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We consider a free-electron model of exchange coupling between transition-metal ferromagnetic films
separated by a paramagnetic metal spacer. The minority-spin energy bands in the ferromagnets are
matched to those of the paramagnetic spacer. The majority-spin electrons experience a repulsive poten-
tial arising from the lack of corresponding states in the spacer. The height of the potential barrier is
equal to the exchange-energy gap in the ferromagnets. We show how the model, applicable to a trilayer
film such as Fe/Cr/Fe or Co/Ru/Co, generates an infinite sum of terms with coefficients 43,B,, ... in
the coupling energy, extending beyond the Heisenberg-like A4, term of bilinear coupling between the
moments of the ferromagnets. Both the 4, and non-Heisenberg (biquadratic) B, exchange terms oscil-
late with spacer-layer thickness. We find that the phase of B, relative to 4, shifts with this thickness,
so that at certain regions of spacer-layer thickness, the magnitude of B, is greater than that of 4, and
B, is of the proper sign to cause 90° coupling between the ferromagnets. These special thicknesses are
predicted to appear over a broad range of the ratio of Fermi to exchange-gap energies. Thus, we show
from our model that biquadratic, or 90°, coupling between the ferromagnets is intrinsic to.itinerant-
electron exchange across the paramagnetic spacer. '
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I. INTRODUCTION

Early observations of exchange coupling between
transition-metal magnetic layers separated by nonmag-
netic metals' ~® were striking when considered from the
point of view of their bulk band structures. Both Fe/Cr
and Co/Ru multilayers comprise ferromagnetic and
paramagnetic elements with the same crystal structure
and similar lattice constants, and in both cases the
paramagnet has fewer spd electrons than the ferromag-
net. This deficit of electrons in the paramagnet lowers its
relative Fermi energy just enough to match the
minority-spin bands in the ferromagnet. (See Fig. 1).
Thus, when the two materials are brought together at an

interface with their Fermi energies equal, the electron

wave functions in the paramagnet are matched in both
energy and symmetry to the minority-spin wave functions
in the ferromagnet. o

Subsequent observations of exchange coupling in a
wide variety of transition-metal systems”® has made it
clear that such an exact match of band structures is not a
necessary condition for exchange coupling, but the de-
gree of band matching may play an important role in
determining the strength of the coupling. The most re-
cent observations of exchange coupling between magnetic
transition metals separated by noble metals®~!? indicates
that a different kind of band matching may occur be-
tween the paramagnetic states and the ferromagnet
majority-spin states.

With this condition of closely matched band structures
appearing to play an important role in the coupling, it
seems appropriate to model exchange-coupled systems by
allowing for strong hybridization between the metals—to
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go beyond perturbation theory treatments such as that
used to derive the Ruderman-Kittel-Kasuya-Yosida
(RKKY) coupling. A nonperturbative approach to the
coupling problem has also been taken by Edwards et al.
in a calculation of the energy difference between fer-
romagnetically and antiferromagnetically aligned mo-
ments.'® In addition, some early unpublished results in-
dicated that the exchange coupling was not always of the
simple Heisenberg form. Recent measurements of strong
biquadratic coupling in Fe/Cr/Fe (Refs. 14 and 15) and
Fe/Al/Fe [Ref. 16] systems has confirmed these early ob-
servations. It has been suggested that biquadratic cou-
pling in the Fe/Cr/Fe systems is the result of interfacial
roughness.!” :

Slonczewski'® has recently calculated both a tunneling
spin-valve (magnetoresistance) effect and an exchange
coupling between transition-metal magnets separated by
a thin insulating layer. He represents the magnets by
free-electron spin-split bands and the insulator by a one-
dimensional barrier extending above the Fermi energy in
the metals. The magnitude of the calculated exchange
coupling depends on the degree to which the electrons
with different spins are affected by a different barrier
height—the magnitude of the exchange splitting, or
equivalently, the magnetic moment in the metal.
Slonczewski introduces and employs a method for calcu-
lating exchange coupling from the torque produced by
rotation of the magnetization of one ferromagnet relative
to that of the other.

