Volume: Page/Article: ------------------------------------------------------------------------ Article Collection: View Collection Help (Click on the Check Box to add an article.) ------------------------------------------------------------------------ Phys. Rev. B 48, 2873?2877 (1993) [Issue 5 ? 1 August 1993 ] [ Previous article | Next article | Issue 5 contents ] Add to article collection View Page Images or PDF (759 kB) ------------------------------------------------------------------------ Effect of the form of the height-height correlation function on diffuse x-ray scattering from a self-affine surface G. Palasantzas and J. Krim Physics Department, Northeastern University, Boston, Massachusetts 02115 Received 22 January 1993 Height-height correlations for self-affine surfaces with finite horizontal cutoffs are generally modeled by exponential forms. Three mathematically acceptable, alternate forms for the height-height correlation function are investigated, to explore their impact on the analysis of diffuse x-ray-reflectivity data. The appropriateness of these functions to actual physical samples is explored through comparison with x-ray-reflectivity and scanning-tunneling-microscopy data recorded on known self-affine surfaces. ©1993 The American Physical Society URL: http://link.aps.org/abstract/PRB/v48/p2873 DOI: 10.1103/PhysRevB.48.2873 PACS: 61.10.Wg, 68.35.Bs, 05.40.+j ------------------------------------------------------------------------ Add to article collection View Page Images or PDF (759 kB) [ Previous article | Next article | Issue 5 contents ] See Also: Erratum: G. Palasantzas and J. Krim, Erratum: Effect of the form of the height-height correlation function on diffuse x-ray scattering from a self-affine surface [Phys. Rev. B 48, 2873 (1993)], Phys. Rev. B 57, 3169 (1998) . ------------------------------------------------------------------------ ------------------------------------------------------------------------ References (Reference links marked with dot may require a separate subscription.) 1. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982). 2. R. Chiarello, V. Panella, J. Krim and C. Thompson, Phys. Rev. Lett. 67, 3408 (1991) . 3. J. H. Sikkenk, J. M. J. van Leeuwen, E. O. Vossnack and A. F. Bakker, Physica A 146, 622 (1987). 4. M. W. Mitchell and D. A. Bonnell, J. Mater. Res. 5, 2244 (1990) [dot SPIN ][dot INSPEC ]; E. A. Eklund et al., Phys. Rev. Lett. 67, 1759 (1991) ; J. Krim et al., 70, 57 (1993) ; D. A. Kessler et al., 69, 100 (1992) ; M. A. Rubio et al., 63, 1685 (1989) ; V. K. Horvath, J. Phys. A 24, L25 (1991) [dot INSPEC ]. 5. For a review, see F. Family and T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991). 6. J. Krim and J. O. Indekeu, Phys. Rev. E (to be published). 7. S. K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley, Phys. Rev. B 38, 2297 (1988) . 8. P.-Z. Wong and A. J. Bray, Phys. Rev. B 37, 7751 (1988) . 9. D. E. Savage et al., J. Appl. Phys. 69, 1411 (1991) [dot INSPEC ]. 10. W. Weber and B. Lengler, Phys. Rev. B 46, 7953 (1992) . 11. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971), pp. 94 ? 108. 12. D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic, Boston, 1992), p. 159. 13. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989). 14. A. Braslau, P. S. Pershan, G. Swislow and B. M. Ocko, Phys. Rev. A 38, 2457 (1988) . 15. This relation was pointed out to us by S. K. Sinha, who also noted that ( LxLy) is in general dependent on qz. ------------------------------------------------------------------------ Add to article collection View Page Images or PDF (759 kB) [Show Articles Citing This One] Requires Subscription [ Previous article | Next article | Issue 5 contents ] ------------------------------------------------------------------------ [ APS | APS Journals | PROLA Homepage | Browse | Search ]