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AbslrncL Structural relaxations near surfaces and inlerfaces are analysed in a simple, 
generic model with firs-, second- and lhird-layer interaclions. The relaxations have 
upnenl ia l  envelopes with lhree lypes of stmuctural distonion: (i) ferrodislartive, (ii) 
anlifemcdislorlivc, and (iii) mcdulaled (incommensurable). meir stability conditions in 
the field of conlml paramelen and their relationship with stmcl~ral phase transilions is 
derived. A lricriliral p i n t  is found far three-layer interaclions and a lransition to an 
incommensurate phase. All phase transitions to the ferrcdislortive phase are first-order 
in our model. 

The theory is applied to the analysis of lalliee relations near internal interfaces in 
ionic polytypic materials (e.g. Pbll). Diffuse x-ray scatrering and the shifl of diffraction 
angles are lhe typical fingerprinls for such relaxations. The relevant structure factors are 
calculated. mere is tentative agreemenl between lhe calculated and observed diffraction 
profiles. 

1. Introduction 

Structulal phase transitions often generate twin boundaries in the low-symmetry 
phase. Relaxations of the lattice occur close to such twin boundaries. Similar 
relaxations can also generate precursor texture in the high-symmehy phase (see 
Salje (1990, 1991) for a review) whereby the most common relaxations occur near 
the surface of the crystal. The relevance of this ‘pre-wetting’ phenomenon as 
precursor effect of the  structural phase transition has been discussed in detail by 
Houchmanzadeh ef U /  (1991, 1992). They showed that a particularly stable form of a 
relaxation near the surface is an oscillation of the order parameter superimposed on 
an exponential decay. Such a state was called a ‘ripple’. Ripples seem to represent 
a widespread phenomenon: typical examples include evanescent waves of electronic 
wavefunctions which were reported as early as 1963 (Heine 1963, 1964). They were 
also found by computer simulation in alloys (Sutton, 1991) and water-clay interfaces 
(Skipper ef a1 1991). We show in this paper that ripples, incommensurations etc, do  
indeed occur for a wide range of control parameters in systems with three interacting 
layers. 

Houchmanzadeh ef 01 (1991, 1992) have argued that a quantitative description of 
twinning and surface relaxations in simple commensurate structures (including ripple 
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phases) is possible in terms of the Fourier components of two interplanar interactions 
(first- and second-layer interactions) without further anharmonicities of the interaction 
potentials. In this paper we show that the generic case contains three interplanar 
interactions, namely between the first, second and thud neighbouring layers. This 
model allows the description of phase transitions between a high-symmetry phase 
and commensurate or incommensurate low-symmetry phases and the related lattice 
relaxations. 

Besides the ohvious interest of such models for the elucidation of precursor 
relations and pre-wetting transitions in commensurate and incommensurate phase 
transitions, we were also motivated to do  this study by recent findings on polytypic 
phase transitions. Polytypism is often related to phase transitions between long- 
period commensurate structures in layer materials (e.g. Pigunayat 1990). Earlier 
theoretical work on the origin of polytypism was widely based on the idea that 
the layer configurations could be mapped onto a spin model of the A ” N l  type 
(see Elliott (1%1), Fisher and Selke (1980). Yeomans (1988), see also Selke (1991) 
for a review). The essential result of these theories was that the various polytypic 
phases should be stabilized by entropic effects in the domain walls. This prediction 
was shown to be wrong (at least in the case of non-metallic polytypes) because the 
related wall instabilities oops) do not exist. Furthermore, local structural relaxations 
in the polytypic layers, especially close to walls, make the definition of a layer- 
related spin variable meaningless. In an alternative approach, Salje er a1 (1988) 
presented experimental evidence showing that the stabilization energy of a specific 
polytype is directly related to its phononic properties. Model calculations and further 
experimental work by Cheng er a1 (1990) on S ic  and Winkler el al (1991) on PbI, 
supported this view. 

