that for nonrough interfaces SID
might be replaced by a sequence of layering transitions. An
effective exponen3®™=1 can then be defined only in the
Sense that the sequence of steps in a log-log plot is approxi-
mated by a straight liné.

Note that Eq. (189 can also be interpreted as
F =t?"asf(t"“1H,), where the exponents; andA; have
the standard meaning as in the usual theory of surface critic
phenomena, see Ref. 1, and-2,=(d—1)y| is satisfied
with ag=1, vj=1/2 ind=3. We also have 2 ag=,+A,
and 2-as=(2—ag)/AY, of course, andys=2v. Since
d=3 is the upper critical dimension for critical wetting, all ~ While SID and SIO are commonly discussed in the litera-
scaling laws Eqs(178—(17d are indeed satisfied with these ture to be just equivalent phenomena, one has to note one
Landau theory exponents, E@2). important difference, namely that for SIO the surface neces-
Now one knows that fluctuation corrections for critical sarily orders at a different and higher temperature than the
wetting are possibly very important, and the renormalizationbulk in order to wet the bulk phase. An estimate for the
group theorie€ 2 predict thatv" depends on a nonuniver- surface transition temperature can be obtained from a com-
sal parametew, parison to the two-dimensional model. Hence, one expects

B. Surface-induced ordering
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Tb<Ts<T2P. One important consequence is that the pre- 1

dictions for the surface properties, and also the scaling rela- Yn=7 (M= My—Mg+m,)

tions discussed above, can no longer be valid. Instead, at the

surface transition one expects a behavior which falls in the

universality class of the corresponding purely 2D system. lﬁy,n:Z(ml—szr Mz —My)

The exponenty| describing the singularity of¢, ¢

«(T—Tgg "I, is simply the bulk 2D exponent(d=2), 1

and the exponenp; describing the order parameter; Yy n==(My+my—mz—my). (29

o(T—T.9 P1is the bulk 2D exponenB(d=2). Note that S 4

at Ts the susceptibilitiey1;, x1, andxs all have the same  Similarly, one can define a total order parameter for the

singularity [ x|T—Tcd 7?2, y(d=2) being the 2D bulk  whole film and a bulk order parameter for the inner part of

susceptibility exponehtThe scaling relations for the surface the film. However, in most cases, the anisotropy of the sys-

exponents af ., thus are just standard bulk scaling laws. tems considered is sufficiently strong to single out only one
For T—T,, the logarithmic law for the excess quantities, component of order, while the other two components, as well

e.g., those of the order, the energy, and the interface positioms their fluctuations, are negligible. This holds throughout for

should still be valid. Surface properties are expected to showhe case of SID at the fred11) surface. In other words, in

an “extraordinary” transition (singularities in the second the ordered phase the symmetry is broken, and only one type

derivatives, kink ing). of domain is considere@vhich in the simulation is created
by preparation of the initial stateSince the transition is of
IIl. MODEL AND SIMULATION TECHNIQUE first order in the bulk, the system does not “jump over” to

the orderings corresponding to the other types of domains, at
We study the Ising Hamiltonian on the face-centereddeast not for the large lattice sizes studied. In these cases, it is
cubic lattice in aLXLXD geometry, applying periodic justifiable to confine ourselves to a two sublattice order pa-
boundary conditions irx andy directions. The two free rameter
L XL surfaces are oriented to be eiti{@b0) or (111) faces.

The Hamiltonian used is 1
Yyn=> (My—my), (30
H=-3>,SS, S==*1, (27)  which is simply a single layer order parameter and a scalar
{0 quantity. Both types of order parameters, and their related

susceptibilities, were calculated in the simulations. The sur-

where the sum is over all nearest-neighbor pair§) (with face excess order parameter is obtained by

antiferromagnetic nearest-neighbor coupling, Je<0. Note
that in the present case, the atoms in the surface layers do not D/2

have any modified nearest-neighbor coupling, but they do, of Y= 2 {¢n— ). (31)
course, see fewer neighbors than do those atoms in the bulk. n=1

We used a Metropolis, single spin-flip method with preferen-ry 4 (bi-)layer susceptibilitiesy
tial layer sampling which was determined by the nature of.j . ihe fluctuation relatiorid :
the order-parameter profile. We implemented an efficient,

vectorized single spin-flip algorithm on a CRAY-YMP com-

and x,, were obtained

puter. Since our aim was to gain an overview of the system Xnn= L2 ) = (i) () K T, (32)
behavior for a wide range of temperatures, excessively large 5
values forL were avoided. TypicallyL varied from 32 to Xn=L D¢ thop — () (o)) /KT, (33)

128, and thicknesses studied varied fr@m 40 to D=200
to ensure that the two surfaces were independent.

