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Kinetic Growth with Surface Diffusion: The Scaling Aspect
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We present computer simulations of kinetic growth models with a physically realistic surface diffusion
process and without desorption. The results demonstrate that the asymptotic statistical scaling proper-
ties of the surface generated under these conditions are still correctly depicted by the Kardar-Parisi-
Zhang (KPZ) theory. We show that surface diffusion nevertheless introduces a novel type of scaling at
early times which will eventually cross over to the KPZ scaling. Furthermore, we make a clear connec-
tion between kinetic growth models and molecular-beam-epitaxy processes by illustrating the impact of
surface diffusion on reducing the concentration of bulk defects.

PACS numbers: 61.50.Cj, 05.40.+j, 68.35.Fx, 68.55.Jk

Kinetic roughening in nonequilibrium surface growth
has been a primary focus of research interest over the
past few years. A novel feature of this phenomenon is the
existence of scaling [1], i.e., if we start at t=0 from a flat
surface of length L, we have
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where &£, (1) is the rms roughness of the surface (also
called the “‘surface width™), A(r,t) is the height of the
surface at position r and time ¢, ho(t) is the average
height at time ¢, and d'=d — 1 is the substrate dimension
in d-dimensional space. The roughness exponent a
characterizes the self-affine fractal nature of the surface
represented by the scaling £~L°, in the long-time limit.
At the early stage of growth, 1t <L, the scaling function
f(t/L7) is such that £~¢#, where f=a/z and z is the dy-
namic exponent. Simulations of various discrete growth
models [1-4] have verified this scaling despite their
different atomistic details. It is generally believed that
the essential physics of this universality class is captured
by the continuum theory of Kardar, Parisi, and Zhang
(KPZ) [5] in which surface (interface) position A (r,z) is
assumed to be governed by the nonlinear equation
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While desorption, and other surface relaxation processes,
contribute to the first term on the right-hand side [6], the
nonlinear term is attributed to the dependence of growth
velocity on local surface orientation. n(r,z) is an un-
correlated noise with Gaussian distribution and zero
mean, which corresponds to the fluctuations in the in-
cident flux. Theoretical analysis [5] of this equation and
numerical simulations of relevant discrete models [1-3]
indicate that for growth on a one-dimensional substrate
(d=1+1), a=%, p=7%, and z=3. The values of the
exponents are less definite due to theoretical difficulties
and numerical constraints.

The self-affine fractal surfaces as represented by the
scaling described above have been observed in numerous

&)= S a(e,t) —hoW12=L>fG/L7), (1)

=vV2h+%(Vh)2+n. )

3048

direct experimental measurements [7]. These measure-
ments have provided firm support to the notion of the
scaling as a valid and useful way to characterize real sur-
faces and the relevance of those simple theoretical models
to low-temperature thin-film growth processes.

In an effort to study surface growth problems related to
molecular-beam epitaxy (MBE) where surface diffusion,
rather than desorption, is a dominating factor for surface
morphology, a couple of groups [8,9] have investigated a
simple (1+1)-dimensional solid-on-solid (SOS) growth
model. In their model, particles are randomly added onto
the top of columns of occupied sites and then are allowed
to hop to the top of a nearby column with a kink site
(within nearest / columns). They found that while the
scaling ansatz (1) still holds, the growth exponents are
given by, in 1+1 dimensions, a=1.5, $=0.375, and z =4.
These results are consistent with the ones obtained from
the analysis of a linear diffusion equation [6,10]

e, (3)
However, as pointed out by Wolf and Villain [8], this
coincidence is due to the large exponent a and the limited
lattice size L used in the simulations. Including a
lowest-order nonlinear term regarded as relevant to
diffusion [8], Lai and Das Sarma [11] have proposed an
alternative continuum equation to describe kinetic growth
under “ideal” conditions of MBE (no desorption and bulk
defects):

—67=—V|V4h+)»|Vz(Vh)2+r;. (4)
The growth exponents for this equation are given as
a=1,B8= 1 and z=3in 141 dimensions.

It is puzzling to notice that the roughness exponent a
obtained from Eq. (4) is larger than that in the KPZ
case, which implies that with surface diffusion the surface
would be, in principle, rougher than that in the case in
which desorption is the only means of surface relaxation.
This is also illustrated in the discrete model simulation of
Wolf and Villain [8] in which the generated surface is ex-
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tremely rough with very high steps (“cliffs”). In addi-
tion, the SOS model used in these simulations yields an
unphysical roughness exponent a=1. A careful exam-
ination, however, reveals that the relaxation rule em-
ployed in this model [8,9] actually allows jumps between
neighboring columns for particles to reach a favored
bonding position (kink site) despite the high steps. This
is not a physical process because the cliff has also to be
considered as a part of the surface and particles can only
travel on it one step at a time.

