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Finite-size effects on spin configurations in antiferromagnetically coupled multilayers
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Nonuniform canting states are found for multilayers of a finite size that are constructed from fer-
romagnetic films which are antiferromagnetically coupled. Our results are applicable to a wide variety
of experimentally realizable systems such as Fe/Cr and Co/Ru. We find that at low fields, a twist in the
ground-state configuration of the spins reduces the net Zeeman energy and is energetically favorable to
the uniform canted state which has previously been assumed by most authors. At higher fields, the char-
acter of this twist changes and eventnally leads to a state that is fully aligned along the direction of the
applied magnetic field. A numerical self-consistent mean-field model is used to examine the properties of
these states and a variational method is developed in order to obtain analytic expressions for the lengths
and magnitudes of these twists. The deviations from the uniform spin-flop state at both high and low

fields can be quite large and involve the entire sample.

I. INTRODUCTION

Since the discovery of antiferromagnetic coupling be-
tween two Fe layers through an intervening nonmagnetic
layer,! there have been numerous experimental and
theoretical investigations into this and similar systems.?
As a result, we now know that this phenomena can exist
for a wide variety of spacer layers and magnetic films,
and that there are a number of general features which
seem to occur in all systems.®> Despite the large efforts
which have gone toward understanding the mechanism
for this antiferromagnetic coupling, the microscopic basis
is still not entirely clear.%® Furthermore, there is an
especially interesting associated effect which is of interest
for applications. This is the appearance of huge magne-
toresistances®~!° that depend on the relative orientation
of the spins from layer to layer.

Theories for magnetoresistance, magnetic susceptibili-
ties, and spin-wave dynamics in these antiferromagneti-
cally coupled systems are extremely dependent on the
configuration of the spins, but up to now theoretical
works have supposed only very simple ground states.
Surprisingly, very little has been done on the true
configuration of the ground state for finite multilayers
composed of antiferromagnetically coupled ferromagnéts.
We show in this paper that the low-field configurations
are not at all simple and can be dramatlcally dlﬁ‘erent
from previously assumed configurations.

The states we will discuss here are reminiscent of sur-
face phase transitions where the outermost spins are
twisted away from the bulk equilibrium diréctions.!! An
interesting ‘and’ peculiar feature of the configurations
studied here, however, is that at both low and high fields
the twist involves spins throughout the entire multilayer.

The system we consider is composed of ferromagnetic
films which are weakly coupled with one another antifer-
romagnetically. The spins are assumed to lie parallel to
the film planes, and so there are no static demagnetizing
fields. We also assume that the individual magnetic films
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are very thin, consisting of no more than five or ten atom-
ic layers. This means that the spins within an individual
film remain parallel to one another because of a strong
intralayer-exchange coupling. The systems are at finite
temperatures, but well below the Curie temperature of
the ferromagnet, so that a semiclassical treatment is ap-
propriate. For simplicity, we ignore anisotropies, so that
the only relevant energies are the interface-exchange cou-
pling between films and the Zeeman energy due to the in-
teraction of an external applied magnetic field and the net
magnetic moment in each film.

Before discussing the surface-twist state investigated in
this paper, we first review the calculation for the spin
configuration in an infinitely extended, bulk, layered
structure. To do this, we examine the Zeeman and ex-
change energies of N antiferromagnetically coupled films.
One possible simple configuration is a spin-flop state
shown in Fig. 1(a). In this figure the magnetization of
each film is represented by an arrow. Here the spins in
adjacent layers are canted away from one another by an
angle 2a,. The energy of this configuration is

E,=—J(N —1)cos(2a,)—HoMN cos(ay) , (1)

where a is the angle between the net magnetic moment
M of a film and the external field H. The interface-
exchange energy is denoted J and is negative for antifer-
romagnetic coupling. The equilibrium configuration for
the layers is defined by the angle o, that minimizes Eq.
(1). This angle is appropriate to a spin far from the ends
of the multilayer stack and can be obtained by letting N
be very large in Eq. (1). This is given by

o H M ) .

cos(ag)=— 4J. : _ @)
The simple spin-flop state described above is, however,
not a stable state for a finite multilayer and, as we will
see, is a reasonable approximation to the true state only
in certain limits.
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The surface-twist structure in finite multilayers is al-
lowed because of the reduced symmetry of the end spins;
i.e., the end layers of a finite multilayer experience half
the exchange coupling of the spins in the middle of the
multilayer. This means that it costs less exchange energy
to twist an end layer in the direction of the applied field
than to twist a bulk layer into the field direction. Thus if
a twist is energetically favorable, it should begin at a free
end.

