Article Collection: View Collection Help (Click on the to add an article.)
Phys. Rev. B 45, 92929310 (1992)
[Issue 16 15 April 1992 ]
[ Previous article | Next article | Issue 16 contents ]
View Page Images or PDF (3359 kB)
Structural refinement of superlattices from x-ray diffraction
- Eric E. Fullerton and Ivan K. Schuller
- Physics Department 0319, University of California-San Diego, La Jolla, California 92093
- H. Vanderstraeten and Y. Bruynseraede
- Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
Received 17 May 1991We present a general procedure for quantitative structural refinement of superlattice structures. To analyze a wide range of superlattices, we derived a general kinematical diffraction formula that includes random, continuous, and discrete fluctuations from the average structure. We show that only the structure factor of one single layer of each material has to be averaged over the random variables and prove that this relation is equivalent to earlier, less general models. Implementing a nonlinear-fitting algorithm to fit the entire x-ray-diffraction profile, refined parameters that describe the average superlattice structure and deviations from this average are obtained. We compare the results of structural refinement to results obtained independently from other measurements. The roughness introduced artificially during growth in Mo/Ni and Nb/Cu superlattices is accurately reproduced by the refinement. The lattice parameters of Ag/Mn obtained from this refinement procedure are in very good agreement with the values obtained from independent extended x-ray-absorption fine-structure and x-ray photoelectron diffraction studies. The relative thicknesses of the layers can be accurately determined, as proved for Cu/Ni in comparison with chemical analysis, for W/Ni compared to the calibrated sputtering rate, and for Mo/Ni compared to the low-angle profile.
©1992 The American Physical Society
URL: http://link.aps.org/abstract/PRB/v45/p9292
DOI: 10.1103/PhysRevB.45.9292
PACS: 68.65.+g, 68.55.Jk, 61.10.My
View Page Images or PDF (3359 kB)[ Previous article | Next article | Issue 16 contents ]
References
(Reference links marked with may require a separate subscription.)
- For recent reviews, see various articles in, for instance, Physics, Fabrication and Applications of Multilayered Structures, edited by P. Dhez and C. Weisbuch (Plenum, New York, 1988); in Metallic Superlattices, Artificially Structured Materials, edited by T. Shinjo and T. Takada (Elsevier, Amsterdam, 1987); in Synthetically Modulated Structures, edited by L. L. Chang and B. C. Giessen (Academic, New York, 1985); I. K. Schuller, J. Guimpel and Y. Bruynseraede, Mater. Res. Bull. 15, 29 (1990).
- E. Spiller, in Physics, Fabrication and Applications of Multilayered Structures, edited by P. Dhez and C. Weisbuch (Plenum, New York, 1988), p. 271.
- F. Mezei, in Physics, Fabrication and Applications of Multilayered Structures, (Ref. 2), p. 310.
- J. Murduck, D. W. Capone II, I. K. Schuller, S. Foner and J. B. Ketterson, Appl. Phys. Lett. 52, 504 (1988) [ SPIN][ INSPEC].
- M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
- S. Hashimoto and Y. Ochiai, J. Magn. Magn. Mater. 88, 211 (1990) [ INSPEC].
- H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969) [ INSPEC].
- F. Izumi, in Advances in The Rietveld Method, edited by R. A. Young (Oxford University Press, Oxford, in press).
- B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, London, 1978), p. 102.
- P. F. Miceli, D. A. Neumann and H. Zabel, Appl. Phys. Lett. 48, 24 (1986) [ SPIN][ INSPEC].
- W. Sevenhans, M. Gijs, Y. Bruynseraede, H. Homma and I. K. Schuller, Phys. Rev. B 34, 5955 (1986).
- D. Neerinck, K. Temst, H. Vanderstraeten, C. Van Haesendonck, Y. Bruynseraede, A. Gilabert and I. K. Schuller, Mater. Res. Soc. Symp. Proc. 160, 599 (1990).
- I. K. Schuller, Phys. Rev. Lett. 44, 1597 (1980).
- V. S. Speriosu, Jr. and T. Vreeland,, J. Appl. Phys. 56, 1591 (1984) [ SPIN][ INSPEC].