Although the  description of polytypism within the phonon-related Landau-type 
theories, or in the  context of the A ” N l  model, corresponds to fundamentally different 
physical mechanisms, there is a formal link between them (Bak and von Boehm 
1980). A continuous version of the A”NI Hamiltonian (review: Selke 1991) including 
elastic relations can  be expected to lead to the same Landau-type expressions as the 
equivalent ‘soft’ king model in the case of an king Hamiltonian with strain-related 
interactions (Marais ef al 1991, Salje, 1992, Bratkovsky er a1 1992). 

appropriate for the description of polytypism, we can now tackle the main open 
question in this field, namely that of interfacial relaxations. In order to clarify this 
problem, let us consider the mechanisms of a polytypic transition as seen, e.g., in PbI, 
(Salje er al 1Y87, Soudmand and Pigunayat 1989). These transitions are discontinuous 
with nucleation and growth of the stable polytype in a matrix of the unstable polytype. 
Nucleation often happens near defects or, most commonly, near the surface of the 
crystal. The growth proceeds layer by layer with rapid expansion of the stable state 
in each layer. The next layer starts to transform only if the transition has been 
completed in the previous layer. 

In a sideways view of the crystal, the growth of the stable phase occurs like a 
zig-zag /miffing process. Knitting can start simultaneously from various nucleation 
centres and will ultimately join the transformed parts of the crystal. The essential 
condition for the reversibility of the transition is now related to the way in which the 
transformed areas coalesce. If the periodicity is such that the coalescence is without 
defect (i.e. the polytypic layers meet with the correct stacking sequence) the new 
phase is uniform and leaves no nucleation centre for the back-transformation. It is 
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very likely, however, that the transformed areas meet in a stacking sequence which is 
out of step with the already transformed areas. In this case, a new stacking sequence 
is locally generated as a 'zip' between the knitted parts. This zip can be opened and 
closed by changing the control parameters, such as temperature or pressure. In this 
case, the phase transition is reversible (at least in PbI, ) . 

The zip represents an internal surface of the crystal surrounded by intense lattice 
relaxations. These relaxations appear as diffuse x-ray diffraction signals or broadened 
phonon scattering proflles in Raman spectra (Salje et 01 1988, Winkler et al 1990, 
Sondmand and 'Rigunayat 1989). Further indirect evidence stems from structural 
refinements (Palosz er a1 1990, Kumar and 'Rigunayat 1992). 

The question now arises: how can we describe these local relaxations (or, indeed, 
those close to the surface of the crystal) in a simple and self-consistent model? 
Previously, Parlinski and Michel (1984) have proposed a model for thiourea which 
included harmonic interactions for distant neighbours augmented by anharmonic 
couplings. Janssen and co-workers (Janssen and Tjon 1981, 1982, Janssen 1986, 
Janssen and Janner 1987) have introduced a Hamiltonian with harmonic interactions 
between first, second and third layers and anharmonic (fourth-order) interactions 
between neighbouring layers. This model is obviously equivalent to a sofi A " N l  
model (Benkert et a/ 1987). 

In this paper, we follow a similar, but even simpler approach and formulate first 
a model with purely harmonic first-and second-layer interaction (Houchmanzadeh el 
al 1991a) which is then expanded to include the third-layer interaction. We show that 
this model reproduces the  essential experimental observations. Throughout the paper 
we put emphasis on the close correlation between the phononic and relaxational 
properties of the phase transition. The paper is organized as follows: the phonon 
spectra and the phase diagram for two layer interactions are calculated in part 2. In 
this part we also calculate the relaxation pattern and show that the critical wavevector 
of the soft mode and the characteristic length of the relaxation can be derived by the 
same formalism from the characteristic equation of the phonon dispersion. 

In part 3 we extend the model to the generic case of three interacting 
layers (including first-, second- and third-layer interactions). It is shown that 
incommensurate relaxations now dominate the phase diagram. There is a simple 
relationship between the relevant wavevectors of the soft modes, the periodicity of 
the relaxation and its characteristic length. Finally, we calculate the structural factors 
of the first satellite reflection for a 'realistic' model in part 4 and show that the 
relaxations lead to asymmetric diffraction profiles with peak positions shifted with 
respect to the position in the low-symmetry phase. Much of the algebraic treatment 
is given in the appendix. 

2. First- and second-layer interactions 

The Hamiltonian of the inter-layer interaction is written in terms of the nth 
layer coordinate 2, which may designate a longitudinal coordinate (layer distance 
& + I  - Z,) or a transverse coordinate describing the shear of layer n+ 1 with respect 
to layer n. 