Examples of configurations for finite structures which
have lower energies than the uniform canted state of Fig.
1(a) are shown in Figs. 1(b) and 1(c). We note that the
structure in Fig. 1(b) is quite complex. While the outer-
most spins are twisted into the direction of the field, the
second layers of spins are actually turned farther away
from the field than they would be in the bulk
configuration. This alternation, one spin pointing closer
to the field and the next farther away, continues as one
progresses into the bulk, but the amplitude of the devia-
tion decreases with increasing distance from the surface.
The main difference between the configuration in Fig.
1(b) and that of Fig. 1(c) is that there is no alternation in
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FIG. 1. Examples of possible configurations for a multilayer
composed of antiferromagnetically coupled ferromagnetic thin
films. The magnetization of each thin film # lies in the plane of
the film, is represented by an arrow, and makes an angle o, with
the external field Hy. In (a) the “bulk” state is shown where a,
is the same for all films. (b) and (c) show configurations for a
finite multilayer, with the upper part of the diagram being the
top surface of the multilayer and the lower part shows the bot-
tom surface of the multilayer. The dashed lines in (b) and (c)
show the “bulk” configuration for these cases. Note that for (b)
the outermost spins are turned into the direction of the field, but
that the next layer has the spins turned away from the field
when compared with the bulk configuration.
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the high-field configuration shown in Fig. 1(c).

It should be mentioned that the nonuniform canted
states discussed here are very different in nature from
canted states within a ferromagnetic film. For example,
in a ferromagnet there exist domain walls where the spins
rotate from the magnetization direction. The width of a
domain wall is governed by the competition between the
exchange and anisotropy energies. The exchange energy
can be minimized by spreading the canting out over
many layers of spins and thus favors a very extended
wall. In contrast, the anisotropy energy is minimized
when spins point in the easy direction and this favors a
narrow wall. In our problem we also have competition
between two energies, but here it is the exchange and
Zeeman energies. However, in the multilayer structure
considered here, we have the additional freedom of hav-
ing two sublattices. This allows new kinds of states to
emerge when trying to minimize the total energy. The al-
ternating spin configuration seen in Fig. 1(b), for exam-
ple, has the exchange energy between layers of spins al-
ternately increase and then decrease as we penetrate into
the material from the surface. This extra degree of free-
dom allows the width of the nonuniform canting region
to vary in an interesting manner as a function of applied
field. At low fields the nonuniform region is very large;
for moderate fields it is quite small, and then for larger
fields the width of the nonuniform region is again quite
large.

These nonuniform canted states will be discussed in de-

-tail in the following sections. In the next section, we use

a numerical model that searches for the configuration
that minimizes the total energy in a mean-field approxi-
mation. In Sec. III we present a variational technique
which assumes certain ground states and yields analytic
expressions for the magnitude and length of the twists.

' "I SELF-CONSISTENT
MEAN-FIELD RESULTS

The details of this method have been bresented else-

where,'? and so we only briefly comment on the calcula-

tional technique. The idea is simply to calculate the
effective field acting on an individual spin due to its
neighbors and then to rotate the spin in such a way as to
minimize its energy. This is done for each spin in the
structure and repeated until a stable configuration ap-
pears. When more than one stable configuration is possi-
ble, the configuration with the lowest energy is assumed
to be the equilibrium configuration.

In the numerical model, each film consists of two or
more layers of ferromagnetically coupled spins. The
outermost spins of each film are coupled antiferromagnet-
ically to the outermost spins of the neighboring films. As
discussed above, the films are very thin and the intralayer
exchange interactions are strong enough so that the spins
within a film remain parallel to one another. In order to
keep our results as general as possible and independent of
the particular magnetic material used in the layers, we
use the following reduced units. We define the parameter
has

p=M e )
T ©
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FIG. 2. Angle ¢, is shown as a function of n for (a) a low-
field case and (b) a high-field case. The multilayer contains 40
films with 2 layers of spins per film. The solid horizontal lines
show the canting angles for an infinitely extended multilayer.

where M is the net magnetic moment for the film and is
given by M =N; M, , where N is the number of atomic
layers across the film and M; is the magnetic moment of
an individual layer. At 2=4, Eq. (2) implies that the
spins are aligned in the direction of the applied field.