In principle, a complete description of the CuAu-type or- D/2
der requires a three-dimensional order parameter xs= 2 {xn—xb}- (39
b= (y by, ;) which refers to the three possible orienta- n=1

tions of ordered domains, vv_h|ch are alternate Iayermg Oﬁere,xb denotes thébi-)layer susceptibility in the bulk. The
pure Cu and pure Au planes in one of the th(260) direc- gy face layer susceptibilitieg, and the excess susceptibili-
tions. The components of the order parameter are necessarfis , were also calculated according to their definitions as
based on four sublattlges and can be defined for bilayergerivatives in Egs(4b) and (4¢). As discussed in Appendix
only. For example, the first componep , the order param- ¢ there are no fluctuation relations analogous to E8@.
eter of the bilayen is defined as and (33) for the excess quantities such gs.
Furthermore, we considered the layer enerdigs(nor-
1 . 20 malized per spip the bulk and total energids, and E,;,
lﬂx,nZF_ E Sje'k"i, where k=— (1,0,0. the surface excess enery, the layer specific hedt,, and
e bilayer n a 28 the surface excess specific h€at:

while the surface excess susceptibility follows as

D/2
Using the sublattice magnetizations;, m,, mz, andm, E :2 (E,—Ep) (35)
one obtains sSA T ’
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Cr=L?D((E Ep) —(E)(Ec))/ T2, (36) 1.00 ¢ —
D/2 r Ban, (IOO)Esurface 1
8., '
Co=3 (Ca=Cy). @ Y Ny
) :§ 1
For locating the transition of the first layer in case of SIO, *
we used the reduced cumulant 050 - bulk 3;._‘ |
Up=1= () (3(yD)?). (38) H ool
In order to fit the layer profiles we used the following ' |
formula: | aL=128]
1 e i T T
Yo=dmal L+exp(—2¢ (=AD" (39) S EE R i PR Nl
1.60 1.70 1.80 1.90

wheren is the interface position ang, the interface width.
Note, that the inverse of the gradient@f equals twice that k T/| J|
of ¢, . This formula is analogous to the tanh function of the B
interfacial profile between two ordered domains at a second-

order bulk transitior® FIG. 2. Temperature dependence of the surface layer order pa-

. . rametery, (broken curvg and the bulk order parametes, (full
The typical run length varied from an average of*10 curve for the case of ouf100 surface. Two linear dimensions

Monte .Carlo steps/site to an average of Monte Carlo (L=80, 12§ are included to show the onset of size effects at
steps/site neaf ., for the larger choices df. We speak of T,

an “average” number of spin flips because the different lay-

ers were not sampled equally. For studies of wetting, layer- o ) ) )

ing, and surface critical phenome#a32%4we have found it surface at a second.—order transmon' 5 pnmanly (_jlscussed:
useful to consider sites near the free surfaces more often fépen #1(T) has no kink, since the singularity af, is the

a spin flip than sites in the bulkpreferential surface site Same as that of the bulk free energy density,
selection”). Here the situation is different; the surface fields°‘|1_-|-/-|—cb|27‘:;b - 41 then has a singularity only in its cur-
suppress fluctuations in the layers very close to the surface¥ature atTc,.™ At a first-order transitionf, has a kink
and the largest and slowest fluctuationsru occur in the ~ Singularity, and so doeg,.] -

bulk. In many cases considered they also do not occur at the Furthermore there are obvious finite-size effects at the
surface but rather at, or near, the interfésich is typically ~ Surface ordering transition. The nature of the surface order-
either a “preferential surface site selection” which decaysPected to be same as for a two-dimensional Ising model,
exponentially to a constant with, or one in which the Since obviously the (22) order of the ordered surface
choice is proportional to the gradieat,,/dn. We also car- plane ha; this symmetry. Since the surfacg_ transition tem-
ried out multiple, independent runs with different randomPerature is above the first-order bulk transition temperature
number sequences to obtain estimates for the statistical ef<b the nature of the surface transition is, of course, indepen-
rors. dent of any wetting properties which occur Bs>Ty,.

Previous calculatio$~#7 of the bulk transition tempera- ~ The manner in which the surface order propagates into the
ture T, for this model do not have the precision required forbulk as the temperature is lowered can be seen in Fig. 3
the present study. Therefore, the transition temperature of th&here we present some profiles of the order parameter and
bulk alloy was determined by standard thermodynamic intelayer energy for a thick film of sizé& XL with L=80 and
gration of data for |arge Systems with fu”y periodic bound- thickness 868:D < 200. Th-ese Iarge thicknesses ensure that
ary conditions. We estimate thakgT.,/|J|=1.738005 the two free surfaces are independent of each other, as can be

+0.000 050. A more detailed description of this study isVerified very nicely from the pair-correlation function data

presented in the Appendix A. shown in Fig. &c): correlations parallel and perpendicular to
the free surfaces are identical in the bulk. At the interface the
IV. RESULTS FOR (100) SURFACES correlations remain anisotropic and do not obey the symme-

try properties of the disordered cubic phase. The perpendicu-
In Fig. 2@ we show the temperature variation of the lar correlations across the interface determine the wetting
surface layer order parametgt and the bulk order param- process. The related correlation length should remain finite
eter ¢»,. This figure clearly shows the large jump in bulk as T approaches the first-order transitionTat,; however,
order which occurs af,, but it is also obvious from this this correlation length is not simply the correlation length of
plot that surface order begins to develop well above the bulkkthe disordered bulk phase as it is usually assumed in the
transition. The surface order increases as the temperature literature! Furthermore, even in the disordered phase the
lowered, and it smoothly alters when the bulk finally under-correlations can be anisotropic, and this must be taken into
goes a discontinuous transition. At the first-order bulk tran+egard when choosing a “typical” bulk correlation length. In
sition temperaturd;, one notices a kink iny,(T), as one particular, this is true for the present model as shown in Fig.
may expect for an “extraordinary transition.fIn the 4. The largest correlation length is found for #i®0 direc-

literature}**®*° the extraordinary transition of an ordered tions, £10~4.3 in units ofa/2 at Ty,
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FIG. 4. Anisotropy of the correlations in the disorderdlk)
phase atT., shown for the three direction§100), (110), and
(111) (simulated with full periodic boundary conditions, size: four
sc sublattices, each &f®=69%). The largest correlation length is
seen in(100 directions,£100~4.3 a/2.