The Hamiltonian is 

H = C V ( Z " + ,  - 2,) + V(Z,+, - Z") .  
n 
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The potential V is kept arbitrary. The equilibrium condition in the bulk of the 
material is 

V'(b) +2V'(2b) = 0 (2) 

where b is the equilibrium value of Z (e.g. equilibrium distance hetween layers), V' 
indicates the first spatial derivative. 

We first calculate the phonon spectrum. With the phonon coordinate U,, we 
rewrite the layer coordinate 2, as 

2, = nb+ U,. (3) 

The difference between the Hamiltonian and its static equilibrium value is 

H ( u )  - H ( u , )  = C V ( 2 ,  - Z"-J + V(Zn - &-z). (4) 
n 

The second derivative V"( b) = 6, and V"(2b) = r$z determine the dynamical matrix 
with 

aZzn/at2 = + 2 ( ~ n + Z  + z,-~ - 22,) + +dzn+, + z,,-~ - 22,). (5) 

Fourier transform leads to the phonon spectrum 

uz = sin2( kb/2) + +2 sin*( kb) = sin2( kb/2)(4, + 44, cos2( kb/2)]. (6) 

The potential parameters appear only in the bracket which we call RZ: 

wz(k)  = sin2(12b/2)OZ(k). (7) 

The stability of phonons requires w2 2 0 or RZ( 12) 2 0 which leads to the conditions 
for the phase stability 

The equals signs hold for the phase transition in the soft mode limit. The phase 
transition +1 + 0 related to a zone-boundary instability (antiferrodistortive transition), 
the phase boundary = -4$b2 indicates a r-point instability (ferrodistortive 
transition). 

We can now compare these results with the lattice relations close to surfaces or 
interfaces. Let us consider Z , , , - Z ,  = b+c, with e,, as the relaxational coordinate. 
The condition for e ,  is 6 1 1 / 6 c ,  = 0 which gives cm # 0 only for small values of n 
and en = 0 in the bulk. We find for the first layer in the second-order theory 

aH/aeu = ~ ' ( 2 6 )  + ( 4 ,  + 4z)cg+ d2e1 = o (10) 

and for the general nth layer 

a H / a e ,  = + 2 ~ n - ,  + (4, + 24+, + r$zc,,+l = 0. (11) 
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Dividing by b2, we define the relevant interaction parameter 2 p  = 2 + $,/&. 

the recursion formula (Houchmandzadeh et a1 1991) 

The characteristic length is determined by In A with 

We define as A, the value with IA,I < 1. The parameter E" is the relaxation of the 
surface layer 

These solutions describe three scenarios (figure 1). 

(i) An exponential decay of the relaxation occurs for positive values of A,. The 
largest deformation is in the surface layer. The thickness of the relaxed part of 
the crystal is (bln A,). The relaxation pattern is characterized by a ferroelastic 
deformation. 

(ii) Zigzag relaxations with an exponential envelope occur for negative values of 
A,. The relaxation pattern is similar to that of an antiferroelastic distortion. 

(iii) Only uniform states occur for vanishing A,. This value corresponds to $z = 0, 
i.e. to vanishing interactions between next-nearest layers. No phase transition occurs 
in this case. Uniform relaxation also exists at the phase-transition point when the 
correlation length diverges. This case is described by X = 1 ( A  = -1) for the 
ferroelastic (antiferroelastic) phase transition. 

In order to pinpoint the close similarity between the phonon softening and the 
surface relaxation, we formally combine both solutions in one formulation which 
makes use of the complex completion of the wavevector. Let us start again from the 
dispersion relation in equation (6). We write this equation in complex notation as 

The exponential terms are identified as A = exp(ikb). The instability condition 
that a2 has to vanish has then the same form as the characteristic equation for the 
relaxational parameter X in equation (13). As the condition 52' = 0 determines both 
the length scale of the surface relaxation and the dispersion of t h e  soft mode for the 
hulk, we can describe both features by one complex relaxation parameter 

It is shown in append= 1 that the relaxation amplitude e ,  can be expressed using 

€, = A"€u (12) 

A",, = -p* m. (13) 

€0 = (V'(2b)/Vf'(2b))/[(2P - 1) + Xu] = Xoeu. (14) 

R2 = + 2$2 + $2(eikb + e-ikb). (15) 

X = exp(ikb) with k = k ,  + i!q. (16) 
The imaginary part of the wavevector describes the surface relaxation, the real 

part of the wavevector describes the oscillatory solution which exists only in the bulk. 
The complex dispersion relation is now 