In order to demonstrate the real effect of surface
diffusion on morphology and dynamic scaling, we have
carried out detailed simulations of a ballistic deposition
model and a random deposition SOS model, both with a
physical surface diffusion process. The results we present
in this Letter show that, except for an early time cross-
over, the scaling of the surface allowing for surface
diffusion is still given by that found in the KPZ equation.
Our results indicate that in the process of kinetic deposi-
tion and diffusion the terms V2A and (Vh)? are intrinsi-
cally built in and eventually determine the surface scaling
behavior. We will also point out that bulk defects (i.e.,
vacancies and overhangs) are physically present in the
process and should not be suppressed artificially as in the
SOS type of models. Rather, they will be annihilated as
the consequence of a complete surface diffusion process
as demonstrated in the (lattice-matched) MBE growth.

We start out with the ballistic deposition model, which
is argued to be relevant to vapor deposition processes
[12). In the original model, particles following linear tra-
jectories are added randomly, one at a time, onto a grow-
ing surface and stick where they land. This growth rule
allows sticking of particles to the side of columns and
creation of voids and overhangs. No relaxation in the
surface is taking place. For the model we study here,
however, we have implemented a physically realistic pro-
cess for the just-deposited particle to diffuse. Immediate-
ly after the deposition, the particle moves via random
walk along the surface. It stops when it reaches either a
kink site (the site with two bonding neighbors in 1+1 di-
mensions) or a trapping site (with three bonding neigh-
bors), or when it has moved Lrw steps on the surface.
(A more detailed, but much more computationally inten-
sive diffusion model involving diffusion from kink sites
has also been simulated and shown to produce the same
statistical scaling properties. Details of the algorithm will
be presented elsewhere.) Note that a vertically exposed
region is also a part of the surface. The simulations are
performed in 1+1 dimensions with a varying number of
random walk steps Lrw.

In Fig. 1, we present plots of £2 vs ¢ for different Lgw.
The system size is L =2500 and the result is averaged
over fifty samples. It clearly shows that in spite of a
different early-time scaling regime which we will discuss
later, the asymptotic scaling behavior for the ballistic
deposition with diffusion is still £~¢'. However, it hap-
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FIG. 1. &2 vs t for the ballistic deposition model with
(Lrw=5,15) or without (Lrw =0) surface diffusion. The re-
sults are for L =2500 (1+1)-dimensional systems, averaged
over fifty samples. Inset: The straight line corresponds to
£=0.35L V2 The data points are for L =100, 200, 300, and
400, respectively, and averaged over fifty samples.

pens that B= % is true for both Eqs. (2) and (4) in 1+1
dimensions. In order to distinguish between these two
different types of scaling, we have measured the effective
roughness exponent a from the steady-state width of
smaller systems. The result in the inset of Fig. 1 shows
that for these systems a is §+ which is the value for the
KPZ scaling, and differs from the value of unity predict-
ed for the Lai-Das Sarma scaling. Hence, this indicates
that the asymptotic scaling for the ballistic deposition
model with surface diffusion is dictated by the KPZ
theory.

In fact, this result is fairly straightforward to com-
prehend. As illustrated before [2,13], the ballistic deposi-
tion model contains the ingredients that make up the
KPZ equation (2). The inclusion of the surface diffusion
mechanism only adds additional terms, such as V4h, to
Eq. (2). A power counting analysis [5] can be used to
show that the higher-order terms beyond those in Eq. (2)
are irrelevant in the renormalization process, and there-
fore the asymptotic scaling is always determined by the
KPZ equation.

On the other hand, the random deposition SOS model
[1] does not allow for intercolumn interactions. The
model can be described by 8h/dt=n and the surface
width & always scales with 1'%, In an SOS model, voids
and overhangs in the bulk are suppressed. We have car-
ried out simulations of the random deposition SOS model
incorporating the same random-walk surface diffusion
process described above. Note that the model we study
here is different from a previously studied “random depo-
sition model with surface diffusion” [14] which discusses
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height “diffusion” rather than capillarity-driven surface
diffusion [15] concerned here.