T.s the evaluation of the gradient needs a proper analysis of
finite-size effects, we found that finite-size effects are not so
important for lowerT aboveT,, (at least for the large sys-
tems considered To a good approximation the order-
parameter profiles can be fitted to E®9 as shown for
example in Fig. 5. Apart from slight deviations close to the
surface, this provides an accurate determination of the posi-
tion n and width ¢, of the interfaces. The results for the
thickness of the ordered surface laykr(which equals
n—1/2) and for the squared Widtﬁf versus the reduced
temperaturet reveal the theoretically expected asymptotic
logarithmic behavior for a rough interface in the limit
T—T.,. However, the more detailed predictions given by
Egs. (25 and (26) are in disagreement with the present re-
sults. Identifyingé1q (as obtained in Fig. with & yields
0=0.16 which is conceivable in view of the results for the
interfacial properties in case of SID at tfiEL]) surface dis-
cussed below. However, these values and &) would
result in a slope?/d Int~—3 which is inconsistent with
the data in Fig. &) (slope~—5.2). In recent work® Boulter

and Parry pointed out that the theory of wetting phenomena
should not be formulated only in terms of the interfacial
position|, but should include the coupling ¢fto a second
length scald ;; this length scalé; describes the range over
which the surface causes deviations from the simple interfa-
cial profile, precisely as we see them in Figa)5 It is con-

FIG. 3. Profiles for thg100) surface case(a) the layer order
parametenry, ; (b) the normalized layer energi&s, /|J| whereJ is
the nearest-neighbor exchange const#ok;the nearest-neighbor
correlation functiorg(r) both forr, parallel and perpendicular to
the free surface.

ceivable that such effects influence the interpretation of some
of our results. Of course, one also has to discuss whether the
roughening transitionTg for the (100 interface may be
aboveT,,, in which case a qualitatively different behavior
results, where the width remains finite and is determined by
the finite range of correlations of the homogeneous bulk
The width of the ordered layer grows with decreasingphases. A crude estimate fog may be the transition tem-
temperature and the profile develops into an S-shaped curvperature of the purely 2D system, which is indeed above
It can be seen, that the gradient gradually decreases as tfig,, and even abovd .. For further comparison, model
interface moves into the bulk with decreasing temperaturecalculations[MC and cluster variation methotCVM) for
While for temperatures slightly below the surface transitionthe same interaction mod&l show that the width of the
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FIG. 6. Variation of the fourth-order cumulant for the surface
layer with temperature for different values loffor the (100 case.

(100 interface for the CyAu stoichiometry is largg10 fcc
cubes but finite atT.,. Our data are not sufficient to give a
clear and definite answer to this aspect whether the interface
eventually becomes rough or not.

While in our preliminary communicatiéh on a related
model(including a next-nearest-neighbor interaction as well
the behavior of the profiles of order parameter and energy
was qualitatively very similar to the data shown in Fig. 3, the
statistical accuracy of these old data simply was not good
enough to locate the surface transition temperaifytewith
sufficient precision to make any meaningful statement about
the critical behavior of that model. Thus, in the present work,
we take up this problem again: Fig. 6 shows that our present
data(which span a range of linear dimensions fram= 32
toL = 200 can locateT . with reasonable precision, namely

kT.s/J=1.896+0.001. (40)

The cumulant intersectionsee Refs. 35—37 for the finite-
size scaling background that justifies this methatso are
compatible with a valueJ} =0.61+0.01, i.e., within our
accuracy this number is compatible with the value for the
two-dimensional Ising universality clad&This conclusion is
supported by a finite-size scalitig®’ analysis: Fig. )
shows that the variation of the order parameterTagt is
compatible withg/v=1/8, as expected; furthermore, the op-
posite curvature for temperaturd@s>T.; and T<T.g sup-
ports our belief that our estimate ®f is correct. From the
slope of the cumulants &k [see Fig. )] we extract an
exponenty=0.9+ 0.1 which is consistent with the 2D Ising
value. Of course, the accuracy of our exponent estimates still

FIG. 5. (a) Fit (dotted line of the order-parameter profile clearly is not yet very impressive, but since the data in Figs.

for a (100 surface using Eq.39). Data refer to a simula-
tion at T=1.739J|/kg for LXLXD=80x80x180. (b) Semi-
log plot of thickness of the ordered surface layef=n—1/2)
vs t; (c) semi-log plot of the squared width of the interfagé

6 and 7 have already required a large CPU effort, it will not
be easy to improve these estimates further.