We have adapted Slonczewski’s method to a model of
transition-metal ferromagnet/paramagnet/ferromagnet
trilayers with matched band structures appropriate for
Fe/Cr as discussed above. In our model, electrons of one

2626 ©1993 The American Physical Society



47 MECHANISM FOR NON-HEISENBERG-EXCHANGE COUPLING ...

ferromagnet have a finite probability of undergoing a spin
flip upon transmission through the paramagnetic spacer
due to the noncolinear alignment of the moments of the
two ferromagnets. In particular, incident majority-spin
electrons encounter a potential barrier equal to the ex-
change splitting of the ferromagnet bands since the
paramagnetic band is matched to the minority-spin band.

In Sec. II we discuss this model and calculate the wave
functions for arbitrary angle 0 between the in-plane mag-
netizations of the ferromagnetic layers. Also, we describe
how the quantum-mechanical spin-flip current is ob-
tained from these wave functions and derive the propor-
tionality relation between the spin-flip current and the
torque on a ferromagnet layer. As a last topic in this sec-
tion we show the cancellation of the nonoscillatory con-
tributions to the spin-flip current.

In Sec. III we map our itinerant-electron model onto
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FIG. 1. (a) Density of states vs energy for majority- and
minority-spin Fe spd bands and Cr spd bands, from band-
structure calculations [D. A. Papaconstantopoulos, Handbook
of the Band Structure of Elemental Solids (Plenum, New York,
1986)]. The shaded portion of the left-hand (Fe) side is the
minority-spin (1) density of states. Fermi energy is denoted by
€r. (b) Energy vs wave vector perpendicular to the interface for
majority- and minority-spin Fe electrons, and Cr electrons, as
used in the model discussed in the text. The value 2h, is the ex-
change energy band gap. The minority-spin Fe and Cr bands
are perfectly matched. The model should apply to other
ferromagnetic/paramagnetic/ferromagnetic systems in which
the minority-spin bands of the ferromagnet match the bands of
the paramagnet: Co/Ru/Co, for example.
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an empirical model of the exchange coupling between fer-
romagnetic layers by equating the torque (on a ferromag-
netic layer) of our model to the torque implied by the
phenomenological model. In this way our spin-flip
current, which is expandable in a power series in cosf,
can be related to bilinear, biquadratic, and higher-order
exchange terms of the empirical model. In addition to a
discussion of the asymptotic forms of the bilinear and bi-
quadratic terms, we give the results of numerical integra-
tions of these terms for various values of the band-
structure parameters. We show that the biquadratic
term, which oscillates with increasing paramagnetic layer
thickness, is in commensurate with the oscillations of the
bilinear term. From this result we demonstrate that bi-
quadratic, or 90° coupling between the ferromagnetic
layers is intrinsic to itinerant-electron exchange.

II. THE MODEL

We now proceed to a description of our free-electron
model, applicable to a system such as Fe/Cr/Fe, and the
method of calculating the coupling of the ferromagnets
through the paramagnetic metal. Specifically, we consid-
er a trilayer structure with perfectly smooth interfaces of
total volume ¥V consisting of two very thick ferromagnetic
(Fe) layers separated by a paramagnetic (Cr) layer of vari-
able thickness d. We assume the overall thickness of the
film to be much greater than d, taking the ferromagnetic
layers to be, for all intents and purposes, semi-infinite.
Let y denote the direction normal to these interfaces, and
let 6 denote the angle between the total magnetic mo-
ments, or equivalently the axes of quantization, of the
respective ferromagnets, hereafter referred to as Fe(l)
and Fe(2), as in Fig. 2. The magnetic moments of both
Fe layers are restricted to the plane of the film.

The electrons in Fe and Cr are treated as itinerant,
with states described by plane waves. The most impor-
tant feature of the band structures of these two metals for
the present purpose is the similarity, both in energy and
orbital symmetry, between the Cr bands and those of the
minority-spin electrons of Fe. In contrast, the Fe majori-
ty states have no counterparts in Cr for energies below
the bottom of the Cr band, recall Fig. 1. Thus, in consid-

Fe(l) Cr
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FIG. 2. The coordinate arrangement as used in the calcula-
tions described in the text. The axis of quantization of Fe(l) is
z, that of Fe(2) is z’, which is rotated from alignment along z by
angle 6. As indicated, y is the direction perpendicular to the

film plane.
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ering electrons of a ferromagnet incident to the film inter-
faces, the minority-spin electrons of Fe are easily hybri-
dized with those of Cr while the majority-spin electrons
are confronted by an energy barrier. Our simple model
therefore consists of a paramagnetic free-electron band
structure for Cr and an exchange-split free-electron band
structure for Fe, see Fig. 1(b), so that the barrier encoun-
tered by the majority-spin Fe electrons is equal to the ex-
change energy gap 2h, of Fe.