The condition 52' = 0 leads again to 
RZ = 4, + W2 + ~2(exp(ik,b)exp(-klb) + exp(-ik,b)exp(klb)). (17) 

(18) A2 + 2 p x  + 1 = 0. 
All solutions for X are real because pz > 1 in the high-symmetry phase. This 

leads immediately to exp(ik,b) = 1 with the two solutions k ,  = 0 and k, = rr/6 for 
the soft modes at the zone centre and zone boundary, respectively. The relaxational 
part has the wavevector k, = -(In X)/b which vanishes at the point of the phase 
transition along one of the two possible trajectories where k, is a constant (namely 
0 or 7rJb). 
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3. Three interacting layers 

The model of first and second interacting layers is now extended to include a 
third-nearest neighbour. We shall show that the degeneracy of the phase diagram 
for two layers at 42 = 0 is lifted. As a consequence we find the appearance of 
incommensurations and equivalent relaxations. The Hamiltonian is now 

ff = v(Z,+i  + Z,) + V(Z,+z - Z,) + V(Z,+3 - Z,) (1% 

with the equilibrium condition 

V'( b) + 2V'(2b) + 3V'(3b) = 0. (20) 

The phonon dispersion follows in strict analogy with the previously discussed scenario 
as 

w2( k) = sin2(kb/2)R2(k) (21) 

Q2 = (41 + 242 + 343) + 2(4 + 2b3) cos kb + 243 cos' kb 

R2 = + 4 4 2 + 9 4 3 - 4 ( 4 2 + 6 4 3 ) ~ i n 2 ( k b / 2 )  + 1643sin4(kb/2). (23) 

4 1 + 4 4 2 + 9 4 3 > 0  ( k = 0 )  (24) 

4 1 + 4 3 > 0  ( k = n l b )  (25) 

(26) 

(22) 

that is 

Stable solutions ( R2 > 0) exist for 

4 
4 3  

- 6 < -2 < 2 or 4: < 44,( + &) incommensurate. 

c . p ^ p  --&fi$c$ :'-pf..zr t b p  nhnro rl;nnmm finiirn 2. ~ ~ ~ . n ~ r i n m  fimire 2 with r----o --U--- r . . -~-  -.-~ 
figure 1 one finds that the role of 43 is to shift the phase boundaries for the zone- 
centre and zone-boundary transition thereby increasing the stability field of the high- 
symmetry phase for m3 > 0. The second effect is to split the degeneracy line & = 0 
into a parabola which is asymptotic to the two first phase boundaries at the points A 
and B. Along the segment A-B the R = 0 condensation occurs between the k = 0 
and k = T/ b limits, leading to incommensurations and long-period structures. The 
extent of this segment is proportional to 4y 

The relaxational pattern follows from the minimization of H with respect to the 
three parameters eo, c1 and e2 with 

aH/ae, = (41 + 42 + 4 3 ) ~ U  + (42  + 43)€1 + h e 2  - ~ ' ( 2 6 )  - 2 v ~ )  = 0 (27) 

aHiat ,  = (42 + + ( + 1  + w2 + 243161 + (42 + 2+3)€2 + +3c3 - ~ ' ( 3 6 )  = 0 

(28) 

a H / a € ,  = 4 3 % - 2  t (42 + 243)En-1 + (41 + 242 + 3431% + (42 + 2&3)%+1 
+ 43cn+2 = 0 Vn > 1. (29) 
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Figure 1. Phase diagram f o r a  q t e m  with two-layer interactions. (Potential parameter dt 
between nearest layers and 41 betwan nat-nearesl layers.) The solid lines indicate the 
marginal stability of the high-symmetry phase. Due to third-order terms, the transition 
to the fermdistonive phase is f i r s t a d e r  for conditions a s  indicated by the dashed line. 
Surface relaxations meillate for 42 > 0 and decay purely exponentially for +> < 0. 

