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Abstract. We determine the bulk and surface canted-paramagnetic phase boundary of uniaxial 
antiferromagnets as a function of t e m p e m  for a semi-infinite system. Within the Green- 
function formalism. we show that the canted-paramagnetic critical field at the surface, which 
depends on the ratio of the surface to bulk exchange coupling. is larger than that corresponding 
to the bulk lhis critical field at the surface does not follow a T312 Bloch law, but instead 
decreases linearly with t e m p e m .  At a given iemperahue, which also depends on the ratio of 
the surface to bulk exchange coupling, the surface critical field becomes identical to that of the 
b u k  

1. htroduction 

A static magnetic field applied along the easy axis of a low-anisotropy antiferromagnet 
may induce, at low temperatures, a continuous phase transition between a spin-flop and a 
paramagnetic phase. The temperahre behaviour of this canted-paramagnetic boundary has 
been the subject of several experimental L1-41 and theoretical [5-8] investigations. On the 
other hand surface magnetism has been a field of growing interest in recent years. 

From a experimental point of view the observation [9, IO] that some rare-earth 
materials exhibit a magnetically ordered phase over a paramagnetic bulk renewed interest 
in the magnetic surface phase transition. To probe the magnetization of surface layers 
sophisticated experimental techniques have been used, such as spin-polarized low-energy 
electron diffraction [ll].  These transitions have also been investigated theoretically: 
series expansions [12], Monte Carlo simulations [13,14], renormalization-group techniques 
[15,16] and Green functions l17.181. 

Another interesting phenomenon concerns the antiferromagnetic phase transition induced 
by a field in uniaxial antiferromagnets. It is well known that the softening of the surface 
magnons occurs in a smaller field than that of the thermodynamic phase transition between 
the antiferromagnetic and spin-flop phases [19,20]. The same behaviour appears in semi- 
infinite magnetic FdGd superlattices whose interfacial coupling is antiferromagnetic [21]. 
When the external magnetic field is increased from zero one surface mode is driven soft, 
and a surface phase transition appears at a field value which is about five times lower than 
that necessary to cause a bulk phase transition. 

We know that an antiferromagnetic system in its high-field phase, paramagnetic, has 
only one sublattice, and can be handled as if it were a ferromagnet. By using a Green- 
function formalism we can determine the dispersion relations for the surface spin waves as a 
function of the field and temperature. We show that, l i e  the bulk spin waves, the spectrum 
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of surface spin waves has a minimum at the corners of the corresponding Brillouin zone. If 
the field is decreased from high values these surface modes become soft, indicating a surface 
phase transition to a spin-flop phase. This critical field is greater than that corresponding to 
the bulk critical field and depends on the ratio of the surface and bulk exchange couplings. 
Besides, the surface critical field decreases linearly with the temperature up to a given 
value of temperature that depends of the ratio of the surface and bulk exchange couplings. 
Above this critical ratio the bulk and surface critical fields become identical. In section 2 
we present the model Hamiltonian and calculations performed within the Green-function 
formalism. Finally, in section 3 we present the results and discussions for the paramagnetic 
phase transitions, and our conclusions. 
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2. Model Hamiltonian and calculations 

We consider the following model Hamiltonian on a semi-infinite simple cubic lattice with 
a (010) free surface: 

where Ji; represents the antiferromagnetic exchange interaction between all pairs (ij) of 
nearest-neighbouring sites. We choose the following values for the parameters J i j  and ~ i j .  

If the sites i and j are at the surface plane (I = 0). we take Ji; = Js and EQ = E$. For all 
other neighbouring sites,, J i ;  = J and eij = E .  H is the magnetic field applied parallel to 
the (010) plane. The QY" are the components of the spin-f operators. The value E = o 
describes a Heisenberg model while E = 1 represents an Is,ing model. We assume that 
the spins will be oriented preferentially parallel to the surface, so that demagnetizing fields 
can be disregarded. We employ the Green-function formalism, within RPA decoupling, to 
determine the dispersion relations of the surface spin waves. The equations of motion for 
the Fourier transform of the Green functions ((S:(t); S;(r'))) are given by 

(2) 

where ((S?; S;))E stands for the Fourier transforms of the Green functions. We have also 
assumed that the mean value (Sf) is the same for all sites inside a given plane I, that is, 

(Sf) = (Sf) (3) 

where I = 0 represents the surface plane, 1 = 1, the next inner plane, and so on. For I 2 
we have also taken (Sf) = (sz)b, where (S')b stands for the bulk magnetization. 