The determination of the electron eigenfunctions of
our model is straightforward, being similar to the elemen-
tary textbook example of a spinless particle incident to a
finite potential barrier.!® We exploit the translational
symmetry parallel to the interfaces of the film, expressing
an eigenfunction with spatial dependence x in the spinor

ik°x .
form $(x)=u(yle "", where k, is the component of
wave vector tangent to a film interface. This leaves us
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cident at an interface, say from Fe(1), is then obtained in
the Cr spacer and in the opposite Fe layer, Fe(2), by
matching the function and its first derivative at the two
interfaces. Matching the wave function of Fe(2) to that
of Cr requires rotating the spinor of Fe(2) by angle 0 to
the axis of quantization of Fe(1).

The Fe layers are assumed thick enough so that an
electron incident from Fe(l) is independent of one in-
cident from Fe(2). Of course, majority and minority elec-
trons incident from both Fe(l) and Fe(2) must be taken
into account since every itinerant electron of our model
can reside, with some finite probability, in every region of
the volume V.

As an example, consider a majority (minority) plane-
wave electron of energy E incident from Fe(l) whose
component of wave vector along the 3 direction has mag-
nitude k; (k;). In the region of the paramagnetic layer

with the task of evaluating the spinor u (y), which varies (0( t<)y <d), (Tf;or ar(lT) incident majority-spin electron,
across the thickness of the film. An expression for u (y) y)=[u} ()]s given by
of a majority or minority-spin electron of energy E in-
. 1 e
" 12Kk e o d’—(kf—k e " cos2(6,/2)] o ,
usy (_V)=‘/—* - - . H, e e e B “(1a)
v (ky+hy e 40— (ky—k, Ve “eos(6,/2)
and
wPipy=] —kylky—k e Y sing o 1
y)= : —— - . e : : -
VIV (ky+k %™ (e —k %™ c0s2(6/2)
Similarly, in this same region, for an incident minority-spin electron we find
(D)=L (kg —k, e —kde ™" 1™ sin - - 22
uy' )= T - o ’ 22
VIV (ky+k % 5 = —k 126 %e0s2(6./2)
and '
) iy —d) k" ik, —d) 2(9/2) L 7 o
ul yi= . e LeEC LT .- Lo
VV (k,+k, e R —kl)2 *ilo0s%6/2)

where k§=k% —k? =4mh,/#. Here, of course, m is the
mass of an electron and # is Planck’s constant.

A. The spin-flip current and the equation of torque

Our model interprets the interaction between the fer-
romagnetic layers Fe(l) and Fe(2) in terms of a simple
electron exchange. An electron of a majority- or
minority-spin state, incident from one ferromagnet, is
transmitted through the paramagnetic layer to the other
ferromagnet with a finite probability of undergoing a
spin-flip due to the oblique alignment of the moments of
the respective ferromagnets. The probability of a spin
flip varies continuously from zero, in the ferromagnetic
state of the film (6=0), to a maximum value in the anti-
ferromagnetic state (0=1r).

Following Slonczewski,'® we determine the torque in-
duced on one ferromagnetic layer, Fe(l), by the other,

Fe(2). Slonczewski’s method of calculating the torque
involves the construction of a spin-flip or exchange
current, which is a measure of the probability that an in-
cident electron will undergo a change of spin state on
transmission through the paramagnetic spacer. It is
analogous in form to the probability current of a spinless
particle,?’ and appears in descriptions of itinerant fer-
romagnetism.?!

For the remainder of this section we briefly discuss the
formulation of the spin current and its relation to the
torque on a ferromagnet.