K = O  
A€ Ai 
A > a  

Figure 2. Phase diagram for a system with three-layer interactions (first neighbour 41. 
second neighbour &, third neighbaur +3, W, = dl f d 2 ,  Wz = h / d ~ ) .  The thick line 
indicates the loci of the marginal stability of the paraphare with antifero-states for ?'> 
greater than at point U. incommensurations between A and U and ferro-stales at W 1  
greater than at point A. The phase transitions to the ferro-state are always first-order with 
the loci of the transition indicated by the dashed line. The point C represents a tricritical 
transition with second-order transitions lo the incommenwrale phase belween C and B. 
For W l  slightly greater than at the point C. the transition is also to an incommensurate 
phase hut first-order, as in the case of the transition to the ferrophase. The dotted line 
shows the new 'pre-wetting' transition of the transverse relaxation. Surface relaxations 
are exponential in the small area ( k  = 0) at large Wl-values, commensurate (zone- 
boundaly) relaxations ( k  = m) at '#> greater and incommensurate inside the parabola 
( : * : - ( W l + * > ) = O ) .  

The analytical treatment is given in appendix 2. It is shown then that the solution 
which is compatible with the boundary condition E, = 0 for n = OJ can be written 
as two decay functions 
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h A h  

e=-o .z  

2 3 
Ah 

" I  

Figure 3. Structure faclon far the salellite 
reflections with the relamlion U, = PA";  A = 
e--; p = peie for various values of X and 
the phase factor e. The total s t ~ c t u r e  factor 
(a) contains a strong first-order satellite (s = 1) 
and a weak second-order salellite ( a  = 2). The 
asymmetly of the profile is due lo the superposition 
of 111 + In (b), and I t 2  (c-g). The phase factors 
are given in lhe figures. 

where p and q are constant amplitudes determined by the potential parameters 
(appendix 2). The relaxation depends now, in the most general case, on two 
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relaxational parameters A, and A, and, thus, on two length scales. The Values Of 
A are determined by the characteristic equation 

A4 + 2 (1 + 6 , / w 3 )  x3 + (3 + (4, + A, + ~ ( 1  + +,/24,) A + 1 = 0. (31) 

We now allow again the wavevector to he a complex number k = kR + ik, and 
find with X = exp(ikb) that there are four solutions with A,A, = 1 and A,A, = 1. 
Only the two solutions with IA,I < 1 fulfil our boundary condition that the relaxation 
has to vanish for large distances from the surface or interface. Let us call these two 
solutions A, and A,. If A, is a complex number, we find that Ym is also a solution 
because all coefficients of the characteristic equations are real numbers. 

After we have derived the phonon instahilities and the surface relaxations 
separately, let us now show that both solutions can be related directly to the phonon 
dispersion in equation (23). We use again the same amau A = exp(ikb) where the 
wavevector k is a complex number. The dispersion relation is then 

QZ(k) = (414- 242 4- 36,) + 2(42 + 243) cos(k,b)cosh(k,b) 
+ 24,cos(2kRb)cosh(2k,b) + i[2(4, + +,)sin(k,b)sinh(k,b) 

+ 2+,sin(2kRb)sinh(k,b)]. (32) 

We now explore the instabilities in the same way as in the  case of two interacting 
layers, namely the condition Q' = 0. There are three types of solution 

(33) 

(34) 

(i) k ,  = 0 

(ii) k, = rr/b 

IC!') = -(lnA,)/b k,  (2) - - -(In A,)/b 

k, (1) - - - ( l n A , ) / b  kjzj = -(lnA,)/b 

(iii) 0 < k, < n / b  ki') = -ki'). (35) 

Solutions (i) and (ii) describe uniform relaxation (1) or zig-zag relaxation (2) with 
two characteristic length scales each. It is only the appearance of the second length 
scale which distinguishes the behaviour of three interacting layers from that of 
two interacting layers. The fundamentally new case is solution (ui) with only one 
characteristic length of relaxation but a continuously variable wavevector for the 
modulation. The structural state is that of an exponentially decaying incommensurate 
phase attached to the surface or interface. 

The relaxation disappears if these solutions degenerate (modulo the phase angle), 
which means 1x1 = 1. This defines the condition that the structural phase transition 
takes place in the bulk. For X = 1 the r-point transition takes place, for X = i the 
low-symmetry phase condenses at the zone boundary and for all other 1x1 = 1 the 
low-symmetry phase is modulated (commensurably or incommensurably). 