The second layer remains disordered gfwhich justifies
the choice of the scalar two sublattice layer order parameter

vs t. | and €2 have the expected asymptotic behavior, howeverfor the consideration of the surface transition and explains

the more detailed predictions of Eq$25) and (26) are not
confirmed.

why the exponents we found agree with those of the 2D Ising
universality class. Using the same method of analyzing the
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finite-size effects we again found, within the accuracy of our
simulations, a continuous ordering transition of the second
layer atkT, ,—»/J=1.791+0.003, with exponentg and »
which are still compatible with those of the 2D Ising model.
However, the wetting phase does not further proceed via a
sequence of continuous layer transitions, since as mentioned
above the gradient at the interface becomes finite and de-
creases a¥ approached,. More precisely, we found that
the transition in the first layer is accompanied by the transi-  (c)
tion in the third layer(and further odd layejsalthough the
amplitude is much smaller. With the ordering of the second F|G. 8. Semi-log plot ofa) the surface excess ordgg vst and
layer there is an analogous transition in the subsequent evej (b) the surface excess enerBy vst (total, parallel, and perpen-
layers again with exponentially decaying amplitudes. Thisdicular part; log-log plot of (c) the surface excess specific heat
picture appears to be at least plausible, since the competirg for the (100) case. For comparison the slopel corresponding
L1, ordering variants, and ¢, of the full four sublattice to a;=1 is given.
order parameter lead the same scalar order paranjgtir
odd layersn, but to ¢, which are different in sign for even detail. Figure 8 shows that the surface excess quantities are
layers n. Furthermore, the additional degeneracy of thecompatible with the behavior expected theoreticaliy*for
ground state, which could lead to APB’s and would disturba SIO transitionys and Eg are compatible with logarithmic
this type of ordering, is already lifted at finite temperaturesdivergences as—0 (T—T). Here, for the case of SIO we
(as it is for the infinite system define the reduced temperature variableé @g=1—"T,/T.
Finally, we consider the surface induced ordering in moreThe excess specific heat was obtained by use of the appro-
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priate fluctuation relatiorisee Egs.(36) and (37)] and is * | 1.60000
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In Fig. 9 we analyze the asymptotic behavior of the sus- A NIRRT
ceptibilities ys and y;. The data forys are essentially the 150 - * 172000 A
same if one considers the fluctuation of a scalar two sublat- sl |
tice layer order parameter or of the full 3D order parameter o | 173300
for bilayers. They are in agreement with the theoretical ex- ) + | 1.73625 ]
pectation for the exponent;=1. The statistical accuracy of FEIIifiifiiiiii:
the layer susceptibilitieg, is not overwhelming. However, i R S e gL assssiiit
both layer and bilayer data seem to approach a constant _, o | | |
value in the asymptotic limiffT—T.,, which means that 0 10 20 30 40
v,=0. Any comparison with the theoretical predictions dis- ©) n

cussed in Sec. Il A have to be made with care, since here
(and generally for SIQT.s and T, do not coincide. Instead,
there is only an extraordinary transition Bt,, and hence a
vanishing exponeny; may be expected.

FIG. 11. Profiles for the111) surface case(a) layer order pa-
rametersy, ; (b) normalized layer energieB,/|J| plotted versus
layer numbem.
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scaling law] 4| <L ~#1/"I [which is plausible in view of Egs.
(6) and(7)] we find »|~0.60+0.02. Note, that the theoreti-
cal value isy =1/2 [see Eq.(19)], which assumes that the
fluctuations in the surface plane are still governed by the
fluctuations along the interface. The comparison with the
data for a completely disordered film reveals that, at least for
large systems, there remains only a trivial finite-size effect,
which may have nothing to do with SID. One has to con-
clude thaty, is not affected byy; and that the scaling law
assumed above does not apply here. Remember, that
()= (1IL?) 2 (ot} =1/L? and that(| 44| is of the same

FIG. 12. (a) Log-log plot of the surface layer order parameter grder ag )12 Therefore finite-size scaling ideas are appli-

for the (111) case vs tb) log-log plot of the surface layer order
parameter aff, vs L. Here open or filled symbols refer to runs
where the bulk is disordered or ordered, respectively. Straight Iineisal

have slopes of about -1.04 and -2.06, respectively.

V. RESULTS FOR (111) SURFACES

cable only if 8, /v <1.

We also attempted to locate the transition from the cumu-
nt crossings for different sizé&ig. 13; however, we find

no well-defined intersection point for any nonzero value of
U,. This result can already be expected from the missing
finite-size effects above, and further, as will be shown below,

The behavior in this case is quite different from that seerflso because the layer susceptibilitygs, do not diverge as
in the previous section. There is no surface order abovd —Tcp.

T.p (Fig. 10 and only finite-size short-range order can be

In Fig. 14 we analyze the surface excess order parameter

seen in the data. As the transition temperature is approachédd surface excess energy. Both quantities are nicely com-

from below, order-parameter profilésee Fig. 11lreveal that

patible with the expectéd~?logarithmic variation as T ap-

a somewhat disordered layer appears at the surface and thepachesT . Similarly, the behavior of the surface excess
interface between this layer and the bulk order moves intspecific heat is compatible witBxt 1, as expectedsee
the bulk as the transition is approached. The disordering bezgs.(36) and( 37)].

havior is reflected in the disappearance of surface order as The critical behavior of the different surface related sus-
T— T, even though the bulk remains quite well ordered. Weceptibilities is analyzed in Fig. 15. Similar to the slow as-
have analyzegs, for power-law behavior and find, from Fig. ymptotic behavior ofi;; and the excess quantitie& and
12, that as the bulk transition temperature is approached, thes, for t<<0.003 the surface susceptibiligy and the surface
data slowly enter an asymptotic regime where they are weléxcess susceptibilitys become at least compatible with the

described by

Y1 (1= T/Tey) P1=10042),

(41)

expected exponenty; = 0.36 as determined frofd; and the
scaling relation Eq(17d, and ys=1 (universa) as theoreti-
cally predicted®'? [see Eq.(16a]. In our simulations
agreement was obtained for estimates of these two suscepti-