One begins by defining a spm-densﬂy vector

plx,0)=11(x,oe(x,1) 3)

where o is the vector of Pauli matrices. Letting
S=(#/2)o be the spin of an electron of a given ferromag-
netic layer, the meaning of Eq. (3) becomes clear from the
expectation value of S(z), viz.,
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s(tn)y= [ av ¢'(x,0)Sy(x,1)
=%dep(x,t) , )

where the integral encloses the volume of the given fer-
romagnet. Then, examining 3{S(¢)) /3¢, and therefore
dp(x,t)/3t, we are led to define a current tensor j(x,?),
with Cartesian components given by

. __f |t oP(x,t)
Jap(X,2) 2im [zﬁ (x,0)05=2>

a

BQT(xzt)

ax, ’ (52)

O'Bl,b(x,t )

which satisfies a continuity equation involving p(x,):2°
LD 4 v-jix,0=0. ' (5b)

Equation (5a) is valid in the absence of spin-orbit cou-

pling.

We can apply this idea to our trilayer film, which has
Fe/Cr interfaces of area A parallel to the x-z plane, recall
Fig. 2. Thus, for a given electron of spin S in the volume
¥, of Fe(l), we find the time rate of change of the expec-
tation value of the relevant y component of this spin to be

3(S, (1))

> ———-f AV V-j(x,1)9

=—5fAdA Jm D] g
A,
=== AW, o+ - | (6a)

From Eq. (5a), the current jyy|y=o+’ uniform throughout
the paramagnetic layer, is

VD =k k2

(1) — —_
j =9 3 Jem __n ) Tf
0<k, <kg
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]yy|y=0+-—‘;RC uy(y)* 3
du (y)*
—g;i- 4y () (60)

Now, deﬁ'ning S, as the total spin of Fe(l), we can deter-
mine 3(S l,y(t))/at by summing over all electron states
up to the Fermi energy in Egs. (6), including those of ma-
jority and minority electrons incident from both Fe(1) and
Fe(2). In this way, summing the spin-flip currents of the
form of Eq. (6b) and labeling the net current as j, we
have from Egs. (6)

S, (0)
at

Equation (7) then implies that the torque on Fe(l) can be
determined by evaluating the net spin-flip current j; in
the paramagnet.

We give a brief synopsis of how jr of our model is eval-
uated. The spin-flip current due to a majority-spin elec-
tron of energy E incident from Fe(1) is obtained by apply-
ing Egs. (1) to Eq. (6b); call this current j{". In our mod-
el, which exactly matches the Cr band to the Fe
minority-spin band, one finds j{" to be zero for E > h,,.
Similarly, one obtains the current due to a minority-spin
electron incident from Fe(1) by aaplymg Egs. (2) to Eq.
(6b); call this current j¢*). Note, ji*' exists strictly for en-
ergies E > h, by definition of a mlnorlty-spm electron.
The net current of majority- and minority-spin electrons
jr is calculated by summing both j{! and j{*’ over al-
lowed states up to their respective Fermi energies, then
multiplying by a factor of 2 to account for electrons in-
cident from Fe(2), which contribute equally to the total
spin current.

In this way, summing over allowed states k—(k",k )
and letting k!’ be the Fermi wave number of the majorl-
ty band of Fe, we find the net majority-spin current j''
to be

B

4xck3 (kK2 —k3 e ~¥sing
Vl(ky +ic)>—(k —iK)e ~*cos(0/2)]>

- (8a)

where k=ik =V k}j—k?%. Similarly, summing over states k=(kk,) and lettihg k ,(:”be the Fermi wave number of

the minority band of Fe, the ‘net minority-spin current j Vs

k k$sin(2k ;d )sin6

](l)—2 2 Je(“
0<kl<k1‘,“ -
g VR
=5 kydk,

where ky =V k}+k?}. Thus, the net current j is then
j7'=j(“+j(“: - ' 9)

which determines the torque on Fe(1) when Eq. (9) is sub-
stituted into Eq. (7).

(ke y ey 2=tk —k ) e %cosi(6/2)]2

B. The cancellation of nonoscillatory terms
of the spin-flip current

In the previous subsection we derived the means by
which the spin-flip current of our model can be evalu-
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ated. However, our task is not yet finished. In fact, the
form of the spin-flip current as given by Eqgs. (8) and (9)
has led us to an interesting point which must be ad-
dressed before any practical calculation can be con-
sidered.

