[ ]

                                            [Image]

[ ]                                 Volume:  Page/Article:

  ------------------------------------------------------------------------
Article Collection: View Collection  Help (Click on the [Check Box] to add
an article.)
  ------------------------------------------------------------------------

                    Phys. Rev. B 45, 13272–13284 (1992)

                         [Issue 23 – 15 June 1992 ]

          [ Previous article | Next article | Issue 23 contents ]

[Add to article collection] View Page Images or PDF (2374 kB)
  ------------------------------------------------------------------------

Quasiparticle properties of Fe, Co, and Ni

     M. M. Steiner
     Theoretical Division, Los Alamos National Laboratory, Los Alamos, New
     Mexico 87545
     Department of Physics, University of California at San Diego, La
     Jolla, California 92093-0319

     R. C. Albers
     Theoretical Division, Los Alamos National Laboratory, Los Alamos, New
     Mexico 87545

     L. J. Sham
     Center for Materials Science, Los Alamos National Laboratory, Los
     Alamos, New Mexico 87545
     Department of Physics, University of California at San Diego, La
     Jolla, California 92093-0319

Received 6 December 1991

For narrow electronic bands in metals, we seek improvement over the
local-density approximation (LDA) by including the on-site Coulomb
interaction between localized electrons. For the 3d ferromagnetic series of
Fe, Co, and Ni, by treating fluctuations to second order in the on-site
interaction around the LDA solution, in comparison with experiment a
distinct improvement over the conventional LDA is obtained for a number of
properties: effective masses, x-ray photoemission spectra, and results
derived from angle-resolved photoemission spectra, such as exchange
splittings and quasiparticle bands. In addition, the predicted
quasiparticle broadenings and satellite features, which are not present in
standard LDA calculations, are in reasonable agreement with observation.

©1992 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v45/p13272
DOI: 10.1103/PhysRevB.45.13272
PACS: 75.50.Bb, 71.28.+d, 71.25.Jd
  ------------------------------------------------------------------------
[Add to article collection] View Page Images or PDF (2374 kB)

          [ Previous article | Next article | Issue 23 contents ]

  ------------------------------------------------------------------------

References

(Reference links marked with [dot] may require a separate subscription.)