- J. M. Vandenberg, D. Gershoni, R. A. Hamm, M. B. Panish and H. Temkin, J. Appl. Phys. 66, 3637 (1989).
- J. M. Vandenberg, M. B. Panish, H. Temkin and R. A. Hamm, Appl. Phys. Lett. 53, 1920 (1988) [ SPIN][ INSPEC].
- J. C. P. Chang, T. P. Chin, K. L. Kavanagh and C. W. Tu, Appl. Phys. Lett. 58, 1530 (1991) [ INSPEC].
- A. Segmüller and A. E. Blakeslee, J. Appl. Cryst. 6, 19 (1973) [ INSPEC].
- D. B. McWhan, in Synthetic Modulated Structures, edited by L. L. Chang and B. C. Giessen (Academic, Orlando, 1985), p. 43.
- D. B. McWhan, M. Gurvitch, J. M. Rowell and L. R. Walker, J. Appl. Phys. 54, 3886 (1983) [ SPIN][ INSPEC].
- J. Mattson, R. Bhadra, J. B. Ketterson, M. B. Brodsky and M. Grimsditch, J. Appl. Phys. 67, 2873 (1990) [ SPIN][ INSPEC].
- M. B. Stearns, C. H. Lee and T. L. Groy, Phys. Rev. B 40, 8256 (1989).
- G. Gladyszewski, Thin Solid Films 170, 99 (1989) [ INSPEC].
- G. Gladyszewski and P. Mikolajczak, Appl. Phys. A 48, 521 (1989).
- T. Shinjo, N. Nakayama, I, Moritani and Y. Endoh, J. Phys. Soc. Jpn. 55, 2512 (1986) [ INSPEC].
- J. H. Underwood and T. W. Barbee, Appl. Opt. 20, 3027 (1981) [ SPIN][ INSPEC].
- P. Lee, Appl. Opt. 22, 1241 (1983) [ SPIN][ INSPEC].
- R. W. James, The Optical Principles of Diffraction of X-Rays (Cornell University Press, New York, 1965).
- I. K. Schuller, M. Grimsditch, F. Chambers, G. Devane, H. Vanderstraeten, D. Neerinck, J.-P. Locquet and Y. Bruynseraede, Phys. Rev. Lett. 65, 1235 (1990).
- P. Auvrey, M. Baudet and A. Regreny, J. Appl. Phys. 62, 456 (1987) [ SPIN][ INSPEC].
- S. Hendricks and E. Teller, J. Chem. Phys. 10, 147 (1942).
- J. Kakinoki and Y. Komura, J. Phys. Soc. Jpn. 7, 30 (1952).
- M. Seul and D. C. Torney, Acta Crystallogr. Sect. A 45, 381 (1989).
- For a general discussion of the effects of disorder on x-ray-diffraction profiles, see A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Materials (Freeman, San Francisco, 1963), Chaps. 5 9.
- Y. Fujii, T. Ohnishi, T. Ishihara, Y. Yamada, K. Kawaguchi, N. Nakayama and T. Shinjo, J. Phys. Soc. Jpn. 55, 251 (1986) [ INSPEC].
- B. M. Clemens and J. G. Gay, Phys. Rev. B 35, 9337 (1987).
- J.-P. Locquet, D. Neerinck, L. Stockman, Y. Bruynseraede and I. K. Schuller, Phys. Rev. B 39, 3572 (1988).
- J.-P. Locquet, D. Neerinck, L. Stockman, Y. Bruynseraede and I. K. Schuller, Phys. Rev. B 39, 13338 (1989); We note that in Eq. (4) of this paper the number of interfaces in one of the terms was incorrect which leads to a minor correction.
- P. A. Kearney, J. M. Slaughter, K. D. Powers and C. M. Falco, SPIE Proc. 984, 24 (1988).
- For an overview see, T. W. Barbee, Jr.,, SPIE 563, 2 (1985); Opt. Eng. 25, 8 (1986).
- P. G. Harper, SPIE 984, 150 (1988).
- B. Pardo, L. Nevot and J.-M. Andre, SPIE 984, 166 (1988).
- E. Spiller and A. E. Rosenbluth, Opt. Eng. 25, 954 (1986) [ INSPEC].