In Fig. 2 we show how the angle «,, varies across a 40-
film multilayer stack. Each film is two atomic layers
thick in this example. The applied field in Fig. 2(a) is
h=0.385. This corresponds to a bulk canting angle
ap=284.5° from Eq. (2) and is shown by the solid lines.
The configuration shown in Fig. 2(a) is depicted schemat-
ically in Fig. 1(b). For this configuration the 'deviation of
the angle a from the bulk spin-flop angle alternates in
sign from film to film. Note that this configuration is an-
tisymmetric across the midplane of the sample. Thus, if
the surface twist is created by twisting the spins near the
upper surface to the right, the spins near the lower sur-
face are twisted to the left. This allows the net magneti-
zation to always point in the direction of the applied field.
As can also be seen, the angle between spins within each
film is zero. This is because the ferromagnetic coupling
between spins within a layer is much stronger than the
antiferromagnetic coupling between films. g

A very interesting feature is that at low fields the twist
involves the entire sample and results in significant devia-
tions from the bulk spin-flop state. In the example seen
in Fig. 2(a), the angular position of the spins varies from
about +45° to +84.5° and from —84.5° to —120° near
the upper surface. The penetration length of the surface
twist is also quite large, extending about 10 unit cells into
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the bulk from each end. As the field is increased, the
twist initially becomes more localized to the ends.

If the magnitude of the field is increased even further,
the character of the spin configuration changes. An ex-
ample is shown in Fig. 2(b), where %2 =3.85. Here
0a,=15.7°, and we see that a new configuration has ap-
peared which consists of a turning of each magnetization
into the direction of the applied field such that
le, | <latgl.. For h=3.85 only the first six films at each
end are turned toward the field. As the field is increased,
the number of films with |a,| < || also increases. This
continues until all of the spins point in the direction of
the field. This type of nonuniform canting is shown
schematically in Fig. 1(c).

The configurations shown in Figs. 1(b) and 1(c) are en-
ergetically more favorable than the uniformly canted
configuration of Fig. 1(a) because the net magnetization
in the direction of the field for the configurations of Figs.
1(b) and 1(c) is increased as a result of nonuniform cant-
ing. This is clearly seen in Fig. 3, where the average mag-
netization in the direction of the applied field is shown as
a function of applied-field strength. Three different cases
are shown for comparison: A system of four films, a sys-
tem of ten films, and the uniformly canted configuration
of Fig. 1(a). The average deviation from the bulk canting
arigle & decreases as the number of films in the stack in-
creases, and ‘as a result, the average magnetxzatlon for
larger multilayers approaches the bulk value. In all cases
the magnetization of each layer is completely ahgned
along the applied field for 7 > 4.

The spins in the outermost layers of the multilayer are

‘the easiest to turn into the applied-field direétion “and

therefore have the largest deviations from the bulk orien-
tation. It is therefore reasonable to expect that it should
be possible to increase the magnitude of the dev1at10ns
from the bulk state by’ decreasmg the total length of the
multilayer stack. This is illustrated in Fig. 4, where the
average magnetization of a multilayer stack is shown asa
function of the total number of layers composing the
stack. The applied field is constant at # =1.541. We see
here that the magnetization increases as the total number
of films decreases; indicating that the net deviation of the

0] 4fims —
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FIG. 3. Average magnetization for a multilayer is shown as a
function of applied field for a four-film multilayer, a ten-film
multilayer, and an infinitély extended multilayer (“bulk” case).
In all cases the spins are aligned with the field when #=4. Note
that the deviation from the bulk case is largest for the multilay-
er with the least number of layers.
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FIG. 4. Average magnetization for a multilayer as a function
of the total number of layers. The applied field is A =1.541.
The nonuniform twist states exist because of the reduced sym-
metry of the end films. As a consequence, the net deviation
from the bulk state increases with decreasing number of layers,
which leads to an increasing magnetization. Note the difference
between even numbers of films and odd numbers of films.

canting angle from its bulk value ¢; also increases as the
total number of films decreases.

In Fig. 3 we saw how the magnetization as a function
of field differed from the bulk behavior due to finite-size
effects on the multilayer stack. Both of the examples
shown in Fig. 3 were for multilayers with an even number
of films. In Fig. 5 we again show the magnetization as a
function of field strength, but for multilayers consisting
of an odd number of films. The behavior for these cases
is quite different from the even-numbered systems for low
fields. What happens is that an odd number of layers
gives the system a net magnetic moment in zero applied
field. This makes the system relatively stable to small ap-
plied fields, since the net magnetization prefers to remain
aligned in the field direction rather than go into a canted
state. As the total number of films is increased, the aver-
age magnetization becomes proportionally smaller and
the system goes into a canted state at much smaller fields.
This feature has already been observed in recent experi-
ments."® The low-field canted state for an odd number of
films is also different from that for an even number of

0.5
3 films \ Y
12}
A
[4p]
v * 5 films
0.0 . , :

FIG. 5. Average magnetization of a multilayer with an odd
number of films is shown as a function of applied field. The
multilayer then has a net magnetization that prevents a canted
state at low fields.
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FIG. 6. Angle a, is shown as a function of » for a multilayer
with an odd number of films. In this example the total number
of layers is 9. For odd-numbered cases, the angle is symmetric
about the center of the multilayer.

films. In contrast to the twist shown Fig. 2, the twist in
the structure with an odd number of films is symmetric
with respect to the middle of the stack. This can be seen
in Fig. 6, where we show the canting angle a as a function
of position for a stack of nine films.