As our system exhibits a translational symmetry parallel to the (010) plane, we take 
the Fourier bansform of the Green function, G(K , E ) ,  where the wave vectors X belong 
to the two-dimensional Brillouin zone of a square lattice. Finally, the Green functions can 
be determined by the following matrix equation: 

[nG11m = ( I /Z) (Sf)&m (4) 



The shucture factor for the (010) planes is given by YK = ~[cos(aK,)+cos(aK,)] where 
a is the lanice spacing. h order to calculate the layer magnetization it is fust necessary to 
evaluate 0 - l .  This is given by 

(W'h = Nr(O/D(H (13) 

where 

N~(S) = e[aZe3 + (az - O C Q ~  t C W ~ ) ~ ~  +&w~ +U& + a41 (14) 

N ~ ( E )  = e[aut3 + (az + awa& + ~ r ~ ( a ~  + azz)t + a41 (15) 

and 

5 

D E )  = 
i=O 
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The values of g are determined by the equation 
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6 2  - 2t5 + a2 = 0. 

If It1 < cr the roots are complex, and if we write t as -acos(aK,), equation (12) gives 
us the bulk dispersion relation for magnons. On the other hand, if It1 > a, the roots of 
equation (23) are real and only those for which 16 I c 1 will have a physical meaning. The 
poles of the Green functions are given by the real roots of the equation 

D(tJ = 0. (24) 

The spectrum of the surface magnons is determined from the roots of the above equation 
with the resfxiction that I&I < 1. In this case we obtain the following expression for the 
surface magnons: 

vx = ts - (Y2C’ 4- [(I - E)ZYx - (2 + z)lJ(S;) + gpeH.  (25) 

To calculate the values of &, we need first to determine the layer magnetization (Si) and 
(Si) and the bulk magnetization (sz)b, which here is taken at the third layer. The layer 
magnetization is then written as 

(26) (Si.1) = t/(l + 240.1) 

where 

(27) 

being the real roots of D ( h )  and D ’ ( b )  its derivative calculated at the point 5 = cy. 
In our calculations we first must determine the bulk magnetization as a function of 

(28) 

temperature and magnetic field, that is, 

(Sz)b = $/(I + 26) 
where 

and 

O p  = - Z J ( b ) b [ l  - ( I  - E ) r q ] + g p s H  (30) 

is the spectrum of the bulk magnons. Here the q values run over the first Brillouin zone of 
a simple cubic lattice ( z  = 6) with structure factor r4. 

The equations (26) and (27) are solved self-consistently for (Si) and (Sf) for each pair 
of values of temperature and magnetic field. In this way we are able to determine the 
spectrum of the bulk and surface magnons as a function of temperature and magnetic field 
for this semi-infinite anisotropic Heisenberg model. 

The magnitude of the canted-paramagnetic critical field is determined by the limit 
of stability of the paramagnetic phase, namely by the equations uq0(T,H)  = 0 and 
uxo(T. H) = 0. where qo and KO are, respectively, wave vectors at the corners of the 
fist Brillouin zone of simple cubic and square lattices. 

i 
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3. Results 

As an example, we show in figure 1 the surface magnon spectrum for two values of the 
magnetic field. We have taken E, = 0.40, E = 0.40, J J J  = 1.50 and t = keT/6J = 0,010 
(low-temperature region). As the magnetic field decreases from the paramagnetic phase, the 
surface magnons move to lower frequencies, and the minimum value occurs at the comers 
of the fmt Brillouin zone. Eventually, this surface mode is driven to zero at a given critic& 
field. The same reasoning applies to the bulk modes. 

3.0 
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field. The same reasoning applies to the bulk modes. 
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Fiyre 1. surface magnon spectrum for two values of the reduced magnetic field H(= 
g f i e H / 6 J S ) .  We have E, = € = 0.40, &I3 = 1.50 and c = keT/bS3 = 0.010; HI = 0.53 
and H2 = 0.49. 