- H. Vanderstraten, D. Neerinck, K. Temst, Y. Bruynseraede, E. E. Fullerton and I. K. Schuller, J. Appl. Cryst. 24, 571 (1991) [ INSPEC].
- B. Vidal and P. Vincent, Appl. Opt. 23, 1794 (1984) [ SPIN][ INSPEC].
- I. S. Gradzshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1963), p. 494.
- M. R. Khan, C. S. L. Chun, G. P. Felcher, M. Grimsditch, A. Kueny, C. M. Falco and I. K. Schuller, Phys. Rev. B 27, 7186 (1983).
- M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 67 70.
- The discrete distribution about a noninteger average value N bar is calculated by taking Gaussian distributions centered about each of the nearest integer values with equal widths and the heights scaled by the difference of N bar and the integer values. For example, if N bar = 14.3, the Gaussians about 14 and 15 will have heights of 0.7 and 0.3, respectively. P ( Nj) values are then determined by taking the integrated intensity of the both Gaussian distributions +- 0.5 of Nj and normalizing to the total probability. This distribution for small widths gives just the weighted probability of the nearest integer values and for large widths approximates a Gaussian about N bar.
- International Tables for X-ray Crystallography IV (Kynoch, Birmingham, 1974), p. 149.
- The SUPREX program is available for a number of different computers and in two different languages ( FORTRAN and turbo PASCAL ) by writing to the authors (I.K.S. or Y.B.).
- P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
- S. K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).
- I. K. Schuller and M. Grimsditch, J. Vac. Sci. Technol. B 4, 1444 (1986) [ INSPEC].
- B. T. Jonker, J. J. Krebs and G. A. Prinz, Phys. Rev. B 39, 1399 (1989).
- Y. U. Idzerda, B. T. Jonker, W. T. Elam and G. A. Prinz, J. Appl. Phys. 67, 5385 (1989) [ SPIN][ INSPEC].
- W. F. Egelhoff, Jr., I. Jacob, J. M. Rudd, J. F. Cochran and B. Heinrich, J. Vac. Sci. Technol. A 8, 1582 (1990) [ SPIN][ INSPEC].
- The line shape used in the refinement was y = H lcurl 1 + [ ( x - x0) / Gamma ] tau rcurl-1, where H, x0, GAMMA, and tau are the height, center, width, and exponent, respectively, that define the line shape and are used as fitting parameters. tau = 2 corresponds to a Lorentzian line shape.
- L. H. Bennett, L. J. Swartzendruber, D. S. Lashmore, R. Oberle, U. Atzmony, M. P. Dariel and R. E. Watson, Phys. Rev. B 40, 4633 (1989).
- R. Oberle (private communication).
- L. M. Goldman, H. A. Atwater and F. Spaepen, Mater. Res. Soc. Symp. Proc. 160, 578 (1990).
- The position of the dip can be qualitatively understood from simple phase arguments. There is a difference of a pi rotation of the electric field upon reflection of the x rays from the more dense to less dense interface (Mo to Ni) compared to the less dense to more dense interface (Ni to Mo). When the layer thicknesses are equal, the even-order Bragg reflections are suppressed because the Ni-Mo reflections destructively interfere with the Mo-Ni reflections at even-order Bragg angles. When the layer thicknesses are not equal, the cancelation will not be complete at the even-order Bragg angles leading to a small even-order peak. The phase sign will depend on whether the denser material is thicker or thinner than the less dense material, so the interference between the surface reflection and Bragg reflection shifts will shift dependent on the relative thickness of the layers.
- D. Neerinck, H. Vanderstraeten, L. Stockman, J.-P. Locquet, Y. Bruynseraede and I. K. Schuller, J. Phys.: Condens. Matter 2, 4111 (1990) [ INSPEC].
- I. K. Schuller, E. E. Fullerton, H. Vanderstraeten and Y. Bruynseraede, Mater. Res. Soc. Symp. Proc. 229, 41 (1991).
- O. Nakamura, E. E. Fullerton, J. Guimpel, and I. K. Schuller, Physica C 185-189, 2069 (1991). .\&
View Page Images or PDF (3359 kB)
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 16 contents ]
E-mail: prola@aps.org