PHYSICAL REVIEW A

VOLUME 46, NUMBER 2

RAPID COMMUNICATIONS

15 JULY 1992

Instability in a continuum Kinetic-growth model with surface relaxation
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We study the recently proposed nonlinear kinetic-growth model with surface relaxation for molecu-
lar-beam epitaxy in both two (2D) and three (3D) dimensions. We find that the dynamics of the
equation without noise is nonlinearly unstable, in contrast to the dynamics of the Kardar-Parisi-Zhang
equation. Because of the large fluctuation exponent in 2D, one important consequence is that there
exists a strong-coupling regime where the interface develops a local divergence in finite time. For 3D
or higher dimensions, the fluctuation is not strong enough to drive the system towards divergence, and
the scaling is correctly given by renormalization-group calculations.

PACS number(s): 61.50.Cj, 05.40.+j, 64.60.Ht, 68.55.Bd

During the past ten years, kinetic-growth problems [1]
have received a great deal of attention due to their appli-
cation in material science, especially thin-film growth.
Most of the growth models have scaling behavior charac-
terized by the surface roughness or the interface width
w~t*f(L/t?), where L is the system size, ¢ is time. The
scaling function f(x) has the asymptotic behavior f(eo)
=const, and f(x)~x¥? as x— 0. Continuum equations
of Langevin type have been proposed to study the scaling
behavior of these growth processes. For example, the
Kardar-Parisi-Zhang (KPZ) [2] equation has been quite
successful in describing a wide variety of growth models,
including ballistic aggregation, Eden model, and vapor
deposition [3]. Apparently, most of the growth models
studied so far belong to the universality class of the KPZ
equation.

Recently, an effort has been made towards the under-
standing of the critical fluctuation in *“ideal” molecular-
beam epitaxy system (MBE) [4-10]. There are two main
differences between ideal MBE growth and the vapor
deposition or Eden model. First, the MBE model is a
solid-on-solid (SOS) model, the conservation of particles
is enforced through the conservation of the height in-
tegrated over the substrate (apart from a constant grow-
ing part). Second, the relaxation force in MBE is due to
difference in local bonding (surface diffusion) instead of
difference in height (surface tension). Because of these
differences, the scaling behavior of ideal MBE model
should be different from that of the KPZ equation.
Indeed, that has been confirmed by many atomistic simu-
lations [5,6,9].

To understand the universality class of the critical fluc-
tuation in ideal MBE growth, a continuum equation was
proposed by Wolf and Villain [5] and later improved by
Lai and Das Sarma [9] and Tang and Nattermann [10]
(LDTN) by introducing a nonlinear term. The nonlinear
equation is
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where h(x) is the height of the interface in d =d'+1 di-
mensions (d’ is the substrate dimension) and 7 is the noise
term with (n) =0 and

46

(n(x,1)n(x",t")) =D&(x —x")6(t —1') .

v is the surface diffusion coefficient, and A is the quadratic
coupling constant. (For details of the physical meaning of
the terms, the readers are referred to the original paper.)

This model was studied in [9,10] using renormalization-
group (RG) theory. The upper critical dimension for this
model is d.=5. But even below the critical dimension
d <d_, the exponents are exactly given from the RG argu-
ment as
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in virtues of “Galilean” invariance of the equation, which
implies y+z=4, and the hyperscaling relation 2y =z
—d+1, which results from the fact that the noise term is
not renormalized.

It is the main purpose of this paper to show that the
scaling behavior of Eq. (1) is more complicated than that
given by Eq. (2). In fact, for d=1++1, there exists a
strong-coupling regime where the equation becomes diver-
gent.

Also, for the LDTN model, y=1.0 for d=1+1, so
terms with the form V2[(VA)?"] (n > 1) will be marginal
by power counting. If one of the terms is relevant at the
strong-coupling fixed point, the Galilean invariance will
be broken, and the relation y+z =4 will no longer hold
exactly. For simplicity, we only include the next higher-
order term, i.e., V2[(VA)*]. The model equation becomes
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Let us first simplify the above equation by introduc-
ing the transformations A — (DY2/v)2p, t—t/v, and
the effective coupling constants X,=(3DV2/v3)V2 %,
= (A}D32/v%)12 The equation becomes

% =+ V2=V +T,(VA) 2+ T4(VA) 4] )
with (n(x,t)n(x',t')) =8(x —x')6(t —1').