In figure 2 we exhibit the critical field where the surface and bulk modes are driven 
to zero as a function of temperature. We observe that the surface canted-paramagnetic 
phase transition occurs at a field which is larger than the corresponding field in the bulk 
material. The difference between these critical fields is larger at T = 0 (for the values 
considered it is about 12%) and decreases up to a given temperature (zsb) where they 
become identlcal. While the canted-paramagnetic critical field of the bulk decreases with 
temperature according to the celebrated T3” Bloch law. the surface critical field decreases 
linearly with temperature. This linear behaviour was obtained through a careful analysis 
of our numerical data at low temperatures. .We have seen that the linear dependence of 
the surface critical field is the best fitting to our numerical data. This is a surprising result 
because a linear behaviour is expected only for a strictly two-dimensional system, and in 
our case we are considering a semi-infinite one. We call attention to a related behaviour 
existing between surfaces and semi-infinite systems. For a ferromagnetic system when both 
the surface and the bulk are described by a Heisenberg model, there is no long-range surface 
magnetic order over a paramagnetic bulk, whatever the values of the ratio between surface 
and bulk exchange couplings [U]. Although there is no rigorous proof of this behaviour for 
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Figure 2. Surface (If;) and bulk (H!) canted-panmagnetic aitical fields as a function of 
temperature. We b y e  cZ = z = 0.40 and J J J  = 150. The surface critical field decreases 
linearly with temperahlre and the bulk follows the T3P Bloch law. 

a semi-infinite system, this is analogous to the well known result of Mermin and Wagner 
[23], demonsaated for a two-dimensional Heisenberg model. 

It is interesting to note that between the surface and the bulk phase transition the system 
exhibits a surface spin-flop state over a bulk paramagnetic state. Due to our approximation 
that the K i d  plane is chosen as belonging to the bulk, this surface spin-flop state is localized 
in the first two surface planes. As we decrease the magnetic field after the surface transition 
is attained, the canting angles of the first two planes increase until we reach the critical 
magnetic field of the bulk transition where the spin-flop state extends over all the planes in 
the system. 

We have seen in figure 2 that the surface paramagnetic critical field decreases with 
temperature and becomes identical to the bulk critical field at a given temperature q,. This 
temperature depends on the ratio of the surface and bulk exchange parameters. This can be 
seen in figure 3 where we have plotted this ratio as a function of temperature. At T = 0 
this ratio is J J J  = 1.23 for E = cl = 0.40. This ratio is also a smooth increasing function 
of temperature. 

These results are interesting because we have found a critical surface field greater than 
that of the bulk across a boundary where the absence of hysteresis is well established. 
Here, the limits of stability of the spin-flop and paramagnetic phases occurs at the same 
field, different from that determined for the antiferromagnetic phase boundary [6]. We would 
like to stress that the same behaviour is also observed for other values of the anisotropy 
parameters E and cis. Therefore, the results are not affected by the fact that we have taken 
only two independent planes above the bulk. For instance, when the number of perturbed 
planes varies from two to three, the increase in the layer magnetizations is about 1%. 

In conclusion we expect that new measurements on the canted-paramagnetic phase 
boundary of antiferromagnetic systems can be performed to test the validity of our 
arguments. We think this is really possible because there are in the literature many results 



Surface effects on paramagnetic phase transitions 3815 

1.60 

Js/J 

1.20 - 

1.00 ' 
0.000 0.020 0.040 

xb 
Figure 3. Behaviour of the n*io of the surface to bulk exchange coupling as a function of 
rrb, the temperahue at'which the surface and bulk canted-paramagnetic critical fields become 
identical. 

concerning the bulk spin-flop paramagnetic phase boundary of anisotropic antiferromagnets. 
For instance, the antifemomagnet NiC12.4Hz0 has a bulk canted-paramagnetic critical field 
[4] at T = 0 equal to 68.35 kOe. If the ratio of the surface to bulk exchange coupling in 
this antiferromagnet were larger than that determined in figure 3, at tsb = 0, we easily could 
observe a surface paramagnetic phase transition. For instance, if J s / J  = 1.25, the critical 
field at the surface would be 1% larger than that of the bulk, that is, more or less 7 kOe for 
NiClz .4Hz0, which is easily measurable in experiments. 
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