Finally, we note that a hysteresis loop would not ap-
pear without the presence of anisotropies if we were to
continue on and reverse the direction of the applied field.
The presence of anisotropies, however, would lead to hys-
teresis curves similar to those found in the experiment.!3
Such hysteresis effects for systems a small number of lay-
ers have been treated theoretically earlier.'*

III. VARIATIONAL CALCULATION

We now discuss in more detail the wunusual
configurations described in the last section. Our goal is
to use a simple variational technique to estimate the mag-
nitude of the deviations and also the number of layers in-
volved. In Fig. 1(b), a possible configuration is shown for
a finite multilayer in a small applied field. As a crude ap-
proximation, we represent one end of this configuration
by defining a trial function for a as

a,=ag+(—1)"B(L—n), @)

where n denotes the layer number, a, is the angle be-
tween the spins of layer n and the applied field, B is the
amount of twist between layers, and L is the length of the
twist. For simplicity, we limit ourselves to a semi-infinite
superlattice so that there is only a twist at one end. We
note that the (—1)” term introduces the alternation in
angular position discussed earlier. This trial function will
then be used in the expression for the total energy of the
multilayer, and values for B and L will be sought such as
to minimize the energy.

The difference in energy between the uniform bulk
state and the energy of a state with surface twist extend-
ing L layers is given by



% _ FINITE-SIZE EFFECTS ON SPIN CONFIGURATIONSIN ..., 10 851

L
E=L[J cos(2ay)+HyM cos(ay)]—J 3, [cos(2a,)cos(B)—(—1)"sin(2ea,)sin(B)]

n=1

L
—HoM ¥, {cos(ap)cos[B(L —n)]—(—1)"sin(ay)sin[B(L —n)]} . (5)

n=1

The sums in Eq. (5) can be explicitly evaluated, with the result

E=L[J cos(2ay)+ HyM cos(agy)]—JL cos(2ay)cos(B)

cos[(L /2)B Jsin{[(L +1)/2]B)
sin(1B)

— HoM cos(a,) [ —cos(LB)

sin[(L /2)B+(L /2)mJsin{[(L +1)/2(mr—B)}
cos(4B)

+HyM sin(ay) [ —sin(LB ) (6)

We seek conditions on B and L such that this energy is minimized. The linear approximation for Eq. (4) is probably
only good for cases where L >>1 and B <<1. It is therefore reasonable to perform an expansion in B. Assuming that
both B <<1 and BL <<1 and expanding Eq. (6) to second order in B, we find

1

Yy
lB6

- _Lp:, B” 2. 1,1
J cos(2ay) |L 2B + 5 L 4L+ 7 cos(ao)].

—JB sin(2ay)+ HoM l%sinaoﬂ

™

It is now a simple matter to minimize E with respect to L and B. This results in two equations which can be solved
for L and B in terms of o, It is convenient to write the resulting equations entirely as functions of Hy, J, and M using
a, from Eq. (2). For convenience, we write the results in terms of the unitless parameter h defined in Eq. (3), which
measures the relative strength of the Zeeman energy to the exchange energy. The expressions for L and B then become

172 '
12 l

L=1+ [F—l (8)

and
__ 12n(1—h%/16)'"2 o
h?L(2L—1)—3n%+24
Note that real roots for L occur only for small k, which is consistent with our assumption that the trial function
given by Eq. (4) represents the low-field configuration. As h increases, L decreases until L =1 at approximately
h =3.464, which is below the field # =4 where the angle between spins is zero. Also, we see that B decreases with in-
creasing A.