A second singularity, albeit not always a phase transition, occurs when 4&( 4, + 
4') = 4;. Under this condition regimes (i) and (iii) or (ii) and (iii) join and the 
degeneracy of k increases. The real parts of the two k-vectors of A, and A, disappear 
simultaneously leaving no long-wavelength oscillations. The two equivalent imaginary 
parts become identical and there is, thus, only one length scale in the relaxation as 
in the case of only two-layer interactions. 
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4. On the longitudinal and transverse character of the relaxation 

Let us now discuss some specific features of the phase diagram in figure 2 and the 
physical nature of the relaxation. So far we have tacitly assumed that all relaxations 
are longitudinal in character, i.e. the interlayer spacings change when they approach 
the surface or interface. This type of relaxation does always exist and there is no 
symmetry restriction which confines the relaxation amplitudes. This means that the 
first derivatives of the potential in equations (27) and (28) (but not in equation (29)) 
have finite values and constitute the conjugate surface field in the traditional Landau 
theory. These terms are responsible for the first-order character of the transition 
between the paraphase and the ferrodistortive phase or some incommensurate phases. 

Besides the longitudinal relaxations, there exist also transverse relaxations for 
which the lattice planes are sheared against each other. In case of polytypic phase 
transitions, they are responsible for the fact that new phases grow from the surface 
or from interfaces. The essential difference. between the longitudinal and transverse 
relaxation is that the latter breaks the symmetry of the paraphase. In the paraphase, 
a shear of the surface layers to the ‘right’ is equivalent to a shear to the ‘left’. 
This requires that the field terms in the equations (27) and 28 disappear identically 
(which will occur only for specific surfaces and interfaces) otherwise the treatment of 
transverse and longitudinal relaxations is strictly identical. It is now easy to show that 
the Gibbs free energy of the surface relaxation is a Landau-type polynomial of the 
two amplitudes of the decay functions p and q (equation (30)) including a bilinear 
coupling term pq. This means that only two solutions exist, namely 

p = q = O  and p j t O , q # O  

but never 
p = O , q # O  or p # O , q = O .  

The first allowed solution represents the state of no transverse surface relaxation, 
the second that with the surface relaxation. Between both states we find a phase 
transition closely associated to a pre-wetting transition (dotted line in figure 2). 

We have seen so far that longitudinal relaxations always exist for all surfaces and 
interfaces. Thev represent one of the mast common precursor effects of the phase 
transition. In contrast to the longitudinal relaxations, transverse relaxations exist only 
for specific surfaces and interfaces. They break the local symmey and give rise 
to an additional phase transition. This analysis now clearly provokes a number of 
new questions. One of the most fascinating questions relates to relaxations near 
vicinal surfaces and rough surfaces. In the first case, a specific surface with transverse 
relaxations is tilted by a small angle so that periodic kinks appear in the surface. These 
kinks break the same symmetry locally, as does the transverse relaxation during the 
‘pre-wetting’ transition. Such a situation allows the study of a phase transition with 
strictly periodic, symmeybreaking fields, 

The second type of question relates to rough surfaces. Again, the roughness 
acts as a symmetry-breaking field which is now random. Rough surfaces or rough 
interfaces provide an almost ideal source of a random field acting on the pre-wetting 
order parameter. As the roughening transition may occur at higher temperatures than 
the polytypic or ferroelastic phase transition, one can image a situation in which the 
surface relaxation can be investigated for different control parameters and for well 
defined amplitudes of the random field. Such investigations are planned for further 
work. 
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5. Structure factor 

The most obvious indication for strong lattice relaxations is the experimental 
observation that superlattice diffraction signals are streaked and arched (e.g. 
Sondmand and ltigunayat 1989). Furthermore, their maximum intensity is not 
located at the equivalent diffraction angle for the ideal structure but slightly shifted 
(Salje et ai 1987). ltigunayat (1966) related the streaking to  the formation of 
structural disorder near the polytypic interfaces (Le. the zips). The arches were 
related to the movement of dislocations into small-angle boundaries. Although these 
topological lattice imperfections are expected to  carry the main part of the diffraction 
intensities outside the B r a g  reflections of the perfect lattice, it appears that our 
model explains similar effects simply as the result of the intrinsic lattice relaxation 
near the surface and the interfaces. In particular the asymmetry of the scattering 
profile of the superlattice reflections can easily be derived from the shape of the 
lattice relaxation (wilhoul the evocation of any topological disorder!). In order to 
illustrate this argument, let us consider an orthogonal system. The reduced structure 
factor A'(hk) in the plane perpendicular to the surface or interface (appendix 3) is 
for the first satellite reflection 

m 
p'q'-' 

m s  

A'(hk)  = c c ( i k ) "  (1') - exp(imha - mta, - m ( s  - t ) a 2 )  (36) 
S !  