The point concerns the following. Many years ago,
Bardasis et al.?? considered the effect of a nonferromag-
netic electron gas in contact with a ferromagnetic one.
They found the excess spin density established in the non-
ferromagnetic (and ferromagnetic) electron gas to be en-
tirely of the RKKY oscillatory type, contributed by elec-
trons of energy greater than the Fermi energy of the non-
ferromagnetic metal. The evanescent slowly varying
components of this spin density are exactly canceled by
the contribution from electrons. of energy less than the

4
1) — fiky
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Fermi energy. In fact, when the exchange potential be-
tween the ferromagnetic and nonferromagnetic metals is
weak enough to be treated by perturbation theory, they
found a result precisely that of RKKY theory. They
showed this result to be quite general, owing to the clo-
sure property of the eigenstates of the system.

The generality of the result of Bardasis et al. implies
that our model must also exhibit this cancellation proper-
ty. In fact, we show that the minority spin-flip current
j'¥ exactly cancels the nonoscillatory part of j'! in Eq.
9.

To see this, consider j*’ as given in Eq. (8b). After in-
tegration with respect to k, and a change of variable
z =k, /ky, we may write

2(z =V1+22)"z2—z} )sin(2kydz )sm9

Zr
dz
J 417°m fo 1—2(z =V 1+2z%*os(2k, dz)cosz(6/2

where zpzk}l)/ko. In the Appendix, we show how j'!

(10)
+(z—V1 )Scos 6/2)

) of Eq. (8a) can be written as an integral over an interval from

zero to infinity with integrand of the same magnitude as that of Eq. (10), but opposite in sign. Thus, comparing Eq.
(A15) with Eq. (10) we immediately see the cancellation which must occur in the expression of the spin-flip current jr of

Eq. (9). Hence, we have

' fiky o z(z—V1+2%)(2” —z,.-)sm(ZkOdz)sme an

Jjr= = z .

r 4rm Yo 1=2(z —V1+22)cos(2k ydz )cosH(0/2) +(z —V 1422 cos"'(9/2)

[

Equation (11) was previously evaluated in the vicinity of = Fe(2), respectively. Additionally, with m;-m,=cos6, Eq.
6=, for the special case of antiferromagnetically cou-  (12a) implies a torque proportional to
pled layers.?® In the next section we discuss the oscillato- E,
ry character of jr as given by Eq. (11), and we relate it, =(4,,+B,cos0)sind . (12b)

via the torque implied by Eq. (7), to a model of the in-
teracting ferromagnetic layers.

ITI. RESULTS AND DISCUSSION .

As we have mentioned in the Introduction, there has
been considerable investigation of the coupling of thin
ferromagnetic layers separated by nonferromagnetic in-
terlayers.l-12 In particular, in addition to the observed
ferromagnetic-antiferromagnetic  oscillatory exchange
coupling, there is evidence of 90° or biguadratic, cou-
pling in Fe/Cr/Fe films. Most notably in Fe/Cr/Fe
wedges, by means of Kerr magneto-optic microscopy,'*
domains on either side of the Cr spacer have been ob-
served oriented at 90°. The 90° orientation has been
detected along the wedge at critical values of the Cr
thickness corresponding to transitions between ferromag-

netically and antiferromagnetically aligned domains. -

Similar evidence has been found in micrographs made us-
ing scanning-electron microscopy with polarization
analysis.

From the analysis of Riihrig of Ref. 14, the energy of
exchange coupling between the Fe layers can be written
phenomenologically as

EC=A12(l—ml'm2)+%B12[l_(ml'mz)z] ’ (123.)

where m; and m, are the unit moments of Fe(l) and

a6

The bilinear coefficient A4, defines the strength and char-
acter (ferromagnetic-antiferromagnetic) of the oscillatory
Heisenberg-like coupling. The biquadratic coefficient B,
generates 90° coupling between m, and m,, or more pre-
cisely a noncolinear state cos@=4A,/|B,|, when
B, <—|Ay,l, a criterion which is favorable when 4,
approaches zero, the transition between ferromagnetical-
ly and antiferromagnetically coupled moments.