The questions that we want to address here are whether
the scaling behavior specified by Eq. (2) is independent of
X2 and whether the fixed point is stable against higher-
order derivative terms. A perturbative RG calculation is

+V2[—vW2h+2A,(VR) 2+24(VR)?) . 3)
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useless here because we are interested in a strong-coupling
fixed point and d =2, 3 is too far away from the upper di-
mension d.=5. So we have to rely on the numerical
method.

We use a finite difference scheme to integrate Eq. (4) in
time. In discrete form, Eq. (4) can be written as

hi(t 4+ A1) = h; (1) + AV — V2R +X,(VR) 2+ X4(VR) 4],
+VArn (1) . (5)

The second term on the right-hand side of the above equa-
tion is expressed through the discretization scheme:

(dy/dx)i=i+1—yi-1)/2,
(d?y/dx?)i=yi+1+yi-1—2p; .

7;(¢) is an independent random variable uniformly distri-
buted between —+/3 and /3, so that

() =88 —1') .

The width of the interface, w=(h2 —(h)2)2 is mea-
sured at different times. The initial condition of the inter-
face is taken to be flat. Both periodic and free boundary
conditions are used, and the results do not depend on the
specific choice of boundary condition. The time step we
use is At =0.01.

We first set A4 =0 and simulate the equation for various
values of 1, =0.5, 1, 2, 3, for system size L =32, 64, 128,
256, and up to 512. For each data set, we average ten
runs. In Fig. 1, we show the dependence of the width on
time ¢ on a log-log plot for L =128 for 1,=0.5, 1, 2, 3.
We find that for small values of A, i.e., A2=0.5, 1, 2, the
dependence of the width on time ¢ follows a power law
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FIG. 1. Width vs time on log-log scale for L =128 and
X2=0.5, 1.0, 2.0, 3.0 (from bottom to top), each set of data is
shifted upwards successively by 0.5 with respect to the previous
set. The solid line has a slope equal to 1/3. The data set for
X2=3.0 ends where it develops singular behavior.
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w~t® for t<t.(A;), with a=0.32+0.02. When ¢
> 1.(X,), the width saturates to its equilibrium value, de-
pending on the system size L, and also the coupling con-
stant X;. A simple scaling estimate of Eq. (4) gives that
w~2X3 13, which roughly agrees with our simulation.

However, for larger values of A, for example, A, =3,
the simulation develops finite time singularities, i.e., the
height of the interface at a certain point grows to infinity
in finite time. We have checked our simulation with
smaller time step Atz =0.001, it does not change the singu-
lar feature of the problem. Our simulation therefore
strongly suggests that there exists a critical value of 1,,
AF. When A;> 17, the system blows up in finite time;
when A3 <AF, the RG flow leads the system towards a
finite value fixed point A5, where the exponents are given
by Eq (4). The value of 1F is found to be slightly less
than 3.

We have also simulated the case with 140 and small
values of 2,( <A%), we find that there also seems to be a
critical value 1§ (1,), so that when A4 <1f, the exponents
remain approximately the same, meaning that the fixed
point A5 is linearly stable in the X4 direction; when &4 is
larger than the critical value, the interface diverges in
finite time. This divergence value of A4 is found to be
much smaller than that of X;. According to our simula-
tion, we can draw a rough illustration of the phase dia-
gram in the (A4,1,) plane, as shown in Fig. 2.

In order to understand the divergence of this model, we
analyze the behavior of the dynamical equation without
the noise term. We first review the case for the deter-
ministic KPZ equation [2], which is basically Burger’s
equation [11]:
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Using the Hopf-Cole transformation »— (v/A)In(k), the
nonlinear equation for A can be transformed to a linear
diffusion equation for #. Therefore the deterministic KPZ
equation is well behaved regardless of the initial condition.