Three different lattice sizes were used in the simulationbilities from the appropriate fluctuation relations as well as
However, even close &, there are no obvious finite-size from the variation with the conjugate fieldl [shown in Figs.
effects for ¢, parameter. In order to look more closely to 15(c) and 1%d)] according to their definition as derivatives
possible finite-size effects, we studied the size dependence of Egs. (4b) and (4c). We have not presented as much data
|| at T, as shown in Fig. 1@d); assuming a finite-size for the susceptibilities as we did for the order parameters,
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of x11, we have subtracted the susceptibility contribution to
x11 In a disordered bulk, estimating this constant simply
from a simulation of a disordered systemTat, (which is
equivalent to the case when the interface disappears towards
infinite distance from the surfaces

All results are in accordance with the scaling relations
[Egs.(179—(17d)] although one can see that the asymptotic
region is approached rather slowly by the susceptibility data.
One may also note that the verification of critical wetting
theory for the standard Ising model has been notoriously
difficult.2%-31

In view of the exponents which we find, our model sys-
tem belongs to the first scaling regime of HG@4a for a
rough interface. At this point, we recall that Lipowsiy*2
has predicteduniversal] mean-field exponents for SID for
the case of smooth interfaces only, i.8,=1/2, y;=1/2,
v1,1=0, etc. That the interface is not smooth may be obvious
from the layer profilegsee Fig. 12 which reveal finite and
modest gradients at the positions of the interface. However,
as opposed to the situation of an interface in the BAIRB)
for T<T.p, the interface is bound to the surface and is not
rough in the sense of the Kosterlitz-Thouless theory that it
makes arbitrary excursions with increasing size of the sys-
tem. Therefore, we examined the interfacial roughness in the
limit T— T, where the interface becomes unbound from the
surface. From the layer profiles we obtained a fit to )
the interface position and the interface widtl§, . A typical
example in case of a fre€lll) surface is shown in Fig.
16(a). The slight deviations near the surfageing unimpor-
tant for the present consideratiorstem from the missing
bonds at the free surface. At=T,,,>! the procedure is car-
ried out for a wide range of lateral dimensiongarallel to
the surface, and the logarithmic divergenceébfis clearly
seenFig. 16d)]. Of course, this divergence is only possible
in the limit T—T,,, wheren also diverges, but for the tem-
peratures considered the saturatiorf @t a finite valugdue
to the finiteness of) is not yet seen for the range &f
displayed here.

Finally, our analysis of the interface profiles enables us to
check the validity of the theoretical predictidrsf the tem-
perature dependence of the interface positard thus of the
surface layer thickness of the wetting phdsen— 1/2) and
the width of the interface itself, as given in Eq&5) and
(26). The results shown in Figs. (i and 16c) confirm both
a logarithmic law for the positioiwhich already followed
from the behavior of the excess quantitigsandE,) as well
as a root logarithmic law for the interfacial thickness. How-
ever, while Egs(25) and(26) can be fitted to the data in this
case, there are some problems with the numbers that follow.
One may note, that there is an additional constant term
(which is related to the depinning temperature of the inter-
face. While further the proportionality is even consistent
with the value foro=0.28[using our value of3;=0.64 and

plot of the surface excess specific heat vs t. Straight line with slopgq_ (24a)], the bulk correlation lengthé,=7.3(5) [in units of

—1 corresponding texg=1 is included for comparison.

(V3/4)a], is obviously larger than the bulk correlation length
as determined from independent simulations of the disor-

because the derivatives need longer MC runs and more CPtkred bulk phasésee Fig. 4. As already discussed for the

time. Our valueB;~0.64 would imply alsoy;;~—0.28, a

case of a fre¢100) surface, the problems may arise from the

result which is nicely compatible with the data which are strong anisotropy of the correlations even in the disordered

shown in Fig. 1%). In order to analyze the critical behavior

phase. And we again draw attention to the corrections that
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expected for rough interfaces. HeFe= 1.738 is shown where fdr =200, h was about 3@ 6.

may result from the coupling of the interface positicio the ~ temperature. In this case interactions are frustrated both in
length scald; over which the surface modifies the tanh pro-the bulk and in the surface plane. All of the various quanti-
file, Fig. 16a), which were discussed by Boulter and P&fty. ties which we studied confirm the essential predictions of the
actual wetting theory that there is only a single independent
critical exponent, further the values of the expected universal
exponents, and also the scaling relations derived for SID. We
We have presented an extensive Monte Carlo study ofind clear evidence that the exponefi differs from its
surface phase transitions in a very simple model&ér bi- mean-field value. This fact implies that the fluctuation cor-
nary alloys on a face-centered-cubic lattice. For the case of gections proposed for critical wetting are indeed relevant
(100 surface we have found a continuous surface transitiomere. Concerning the possible interfaces in the bulk, we ex-
at T.s which is above the bulk transition temperatiitg and  pect that slightly belowf ., the APB’s in(111) planes to be
surface-induced ordering &g, is approached from above. more rough than those (100 planes, while the latter
Qualitatively, the occurrence of this SIO is plausible due toshould occur more often because of their lower energies.
the existence of “frustrated” interactions in the bulk ordered We hope that this work will stimulate corresponding ex-
structure, while no frustrated interactions occur in (h80  perimental studies. While there are quite a number of experi-
surface. We find that the surface transition belongs to thenents related to SID, in particular there is no experimental
universality class of the two-dimensional Ising model. work showing SIO in alloys. We have no doubt that this may
For (111) surfaces we find instead that the surface ordeibe a quite typical phenomenon and does not result merely
parameter vanishes continuously right at the bulk transitiorffrom the special choice of the interaction model. SIO may be

