APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. A 46, R729–R732 (1992)

[Issue 2 – 15 July 1992 ]

Previous article | Next article | Issue 2 contents ]

Add to article collection View Page Images or PDF (554 kB)


Instability in a continuum kinetic-growth model with surface relaxation

Yuhai Tu
Condensed Matter Physics, 114-36, Caltech, Pasadena, California 91125
Received 24 April 1992

We study the recently proposed nonlinear kinetic-growth model with surface relaxation for molecular-beam epitaxy in both two (2D) and three (3D) dimensions. We find that the dynamics of the equation without noise is nonlinearly unstable, in contrast to the dynamics of the Kardar-Parisi-Zhang equation. Because of the large fluctuation exponent in 2D, one important consequence is that there exists a strong-coupling regime where the interface develops a local divergence in finite time. For 3D or higher dimensions, the fluctuation is not strong enough to drive the system towards divergence, and the scaling is correctly given by renormalization-group calculations.

©1992 The American Physical Society

URL: http://link.aps.org/abstract/PRA/v46/pR729
DOI: 10.1103/PhysRevA.46.R729
PACS: 61.50.Cj, 05.40.+j, 64.60.Ht, 68.55.Bd


Add to article collection View Page Images or PDF (554 kB)

Previous article | Next article | Issue 2 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. For a recent review, see J. Krug and H. Spohn, in Solids Far From Equilibrium: Growth, Morphology and Defects, edited by C. Godreche (Cambridge Univ. Press, New York, 1990); R. Bruinsma, in Kinetics of Ordering and Growth at Surfaces, edited by M. Lagally (Plenum, New York, 1990).
  2. M. Kardar, G. Parisi and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986) [SPIRES]; E. Medina, T. Hwa, M. Kardar and Y. Zhang, Phys. Rev. A 39, 3053 (1989).
  3. P. Meakin, P. Ramanlal, L. Sander and R. C. Ball, Phys. Rev. A 34, 5091 (1986).
  4. A. Mazor, D. J. Srolovitz, P. S. Hagan and B. G. Burkiet, Phys. Rev. Lett. 60, 424 (1988).
  5. D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990) [dot INSPEC].
  6. S. Das Sarma and P. Tamborenea, Phys. Rev. Lett. 66, 325 (1991).
  7. J. Villain, J. Phys. I (France) 1, 19 (1991) [dot INSPEC].
  8. L. Golubovic and R. Bruinsma, Phys. Rev. Lett. 66, 321 (1991).
  9. Z. W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).
  10. L. H. Tang and T. Nattermann, Phys. Rev. Lett. 66, 2899 (1991).
  11. J. M. Burgers, The Nonlinear Diffusion Equation (Riedel, Boston, 1974).
  12. For a Gaussian pulse initial condition h ( x, t = 0 ) = sigma times exp ( - x2/ sigma 2), the pulse will be divergent when nu < nu c, with nu capp 0.1 for sigma = 6 and lambda = 1 in Eq. (9).
  13. T. Sun, G. Guo and M. Grant, Phys. Rev. A 40, 6763 (1989).
  14. D. A. Kessler, L. Sander, and H. Levine (unpublished).


Add to article collection View Page Images or PDF (554 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 2 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org