s=U i=u m=U 

which includes the exponential relaxation with 

U, = PA? + qX,. X = exp(-a). (37) 

The intensity for s = 0 yields the same &reflections as the original lattice. The 
relaxations lead to satellite peaks with s = 1 with 

m 

A ' ( h , k )  = c J ( s )  
*=U 

m m 

J(l) = ikp exp(imha - ma,)  + ikq exp(imha - ma2).  (39) 
m=U m=U 

Only cases with 1x1 # 1 lead to exponential relaxations so that Re(a)  # 0. This part 
leads to a simple geometrical series in m with the value 

J ( 1 )  = i k [ p / [ l - e x p ( i h a - a l ) ] + q / [ l - e x p ( i h a - a 2 ) ] ] .  (40) 

In the case of an incommensurate relaxation with 

A, = A; a, = a2 P =  4' (41) 

we consider the real and imaginary part of a separately and find 

a, = a' + ia" a 2 -  - a'- ia" p = p,ei8 q = pUe- . 
The reduced structure factor then becomes 

(42) 
io 
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The diffraction profile follows from the square of the structure factor and is 
proportional to three contributions: 

r,, = ( ~ - Z ( ~ I c o s ( h a -  a")+l~1*)-' I,,= ( l -21Xlcos(ha+a")+lXIZ)- '  

(45) 
are the diagonal terms and 

r,,= [cosze+IX)Zcos(ze+a")-2coshaco~(2e+a")]/[(1+IX12)z 
+2(X12(cos2ha+cos2a") -4coshacosa"(IX(+ IXl')] (46) 

decribes the mixing of the two decays. 
The profiles I,, and I,, give two symmetrical peaks at h f u"/a,  i.e. the 

superlattice reflections These reflections do not necessarily correspond to the final 
reflections of the low-symmetry form because a" changes as a function of the control 
parameter. The cross term I,, is asymmetric and leads to additional weak scattering. 

We now calculate the scattering profiles for 'reasonable' model parameters. With 
a" = 1 and X = 0.9 we find the two satellite reflections I,, + I,, in figure 4. For 
the cross term I , , ( h ) ,  the intensity also depends on the phase angle 0. In figure 4 
the results for various angles between 7r/4 and 0 are shown. We then compare 
the results of the analytical calculations for a model with p = 0.5 exp(-i/2) and 
X = 0.9exp(O.Si) with those of computer simulations on a chain of 200 atoms. 
The final results are shown in figure 4 showing a weakly asymmetric peak profile 
with a maximum shifted as a function of the control parameter. This peak profile 
agrees, at least quantitatively, with the observed asymmetry of the diffraction profiles 
in PbI, and the shift of the peak position when the transition point is approached 
in polytypic transformation. A more quantitative comparison is not yet possible, 
however, because the analysis of the experimental profiles is hampered by additional 
effects due to other lattice imperfections in the as-grown material. Further studies 
of other polytypic material, such as Sic, for the analysis of the fine Structure of the 
diffraction profiles are planned. 

(a) 

h 
h L . 8  5.0 5.2 h 5.L 5.6 

Flgure 4. Analytical slmucture factor (a) and the mul l  of computer simulation ( b )  with 
uo = 0.5 exp(O.Si), X = 0.9 exp(O.8i). 
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Appendix 1 

The regression relation for two interacting lauers in equations (10) and (11) can be 
written in matrix form 

where the transfer matrix E = (-:f il) is the standard map of the non- 
linear equation (11). The relaxation is due to the non-diagonal form of 6. In 
the eigensystem, B can he diagonalized with 

where A,, A, are the solutions of the characteristic equation A, + 2pX + 1 = 0, or  

AUJ = -P  + m (W 
and 

A,X, = 1. (A4) 

The transformation matrix between the nondiagonal and the diagonal basis is P with 
B" = P(B')"P-' and 

The eigenvalue of en is then 

t, = [1/(A, - A,) l [ (Xi  - A;)q - (A,"-' - X;-~)t"I ('46) 

and depends only on &,,and the initial values of E" and c, close to the surface. 
In the bulk, we required e ,  -+ 0 for n - CO which is only possible for (A,I > 1 if 

This convergence condition and the equilibrium condition for the first layer 
A,€, - E ,  = 0. 