For the deterministic LDTN equation in d=1+1 di-
mension,
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FIG. 2. The illustration of a plausible phase diagram in
(X2,X4) plane.
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we first investigate the equation in the limit where v— 0.
Suppose the initial condition is a Gaussian; the nonlinear
term will be maximal at the peak of the Gaussian, and the
peak will become sharper and eventually diverge in finite
time.

For finite surface diffusion constant v, we have done an
initial value simulation for the partial differential equa-
tion using an adaptive mesh size method. For initial con-
ditions with large enough slopes and changes of curvature,
the nonlinear term dominates the stabilizing linear term
and the equation will also diverge [12]. This means that
Eq. (6) is nonlinearly unstable.

In the usual growth model, the equilibrium state (when
the width no longer depends on time) typically has a small
expectation value of slope, which goes to zero as we go to
larger length scale. So even though the dynamics could in
principle develop singular behavior, the noise never drives
the system to a state rough enough to be diverged by the
nonlinear term. For example, the growth model proposed
by Sun, Guo, and Grant [13], has exactly the same dy-
namics as the LDTN model, but with a much weaker
noise term, and therefore does not develop any singularity.

But in the two-dimensional LDTN model, the equilibri-
um state has a finite expectation value of slope, i.e., finite
((dy/dx)®'? independent of system size. So if the non-
linear coupling constant X, is large enough, the growth of
some local peak region will be dominated by the nonlinear
term and the nonlinear term will drive the peak towards
infinity in finite time.

For the real SOS type atomistic block dropping models,
because of the existence of a short distance cutoff, i.e., the
block size of the particle, the interface will not generate
singular behavior. But the growth can be dominated by
individual columns for large enough nonlinear coupling.
The height of these columns will be much higher than that
of immediate surrounding columns, and they will not be
relaxed down because of the nonlinear effect. This is ex-
actly what a recent atomistic simulation by Kessler,
Sander, and Levine [14] has found. When they put in
realistic isotropic surface diffusion into the relaxation pro-
cess, they observe that for small surface diffusion, the
width versus time curve follows the power law o ~¢* with
a~1/4-1/3 for a certain time period depending on some
details of the model, and then suddenly turns into a much
faster growing process. Examination of the profile shows
that the later stage of growth corresponds to independent
columnar growth. As they increase the surface diffusion,
this behavior disappears. The physical reason behind
forming large peaks is the insufficiency of the relaxation
mechanism, namely, the surface relaxation. For example,
if the height difference between two sites which are close
to each other (on the substrate) becomes very large, the
surface diffusion mechanism will not reduce the difference
sufficiently because these two points are far apart along
the interface. It would be very interesting to extract from
the atomistic simulations the quantitative information

25 — ;

In(w)

| IR S S E—

In(t)

FIG. 3. Width vs time for different systems sizes, N =8x 8§,
16x16, 32x32, and 64%x64 (from bottom to top) for d =2+1
dimensions, A2 =1.0 each set of data is shifted upwards succes-
sively by 0.5 with respect to the previous set. The solid line has
a slope of 1/5.

about the parameters v and A in the continuum model,
and compare this transition with our study. Until now, we
have not been able to do that.

We conclude our paper by briefly discussing the results
for d =241 dimensions. We have simulated Eq. (4) in
d =2+1 dimensions for systems sizes N =8x8, 16X 16,
32x32, and 64X%64 at various values of X, =1, 3, 5, 7.
The results for A, =1.0 are shown in Fig. 3. The time-
dependent part of the width follows a power law w~1%,
with @ =0.21 * 0.03, which is in good agreement with the
predicted value of x/z =1/5, and the static exponent y is
found to be approximately 0.71, also in good agreement
with the predicted value of 2/3. For the largest value of A,
in our simulation, we do not observe any singular behavior
of the interface. We also simulate the equation with
nonzero A4, but it does not change the exponents, meaning
that the higher-order terms are irrelevant. We think even
though the deterministic equation could also be nonlinear-
ly unstable here, the fluctuation is not large enough to
drive the system to divergence. This will be true also for
higher dimensions.
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