VI. CONCLUSIONS
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TABLE I. Results forT.y in units of |J|/ky, . 1,325 e e
Teb Method Reference L 4
1.893 CVM-T (cluster variation method, L ]
tetrahedron approximation 40 E -133 |- —
1.7465) High- and low-temperature series 41 m B BP0 tl 1* | * ]
1.71 MC (Monte-Carld 42 I T ]
1.7664) MC 43 L J
1.810 CVM-TO -1.335 — —
(tetrahedron-octahedrpn 44 i T
1.73 MC 45 I ]
1.745 “Mixed” CVM L ]
(TO and 13-14 point clusters 46 1340 b Lo Lo beahs

1.7361) MC 47 0.01 0.02 0.03 0.04

1.73800%50) MC This work N—(1/3)

-1/3 H
expected, for instance, in particular in those alloys wherer_F'G' 17. EnergyE versus N™™ slightly above T, at

long period ordered structures have been observed indicatinc% 1.7391, for the dls_ordergd phase. Here, full per_lo_dlc boundary
. . nditions are used. Finite-size effects become negligible for data at

the low energy of antiphase boundaries. SIO may OCCU{argeN

whenever a free surface favors a particular ordering variant, '

Icnuk?iirtslarjr!?r:étn; th_?hg:gfeorreed g{c;il:gtd;tmeoEZSWzJ%Wﬁéttgi_rhowever, in all cases one must eventually extrapolate to a
y Y. ’ 9 system of infinite linear dimension perpendicular to the sur-

Fs)Sff;?;Oalmaa”sosllj l;kri ﬁ??us ;m?/erc’)ft?ﬁepgeffggt:f :nf ces. Therefore, it is advantageous to consider the system
ways ‘ow y y u ' ithout free surfaces and with fully periodic boundary con-

depending on the interaction model S.IO may takg place foEiitions. A standard and well exploited method uses the inte-
any alternating or'der—pa_rameter proflle perpendicular to ration with (inversé temperature3 of the specific heat¥!
free surface. As will be discussed in another publication, th tarting from states of known entropy, i.eT=oo and
plres?ncg of sufficiently stronfuniform) surface fields can T=0, one determines the free energy for,thé disordered and
also lead to SIO. In Appendix B we present arguments, how- ' . .
ever, that weak uniform surface fieldshich are expected to ordered branch. In order to obtain a reliable valueTtgy, as

occur in real alloyswould not change the phenomena quali-We” as a re“a}bllf estimate for its range of confldence', one
tatively. needs to carefully consider not only the apparent statistical

errors but also all possible sources of systematic errors. We

therefore carefully examined size effects, the quality of ran-
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owsky for helpful comments on the manuscript. One of the  The simulations were performed using a single-site spin-

authors(W.S) wishes to acknowledge W. Selke for discus- flip algorithm. The size of the system finally used was
sions. 4x 69, i.e., it consisted of four simple cubic sublattices

each of equal linear dimensioths=69, containing in total
more than 1.3 million Ising spins. For this size the correla-
tion length always remained much smaller thaand finite-
size effects did not introduce any significant systematic error
A precise determination of the bulk transition temperatureg[cf. Fig. 17,E(N) at T=1.7391. The number of MC steps
T.p is needed in order for us to accurately extract the variouper site ranged from 1000 far from the transition temperature
critical exponents as given in this paper. Since the asympto 5000 close toT, (this choice was determined by the
totic region is reached very slowlyt€0.01) the uncertainty energy fluctuations Each update of the entire lattice was
in t should be considerably less than fdor there to be two  used in computing averages; however, for a proper estimate
decades ir for the determination of the exponents. Existing of the statistical error each MC run was analyzed in parts,
results in the literature are either incorrect or of insufficientchosen such that the averages taken for these did not show
accuracy for this purpose, as can be seen from Table I. any correlations for subsequent data. We used 100 data
Various ways exist to determin€,, for this first-order points for the energies of the disordered higlranch and
transition(see Refs. 52-55 for recent discussjoffhe MC 134 values for the lowF branch. The density of points was
data for the finite system having eithe(ld1) or a(100 free = chosen approximately proportional to the curvature of the
surface could, in principle, be used for this purpose as wellsmooth functiorE(T) [or E(8)], such that all contributions

APPENDIX A: DETERMINATION OF THE BULK
TRANSITION TEMPERATURE
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These error bars contain statistical as well as the estimated
F/1J| T CrrrTTETrT systematic uncertainties at a 95% confidence lévéte the

. standard deviations Statistical errors are twice as large as
the systematic ones.