(equation (10)) determine the values of e ,  and c I  as 

E ,  = ( V ' ( 2 b ) / V 1 ' ( 2 b ) ) / [ ( 2 0  - 1) + A,] cl = AUeO. ('47) 

Replacing t, by e ,  in equation (A 6) leads to the final recursion formula as already 
used by Houchmanzadeh el a1 (1991): 

E ,  = A,"€,. (A*) 



9792 B Houchmandzadeh et a1 

Appendix 2 

The relaxation equations (27)-(29) are reformulated using the transfer matrix 

-2a -0 -2a -1 

e = (  ; O 1 0 0  O O )  
0 0 1 0  

where 

= 1 + '&/(2'$3) 0 = + ( '$1 + 2'$2)/& (AW 
The transfer matrix can now be diagonalized with the eigenvalues given as the solution 
of the characteristic equation 

~ 4 + 2 , ~ 3  + 0x2 + 2 4  + 1 = 0 (All)  

as 

U,,, = -(a - A )  + d x 4  A1A3 = 1 ('412) 

2A2,, = -(a + A )  + d(a + A)2 - 4 AzA, = 1 (-413) 

A = J a 2 - 0 2 + 2  ('414) 

We find two pairs of conjugate eigenvalues A, and A,, and A, and A,. The 
transformation matrix P is 

the nth relaxation parameter E" follows then from 

with the coefficients gk,i  defined by P as 

g k , l = l / f  g k , 2 = - x A j / f  g k , 3 =  'jAi/f  (A17) 
j#k j # k # i  

gk,4 = A i A j  A , / f  f = A4 + 2aA3 + PA2 + 2aA + 1. (AM) 

We can again choose one of the conjugate A-values to be greater than unity. With 
the choices IA,I > 1 and IA,1 > 1, the condition for F, becomes 

i # j # 1 # k 

gl, lcl  + S1,2E2 + 91.3'3 + 9L4'4 = 0 

%,le ,  + g3,2'2 + 93.3'3 + g4.4'4 = 

f, = PA: + q x ;  

('419) 

(MO) 
which determines the full set {eU, e , ,  t2, e , ) .  The relaxation amplitude is then 
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' " = P + P  ('424) 

('425) 

('426) 

('427) 

C = - ~ C z ~ u + [ C ~ / ( l + x ) l ~ ~ / 2 +  ... ('428) 

Y C ~  = c2 J4:/44: - 42/43 - 61/43 

where 

a = f ( x I M x 2 )  - f(X,)S(x,) 

f(x) = (1 + 42/63) + (2 + 242/63 + 41/43) + (2 + 42/43) 
S(x) ='(l + 41/43 + 42/43) f (1 + 42/43) + A*. 

+ x3 

It is now easy to show that the two leading terms of the Gibbs free energy in E" are 

for the case of longitudinal relaxations. The term 

is the equivalent of the conjugated field H in Landau theory whereby H is created 
by the surface. It is obvious from symmetry arguments that H can only exist for 
longitudinal relaxations whereas transverse relaxations require H = 0. 

Appendix 1. The derivation of the reduced structure factor 

The lattice points arc described by 

rm,n.P = mae, + nbey + p c e ,  

and the diffraction vector is 

k = he, + ke, + le, .  

The d i sphC3" t  vector with respect to the paraphase is 

U = ( p ~ - " ' ~ ]  + qe-mKz)ey 

for a deformation along the crystallographic y-axis. The intensity of the superlattice 
reflection is 

I ( k )  = CIA(k)I2 

with the structure factor A ( k ) ,  which becomes 

A ( h k l ) =  (xb(k-F)) ( , 6 ( 1 - 5 ) ) A ' ( h k )  (A33) 

where the 6-function applies to the ideal, infinite crystal. The reduced structure factor 
is 

m s  m 

A'(hk)  = c Z ( i k ) "  ( f  ) - P'Cl- '  exp{imha - m o l l  - ma2(s - t ) ) .  (A34) 
S! 

s=u 1=u m=U 
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