The results of the simulations are plotted in Fig. 2. As
a reference, the scaling for the original random deposition
model is also shown. We can see that with just one
diffusion step allowed (Lgrw=1), the scaling changes
dramatically from &~t¢ 2 1o an asymptotical form
E~1' which is independent of Lrw. Notice that the
surface width (roughness) decreases with the increase of
Lrw. The measured exponent a~ 4 as shown in the in-
set indicates that once again the KPZ type of scaling pre-
vails. This implies that kinetic surface growth with
diffusion is not only described by terms like V*h (and
relevant nonlinear terms) as previously known [15], but is
also determined by the dynamics coupled with local sur-
face structures as depicted by the KPZ equation. Even-
tually, the KPZ scaling dominates.

Let us now examine the early-time scaling regime and
the crossover from this regime to the KPZ scaling regime.
In both Figs. 1 and 2, there is evidence for a true scaling
regime before the crossover, which is different from the
transient seen in the original models (Lgw =0). A fit to
the data of the ballistic deposition model with Lrw =5,
10, and 15 gives $=0.45, 0.42, and 0.40, respectively.
These values are close to, but larger than $=0.373, valid
for the models described by Eq. (3) [8,9]. It is possible
that B may approach the asymptotic value S=0.375.
Though this conjecture remains to be verified, it is con-
ceivable that the scaling of Eq. (3) may set in at a small-
er length scale before the growth rate becomes heavily
dependent on the surface orientation demarcating the
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FIG. 2. &2 vs t for the random deposition SOS model with
(Lrw=1,15) or without (Lrw=0) surface diffusion. The re-
sults are for L =2500 (1+ 1)-dimensional systems, averaged
over fifty samples. Inset: The straight line corresponds to
§=O.43L"2. The data points are for L =100, 200, 300, and
400, respectively, and averaged over fifty samples.
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point at which the KPZ scaling takes over. It is also in-
teresting to observe that the onset of the crossover shifts
to a later time with larger Lrw. This is due to the fact
that the contribution from V*h term to the growth process
(as reflected in its coefficient v|) is greater with larger
Lrw.

In an effort to investigate the impact of surface
diffusion on bulk defects and to make a connection be-
tween the models studied here and growth processes such
as MBE, we have measured the bulk density p (far below
the surface) as a function of Lgw. In Fig. 3, we plot p vs
Lrw for the ballistic deposition model and the random
deposition SOS model. It shows that as the number of
diffusion steps Lgrw increases, the density increases, ap-
proaching the ideal lattice density p=1. Moreover, we
observe that for large Lrw, we have

I —p~1/LgW . (5)
as shown in the inset of Fig. 3. This is also verified by the
measurement of growth velocity v. Note that v~1/p,
thus we should have v — 1 ~1/Lk%. On the other hand,
an SOS model would generate a perfect bulk structure
with p=1. However, as illustrated in Fig. 3, once surface
diffusion is implemented in the model, vacancies are
created in the bulk as the bulk density p drops from 1 for
Lrw=1. Then with the increase of Lrw, the number of
defects decreases and p approaches unity again. The re-
sults presented above clearly demonstrate that with
enough surface diffusion steps we should be able to
achieve a better bulk structure and a smoother surface, as
in the case of molecular-beam epitaxy.

In summary, we have carried out simulations of surface
growth models that incorporate realistic surface diffusion
and deposition without desorption. Our results have
shown that the asymptotic statistical scaling properties of
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FIG. 3. Plots of bulk density p vs number of diffusion steps
Lrw. Inset: The curves, | —p vs Lrw and v — | vs Lgrw, are for
the ballistic deposition model with surface diffusion.
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the surface generated under these conditions are still
correctly described by the KPZ theory. This conclusion
is consistent with that of a recent report by Kessler,
Levine, and Sander [16] in which surface diffusion has
been included in a different manner into the ballistic
deposition model. Our results have also demonstrated
that surface diffusion nonetheless introduces a novel
early-time scaling regime which will eventually cross over
to the KPZ scaling. Moreover, we have made a plausible
connection between kinetic growth models and MBE pro-
cesses by illustrating the impact of surface diffusion on
reducing the concentration of bulk defects. Further stud-
ies are needed to understand the early-time scaling re-
gime and to extend the model to realistic 2+1 dimen-
sions.
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prior to publication, and Professor Gretchen Kalonji for
encouragement and support. He acknowledges useful dis-
cussions with Professor Lucien Brush and help in pro-
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Note added.— Most recently, Siegert and Plischke [17]
proposed a model to study the instability in surface
growth with diffusion. Their model is still of SOS nature
and yields a roughness exponent @ > 1. However, com-
bining the model in this Letter with part of the model of
Siegert and Plischke, a surface diffusion model, in which
random walks by the diffusing particles on the surface
(not random hopping from column to column) are driven
by the energy difference between steps with a probability
related to exp(— BAE), will provide us with valuable in-
formation about the temperature dependence of surface
diffusion.
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