-2.0305

\ 1 APPENDIX B: DISCUSSION OF GROUND STATES AND
C ] THE EFFECT OF A UNIFORM SURFACE LAYER
FIELD

-2.0310

As is well known, in an Ising-type description of a binary
alloy AB three pairwise interactions are presefi,g,
. Eaa, andEgg, but for the description of bulk behavior only
] the combinationE,g— (Eap+ Egg)/2 matters(which trans-
ol N lates into the exchange constahtof the equivalent Ising
1.737 1.738 1.739 1.740 magnet, since the other relevant combinatiBp,— Egg can
be absorbed in the scale of the chemical potential difference
T between the species. At a surface, however, this is no longer

truel The effect of missing neighbors is to generate a term
FIG. 18. Free energy versus temperature as calculated by the"_](l

“Ds s in the Ising Hamiltonian, withH{**Y) propor-
modynamic integration for a large systemX89° atoms with 1 N : ! L o
fully periodic boundary conditions. The first-order bulk transition tional toEaa—Egg with the sum restricted to the spins in the

temperaturel ., is determined by the crossing of the branches forsugac.e pla-lnhe{ r’]\.IOte’ -;hat V}/.elgsfe the r?uperscrlpt d*f]le)i
disordered and ordered phase. to distinguish this uniform field from the staggered fi¢ld

[Eq. (4a@)], which is conjugated to the (22) superstructure

to the integral have a similar statistical variance. The largdn the surface layer.In addition, the surrounding medium
number of data is a computational advantage, since by intdD@y act with different forces o and B species in the
gration all data contribute to reduce the statistical error. ~ Surface layer, and 1helnce this again results in a contribution of
The highT series for the nearest-neighbor pair-correlationthe above formH{™*YSS;. Here we restrict ourselves for
function is simplicity to short-range forces only, ignoring possible ef-
fects on more distant layers in this qualitative discussion.
Since in a real system the effect of a tek§**V= S in
the Hamiltonian is always present, it is important to make
sure that it does not completely invalidate the description of
the phenomena of SIO and SID in our model, where such a
For the integration we used the simplest Newton—Coteterm was igni)red S0 faf- We first_discu_ss the ground-state
ehavior atT=0, assuming our orientation of the ordered

formulas, i.e., the trapezoidal rule and Simpson rule, as we . M. .
as cubic spline approximations. The comparison of the dif_domams as shown in Fig. (btacking of plane#\BAB along

ferent integration methods allows us to estimate any possiblg(;guzltzxf'cs))r' t’;‘gvé:g??éi b(()ar;ds ci?]l.mtmg yields the following
systematic errors introduced by the integration procedureg. gles per spin:
The integration based on cubic spline approximations is

-2.0315

(siSj)i—j=1= 2 WytanH(BJ), (A1)

where the first leading coefficients ake;=—1, w,=4,
ws;= —28 andw,=68.

more precise than the Newton-Cotes rules; however, since Epur=—2[J], (B1)
the energy as a function of thgnverse temperature is a
rather smooth function, the trapezoidal and Simpson rules E(100=E010=—2[J], (B2)
already yield quite similar resulté For comparison, the trap-
ezoidal and Simpson rules yielfl,,=1.738 16J|/kg and E(001)=H(11X1>, (B3)
T.p=1.738 01J|/kg, respectively. While the cubic splines
have no specific requirements to the data basis, this allows us E 110= —3JJ]/2. (B4)

to estimate systematic errors resulting from different choices

for the location and number of nodes. Figure 18 illustrates\ote that for(100), (010, and(111) surfaces the energies per
the behavior of the two branches of the free energy near th?pin in the surface planes do not depend—tﬁh“) because

Intersection point. _ . for the assumed stacking they all contain an equal number of
To summarize our results, we obtained the following: A and B atoms. From the fact they;y is enhanced in

Top=(1.738 005 0.000 05|J|/Kg, comparison toE,, it is already plausible that surface-
induced disordering should occur f6t11) surfaces, since
Fop=(—2.030 97-0.000 03|J], they are energetically less stable than the bulk. On the other
hand, for(100 and(010 surfaces— which are equivalent by
E_=(—1.7729-0.0003|J], symmetry, of course—the energy of spins in the bulk and at
the surface is the same. Thus, simple “bond counting” argu-
E,=(—1.3323:0.0002|J|,S_=(0.1485-0.0003kg, ments cannot prove that surface-induced ordering should oc-

cur, entropic effects are crucial to stabilize the order in the
S, =(0.4020+ 0.0002kg . (A2) surface plane at higher temperatures than in the bulk. Since
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this is an entropic effect, it it not surprising that SIO exists in M 1 [ 6%F 2
our model only at temperatures up to about 10% higher than  Xfim= (W) =- ﬁ(ﬁ) =xot 5xs(T.H),
ch- T T

For large enough fields th@01) surface is more stable (C4
than the(100 and (010 surfaces, namely for with

HMY>HD=2|]). (B5) _[omy| [y
- Xo= T\ R )\ oHz)

Alternating A, B planes parallel to the surfaces are more T T
stable than the (£ 2) structure. Thus, when one cuts an fcc )
crystal along ar{100 plane such that one has a plate geom- __ am3> (’9 f3> (C5)
etry where two surfaces have much larger area than all other Xs dH | 1 aH? T'

surfaces, the degeneracy among the three types of domains N N )
(stacking of ABAB. . . planes along the axis,y axis orz ~ SiNC€Fiim, Miim, Xsim are densities of additive variables
axi9) is lifted by surface effects: if E(B5) holds, the order- [F(T,H) and its derivatives are extensive thermodynamic
ing of the crystal will be such that the planes of pérand variableg, we can write them as sums over layer quantities:

pure B are parallel to the surfaces, while for e LD
H{PY<H(EXD | the arrangement shown in Fig(al (and o 23 (T.H) (6
studied at finite temperatures fét{"*=0 in Sec. IV of im=12p Dy M