Next, we calculate L and B for higher fields. In this case we use a trial function that describes the configuration
shown in Fig. 1(c). The trial function is now

a,=ay—B(L—n). (10)

R : ‘ 9)

Following the same arguments as before, we eventually arrive at the following expressions analogous to Egs. (8) and (9)
above. These equations have a much more complicated dependence on 4 and o, than in the low-field case:

2

h* . . .
L3 -2—4s1n(2a0)——;lcos(2ao)smao +L? s1n(4a0)——%cosa0sin(4ao)
L h . 11 . h? . h .
+L | —sin(4a,)+ E) cosagsin(2ag)+ -—6-—smaocos( 2ap) | — Esm( 205)— ~3—cos( 2ay)sing,

+ %sin( 4ap)— % %cosaosin( 2ay)+sinagcos(2ay) | =0 (11)
and
sin(2a4)— (AL /2)sinay,
: (12)

B= . . fer o
[ 4-cos(2ag)—(h /6)cosag]L —[(h /2)cosay—4 cos(2ay) IL >+ [ 4cos(2a,) — (h /3)cosay ]L > —cosa,
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We want to compare the results of the variational

method with the results from the numerical model. It is -

important to note, however, that the numerical calcula-
tion produces a configuration without the assumptions
implicit in our variational trial function, i.e., the linear
dependence of @ on B and L. While the initial angle from
the numerical calculation can be directly compared to
BL, it is necessary to somehow define a length for the nu-
merical calculation that is comparable to L. We do this
by comparing L to the length in the numerical model
where the total angular deviation a; —aqj is reduced to
90% of its initial value.

In Fig. 7 the length L is plotted as a function of the re-
duced field A, and in Fig. 8 the angle of the first layer
spins, a, is shown as a function of 4. The solid lines are
the results of our low- and high-field variational treat-
ments. The circles are taken from the numerical calcula-
tion described in the last section. In the figures we see
that the variational model gives the same general trends
as in the numerical model. The best agreement in both
cases is found at higher fields, where ¢, is the smallest.

A curious feature is the behavior of L as a function of
applied field. For low fields, L is at first very large and
then decreases with increasing field. At low fields the

Zeeman energy is reduced by forming a configuration

such as that shown in Fig. 1(b) that increases the net
magnetization in the field direction. The cost of this
configuration in exchange energy is reduced by spreading
it across the entire stack of films. As the field is in-
creased, the deviations occur only for films near the ends
of the stack. At some moderate field strength, the old
configuration disappears and a configuration of the type
shown in Fig. 1(c) becomes energetically favorable. This
new configuration reduces the Zeeman energy by simply
turning the magnetization of the outermost films into the
field direction. The number of films which participate in
this turning increases with increasing field, to finally re-
sult in the magnetization of all the films being in the field
direction when 2 =4. For thls conﬁguratlon, then, L in-
creases with 4.

The results of Fig. 8 suggest a straightforward possibil-
ity for experimental verification of the surface-twist

16

FIG. 7. Results of the variational calculation for the length L
as a function of applied field. The solid lines represent the re-
sults of the variational calculations, and the dots are the
equivalent results from the numerical calculation. Note the
good agreement at high fields and large L.
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FIG. 8. First angle o is shown as a function of applied field.
The solid lines are the results from the variational calculations
and the dots are the results from the numerical calculation. The
agreement between the two methods improves with increasing
field as the magnitude of a, decreases.

structure. Figure 8 shows that the surface canting angle
a, is always considerably smaller than the bulk canting
angle a, If L is not too large, a measurement of the net
magnetic moment will give a good approximation for the
However, a measurement of the
magneto-optical Kerr effect (MOKE), which is sensitive
to the magnetic moment near the surface, should give a
good account of the surface canting angle. Thus, if these
two measurements are compared, one should be able to
see the difference between the bulk and surface behavior.

IV. CONCLUSIONS

We have examined the ground-state configuration of
multilayers constructed from antiferromagnetically cou-
pled ferromagnetic films. In the presence of an external
magnetic field, finite multilayers display a rich variety of
ground-state configurations that are fundamentally
different in character from the ground-state configura-
tions of an infinitely extended multilayer. At some
applied-field strengths, these finite-size effects are local-
ized to the films at the ends of the multilayer stack, while
for other applied-field strengths the entire multilayer is

_ affected.

" There are a number of consequences which we have

" not yet explored. One of the most interesting questions is

the effect of the states discussed here on the long-
wavelength spin-wave spectrum of the multilayer. The
magnitude of effects discussed here can be quite large for
easily accessible field strengths and may have a significant
effect on the surface spin-wave modes which are easily
observable through techniques such as Brillouin light
scattering. A second interesting question relates to appli-
cations of the giant magnetoresistance effect found in
some of these multilayer structures. Magnetoresistive
sensors often operate at low fields and in a range where
the resistivity changes linearly with applied field. It

. remains to be seen if the nonuniform canted structure dis-

cussed in this paper will help or hinder in obtaining these
operating characteristics.
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