Article Collection: View Collection Help (Click on the to add an article.)
Phys. Rev. A 46, R729R732 (1992)
[Issue 2 15 July 1992 ]
[ Previous article | Next article | Issue 2 contents ]
View Page Images or PDF (554 kB)
Instability in a continuum kinetic-growth model with surface relaxation
- Yuhai Tu
- Condensed Matter Physics, 114-36, Caltech, Pasadena, California 91125
Received 24 April 1992We study the recently proposed nonlinear kinetic-growth model with surface relaxation for molecular-beam epitaxy in both two (2D) and three (3D) dimensions. We find that the dynamics of the equation without noise is nonlinearly unstable, in contrast to the dynamics of the Kardar-Parisi-Zhang equation. Because of the large fluctuation exponent in 2D, one important consequence is that there exists a strong-coupling regime where the interface develops a local divergence in finite time. For 3D or higher dimensions, the fluctuation is not strong enough to drive the system towards divergence, and the scaling is correctly given by renormalization-group calculations.
©1992 The American Physical Society
URL: http://link.aps.org/abstract/PRA/v46/pR729
DOI: 10.1103/PhysRevA.46.R729
PACS: 61.50.Cj, 05.40.+j, 64.60.Ht, 68.55.Bd
View Page Images or PDF (554 kB)[ Previous article | Next article | Issue 2 contents ]
References
(Reference links marked with may require a separate subscription.)
- For a recent review, see J. Krug and H. Spohn, in Solids Far From Equilibrium: Growth, Morphology and Defects, edited by C. Godreche (Cambridge Univ. Press, New York, 1990); R. Bruinsma, in Kinetics of Ordering and Growth at Surfaces, edited by M. Lagally (Plenum, New York, 1990).
- M. Kardar, G. Parisi and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986) [SPIRES]; E. Medina, T. Hwa, M. Kardar and Y. Zhang, Phys. Rev. A 39, 3053 (1989).
- P. Meakin, P. Ramanlal, L. Sander and R. C. Ball, Phys. Rev. A 34, 5091 (1986).
- A. Mazor, D. J. Srolovitz, P. S. Hagan and B. G. Burkiet, Phys. Rev. Lett. 60, 424 (1988).
- D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990) [ INSPEC].
- S. Das Sarma and P. Tamborenea, Phys. Rev. Lett. 66, 325 (1991).
- J. Villain, J. Phys. I (France) 1, 19 (1991) [ INSPEC].
- L. Golubovic and R. Bruinsma, Phys. Rev. Lett. 66, 321 (1991).
- Z. W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).
- L. H. Tang and T. Nattermann, Phys. Rev. Lett. 66, 2899 (1991).
- J. M. Burgers, The Nonlinear Diffusion Equation (Riedel, Boston, 1974).
- For a Gaussian pulse initial condition h ( x, t = 0 ) = sigma times exp ( - x2/ sigma 2), the pulse will be divergent when nu < nu c, with nu capp 0.1 for sigma = 6 and lambda = 1 in Eq. (9).
- T. Sun, G. Guo and M. Grant, Phys. Rev. A 40, 6763 (1989).
- D. A. Kessler, L. Sander, and H. Levine (unpublished).
View Page Images or PDF (554 kB)
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 2 contents ]
E-mail: prola@aps.org