thlsorf)ape} wil bf ;[hgter:ergetmattlly pref?gl;((jlggio i where f,(T,H) denotes the free energy per spin in thih
course, at finite temperature a fietdy wi _layer. This also holds for the derivatives

have interesting effects on the SIO and SID behavior. E.g., in

the case of the (% 2) structure in th€100) plane[Fig. 1(@)] 1D
the A-rich andB-rich sublattice of the surface plane are no Mim==>, My(T,H),
longer equivalentjust as a magnetic field breaks the sym- Di=1

metry between the two sublattices of a simple antiferromag-
net, enhancing the sublattice magnetization along the field 1 E TH c
direction and diminishing the sublattice magnetization with Xfim =5 &~ Xn(T,H), €7
opposite orientation However, we expect that the resulting
surface enrichment effect will only lead to a shiftTf,, and ~ where
a short-range perturbation of the order parameter and energy
; i itati _ of

profiles should result, while qualitatively the phenomena re m=—|Z"

n ’

T

D

main the same. oH
APPENDIX C: FLUCTUATION RELATIONS Camy) (@,
FOR THE SURFACE EXCESS SUSCEPTIBILITIES Y P (C8)

AND SPECIFIC HEATS
W ider the f densi f hin i fNow we know that in the considered limiD(— «) the pro-
Ve consider the ree-energy ens!ty of a thin fim o files f,,,m,, x, ultimately reach their bulk values in the cen-
thicknessD and a lateral size oE XL (in absence of any ter of the film. and thus it makes sense to rewrite

2 —f
fo(TH) + ST H) = frim(T.H). (CD) fn=fn=Tfortfop, et (€9
and hencgassuming an even number of layers, but this is

An analogous decomposition holds trivially for all deriva- not really essential
tives, in particular for the magnetization per spin in the film:

LD

D/2

1 (9F 2 ffiImZBZl fn(T,H) (C10
Miim= — ﬁ (9_H T:mb+ Bms(T,H) as DHOO, n=
(C2 p
=f (T,H)+ =< fo(T,H
it o(TH)+ 5.2 {fa(T.H)
an —fo(T,H)}. (C11)
M= (m); Puttingoc instead ofD/2 in the last step is allowed, because
fo(T,H)—f,=0 nearn=D/2, so we add only zeros. Com-
of paring Egs(C1) and(C10 we see that
me=—|—— (C3)
s dH /.’

- . fo(T,H)= 2 {f(TH) = fy(T,H)}. (€12
and the susceptibility per spin n=1
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Obviously this reasoning goes through for any derivatives, 2 1D
e.g., eﬁ|m=eb+ Beszangl €n, (CZO)

o

2 - :
M = Mp(T,H) + 5,121 Mo (T,H) = my(T,H)}, we have for the specific heats per spin

D

C13 2 1
(C13 Cfilm=Cp T 50325241 Ch (C21a

ms(T,H)=n§=:1 {my(T,H)—my(T,H)} (C14  and for the surface excess specific heat

d oo
o 6= 3, (Cr=Cy). (C21b
2 < _
Xiim=Xb(T,H)+ anl {xXn(T,H) = xp(T,H)}, Since
(C19 _de _dedp 1 de
= ATt T2 oB

Xs(T,H):nZ:l {xn(T,H) = xu(T,H)}. (C1  (kg=1), from e=(%) or L2De,=(7)=Tr e Pl
Tre #” we conclude
Of course, this is also compatible with the fluctuation rela-

tions, since we can simply start from the susceptibility fluc- T?c,=(L?D) " *((TnT) — (T T)),
tuation relation for the total film where.7 denotes the total Hamiltonian, while bot#r,, and
1 2 2 77 are unnormalized Hamiltonians. The correct expression
kBTXf”m:ErD[ <(2 sV) >—<2 s,,> } for cs hence is

1
:Tl 2 {{s,8,)—(s,)(S,)} (C17) Tzcszﬁ; [ T T) = (T TO) ~( Fp12 )
L°Do wv pIATVEE

Due to the translational invariance in the directions parallel (Ao )} (C22
to the free surfaces we can decompose the summation ovBlote thatc, has to be calculated as
& inasum over the' spins in the layer, and the sumover

layers: 1 o ,
Y T2y =125 (70 7y~ (FX T neprs  (C23
1 .
anmzaz Xn, With andnot as
n
1
T2, n == YU TT A TEMNT M D, (C24
kaXnZOE (<SOSv>_<SO><Sv>)- (C18) nn LZD{< n n> < n>< n>}n D/2 ( )

o which is the analog of a layer susceptibility in the bulk. For
wherev denotes any site in the system and 0 an element of|culating the specific heat in the bulk, one must correlate
the nth layer. The formula fory,, can also be written as the energy in the bulk layen=D/2 with the total energy

2 77 of the film, not just with the energy in that layefsther-
kKpTxn=LDY,¥) = (VT X(¥)) (C19  Lise transverse energy-energy correlations would be miss-
(derivation exactly as shown before for=1). The order ing). Apparently, neither the surface excess specific logat
parameter in thath layer has to be correlated with the order nor the surface excess susceptibility would be correctly
in the whole film. Of course, the exactly analogous formulasobtained by considerinfinstead of Eqs(C15 and (C21b]
hold for derivatives with respect to temperature, and hencthe fluctuation relations of the surface excess energy or the
since the energy per spin of the whole film surface excess magnetization, respectively.
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