  1. M. M. Steiner, R. C. Albers, D. J. Scalapino and L. J. Sham, Phys.
     Rev. B 43, 1637 (1991).
  2. P. C. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and
     L. J. Sham, 140, A1133 (1965); and, 145, 561 (1966).
  3. K. B. Hathaway, H. J. F. Jansen and A. J. Freeman, Phys. Rev. B 31,
     7603 (1985).
  4. C. S. Wang and J. Callaway, Phys. Rev. B 15, 298 (1977).
  5. R. V. Coleman, W. H. Lowery and J. A. Polo, Phys. Rev. B 23, 2491
     (1981).
  6. R. W. Godby, M. Schlüter and L. J. Sham, Phys. Rev. B 37, 10159
     (1988).
  7. O. Gunnarsson, J. Phys. F 6, 587 (1976), and references therein.
  8. V. L. Moruzzi, A. R. Williams and J. F. Janak, Phys. Rev. B 15, 2854
     (1977); Calculated Electronic Properties of Metals (Pergamon, New
     York, 1978).
  9. J. M. MacLaren, D. P. Clogherty and R. C. Albers, Phys. Rev. B 42,
     3205 (1990).
 10. D. J. Singh, W. E. Pickett and H. Krakauer, Phys. Rev. B 43, 11628
     (1991); D. Singh, D. P. Clougherty, J. M. MacLaren, R. C. Albers and
     C. S. Wang, 44, 7701 (1991).
 11. M. B. Stearns, in Magnetic Properties in Metals, edited by H. P. J.
     Wijn, Landolt Börnstein, New Series, Vol. III, Pt. 19a (Springer,
     Berlin, 1984); D. Bonnenker, K. A. Hempel, and H. P. J. Wijn, ibid.
 12. A. Santoni and F. J. Himpsel, Phys. Rev. B 43, 1305 (1991); D. E.
     Eastman, F. J. Himpsel and J. A. Knapp, Phys. Rev. Lett. 44, 95
     (1980); T. Fauster and F. J. Himpsel, J. Vac. Sci. Technol. A 1, 1111
     (1983) [[dot] INSPEC]; A. M. Turner, A. W. Donoho and J. L. Erskine,
     Phys. Rev. B 29, 2986 (1984); R. Raue and H. Hopster, Z. Phys. B 54,
     121 (1984).
 13. N. E. Phillips, Crit. Rev. Solid State Sci. 2, 467 (1971); D. A.
     Papaconstantopoulos, L. L. Boyer, B. M. Klein, A. R. Williams, V. L.
     Moruzzi and J. F. Janak, Phys. Rev. B 15, 4221 (1977).
 14. R. E. Kirby, E. Kisker, F. K. King and E. L. Garwin, Solid State
     Commun. 56, 425 (1985) [[dot] INSPEC]; H. Höchst, A. Goldmann and S.
     Hüfner, Z. Phys. B 24, 245 (1976) [[dot] INSPEC]; and, Phys. Lett.
     57A, 265 (1976); and, Z. Phys. B 26, 133 (1977); M. Lähdeniemi, E.
     Ojala and M. Okoochi, Phys. Status Solidi B 108, K61
     (1981) [[dot] INSPEC].
 15. P. Steiner, S. Hüfner, A. J. Freeman and D. S. Wang, Solid State
     Commun. 44, 619 (1982) [[dot] INSPEC].
 16. W. Eberhardt and E. W. Plummer, Phys. Rev. B 21, 3245 (1980).
 17. B. Horvatic and V. Zlatic, Solid State Commun. 54, 957
     (1985) [[dot] INSPEC]; J. Phys. (Paris) 46, 1459
     (1985) [[dot] INSPEC].
 18. R. N. Silver, J. E. Gubernatis, D. D. Sivia and M. Jarrell, Phys. Rev.
     Lett. 65, 496 (1990).
 19. L. C. Davis and L. A. Feldkampf, Solid State Commun. 34, 141 (1980) [
     [dot] INSPEC].
 20. A. Liebsch, Phys. Rev. Lett. 43, 1431 (1979); Phys. Rev. B 23, 5203
     (1981).
 21. G. Tréglia, F. Ducastelle and D. Spanjaard, J. Phys. (Paris) 41, 281
     (1980) [[dot] INSPEC]; and, 43, 341 (1982) [[dot] INSPEC].
 22. L. Kleinman and K. Mednick, Phys. Rev. B 24, 6880 (1981).
 23. R. G. Jordan and M. A. Hoyland, Solid State Commun. 72, 433 (1989) [
     [dot] INSPEC].
 24. R. Taranko, E. Taranko and J. Malek, J. Phys. F 18, L87 (1988); J.
     Phys. Condens. Matter 1, 2935 (1989) [[dot] INSPEC].
 25. N. E. Bickers, D. L. Cox and J. W. Wilkins, Phys. Rev. B 36, 2036
     (1986).
 26. N. I. Kulikov, M. Alouani, M. A. Khan and M. V. Magnitskaya, Phys.
     Rev. B 36, 929 (1987).
 27. W. Nolting, W. Borgiel, V. Dose and Th. Fauster, Phys. Rev. B 40, 5015
     (1989); W. Borgiel, W. Nolting and M. Donath, Solid State Commun. 72,
     825 (1989) [[dot] INSPEC].
 28. O. K. Andersen, Phys. Rev. B 12, 3060 (1975); H. L. Skriver, The LMTO
     Method (Springer, New York, 1984).
 29. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972) [[dot] INSPEC].
 30. B. Brandow, in Narrow Band Phemonena Influence of Electrons with Both
     Band and Localized Character, edited by J. C. Fuggle et al. (Plenum,
     New York, 1988); V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys.
     Rev. B 44, 943 (1991); M. R. Norman, , 943 (1991).
 31. M. S. Hybertsen, M. Schlüter and N. E. Christensen, Phys. Rev. B 39,
     9028 (1989), and references therein.
 32. A. K. McMahan, R. M. Martin and S. Satpathy, Phys. Rev. B 38, 6650
     (1989), and references therein.
 33. O. Gunnarsson, O. K. Andersen, O. Jepsen and J. Zaanen, Phys. Rev. B
     39, 1708 (1989), and references therein.
 34. B. N. Cox, M. A. Coulthard and P. Lloyd, J. Phys. F 4, 807 (1974); J.
     F. Herbst, R. E. Watson and J. W. Wilkins, Phys. Rev. B 17, 3089
     (1978); T. Bandyopadhyay and D. D. Sarma, 39, 3517 (1989).
 35. D. D. Koelling, Rep. Prog. Phys. 44, 139 (1981) [[dot] INSPEC].
 36. P. H. Dederichs, S. Blúgel, R. Zeller and H. Akai, Phys. Rev. Lett.
     53, 2512 (1984).
 37. V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).
 38. E. Antonides, E. C. Janse and G. A. Sawatzky, Phys. Rev. B 15, 1669
     (1977); G. Tréglia, M. C. Desjonquères, F. Ducastelle and D.
     Spanjaard, J. Phys. C 14, 4347 (1981) [[dot] INSPEC].
 39. We have checked the effects of spin orbit coupling and found them to
     be small in Ni. Although ASA and full potential calculations agree
     well for the LSDA (see Wang and Callaway in Refs. Ref. 3 and Ref. 4),
     corrections beyond the LDA such as gradient corrections coupled with
     the nonspherical terms in a full potential calculation can give
     sizable corrections (see Ref. 10). We have also performed calculations
     starting from the ferromagnetic LMTO solution and find similar
     results, which further supports our belief that our results are
     independent of the initial choice of the paramagnetic solution as our
     starting point. However, for systems where the Stoner picture does not
     hold as well as in the 3d ferromagnets, one would not expect such good
     agreement between the two calculations. The two main differences being
     in the ferromagnetic calculation: (i) the spin up and spin down 4s and
     4p bands are not only indirectly split by hybridization to the 3d
     bands, but also directly by interacting with the exchange correlation
     potential, and (ii) J does not have the simple interpretation as the
     exchange interaction, but rather is a correction to the exchange term
     in the exchange correlation potential.
 40. D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental
     Solids (Plenum, New York, 1986).
 41. H. Schweitzer and G. Czycholl, Solid State Commun. 74, 735 (1990) [
     [dot] INSPEC].
 42. J. S. Langer and V. Ambegaokar, Phys. Rev. 121, 1090 (1961); R. M.
     Martin and J. Allen, J. Appl. Phys. 50, 7561
     (1979) [[dot] SPIN][[dot] INSPEC]; R. M. Martin, Phys. Rev. Lett. 48,
     362 (1982).
 43. A. Holas, J. Comput. Phys. 23, 150 (1977) [[dot] INSPEC].

  ------------------------------------------------------------------------
[Add to article collection] View Page Images or PDF (2374 kB)

[Show Articles Citing This One] Requires Subscription

          [ Previous article | Next article | Issue 23 contents ]

  ------------------------------------------------------------------------

          [ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]