From the standpoint of theory, as much as the bilinear
term of Egs. (12) is of interest, the existence of a biqua-
dratic term is even more so since it obviously compounds
the problem of addressing the fundamental nature of the
overall coupling mechanism of the ferromagnetic films.
The authors of Ref. 14 have suggested two possible inter-
pretations of the biquadratic term of Egs. (12): one being
that the biquadratic term is a natural continuation of a
Heisenberg spin Hamiltonian to higher orders while the
other interpretation is that the biquadratic term is a
second-order Dzyaloshinski term. Recently, Slonczewski
has proposed that the biquadratic term is a result of spa-
tial fluctuations of the Cr thickness, indicative of steplike
terraces at the Fe/Cr interfaces.!’

Here, we equate the torque on the ferromagnet Fe(1),
as given by our free-electron model, to that implied by
Eq. (12b). Specifically, equating Eq. (7) to Eq. (12b) we
have
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— 1 A#jr=(A4,+B,cos0)sinb , (13) cos#=0 in an analytic sum involving powers of cos@.
This determines A4,, and B, within the context of our
model and realizes an infinite series of terms in ascending

where jr is given by Eq. (11). In fact jr, or more precise-  powers of m;'m, in Eq. (12a). Thus, for example, in ex-
ly the integrand of Eq. (11), can be expanded about panding j; we establish the definitions
J

ARUY 2(z =V 1+22)4 22—z} )sin(2k,dz) ‘
v N =z =V 1tz cos(2kodn) +(1/4)z —V 1120 e
and
ARk ® z(z—\/—_—i)s[cos(2kodz)-‘(l/2)(z —V1+22)4)(22—22 )sin(2k, dz)
Ba= e, sz [1—(z —V1+22)cos(2kodz) +(1/4)(z —V 1+22 B} e

Higher-order coefficients of the expansion can be defined, although we will not state them explicitly here. Equations
(14) 1ndlcate that the overall amplitude of B, is smaller than that of 4, since the integrand of B contalns
(z—V'1+2z%)* to second order. In fact, as can be demonstrated, higher-order coefficients contain (z —'V 1+z2%)
ever-increasing power so that the amplitude of each successive coefficient in the expansion 4,,B,, . . . is smaller than
the amplitude of the previous coefficient. For our purposes here, it will suffice to consider Eqgs. (14) only, particularly as
functions of the Cr thickness d.

Before we consider Egs. (14) in detail, we examine their forms in the limits of d =0 and d — «, which are especially
revealing.

The precise expansion of jr of Eq. (11), which defines 4,,B,, . . . in our model, can be written
jr= 23, ju,cos"8sinf , ) ' (15a)
n=0

where the j, are given by

4
i 3,

I=n

22=22)z—V1+22 *Vsin[2(] + Dkodz] . (15b)

One can show from Eq. (15b), by writing the sum over / in closed form, that 4, =—(A4%/2)j, and B, =—(A4%/2)j,
are identical to Egs. (14).

In the limit of d =0, with z =k} /k, held fixed, where again, k3 =kl — k" =4mh, /#2, the integrals of the sum
in Eq. (15b) vanish except for the case / =0, which implies

#ky
T T 3200 19
Therefore, in the limit d =0, A, attains the value
ARk
0 _ 1 =070 Cee , s s .
A1 _3]—%[112 256mm ’ an

while B ,, and all higher-order coefficients, vanish. Thus, ferromagnetic Heisenberg-like coupling, with energy propor-
tional to 419 >0, is the only coupling in the limit d —0, and A4, always begins, as a function of d, with this same ini-
tial ferromagnetlc phase, regardless of the coupling strength k.

In the limit 2k{'d — oo, with zp =k{*)/k, held fixed, the integral of Eq. (15b) can be integrated by parts to obtain

/(1+1)“
[

In the weak-coupling limit, k"'=k['), the first term in  while B,, and all higher-order coefficients are negligible;
the sum over / of Eq. (18) suffices, and we have Eq. (19) is precisely the RKKY result, attributable to the
A, term only. In fact, the sum over [ in Eq. (18), which

k(T) k(“ 201 +1)

k(T)+k(l)

‘ﬁk(““ m
2112m 1 =pn

sin[( +1)kVd ]
(2kVd ?

+0[(2kHd) 73] . (18)

. 1
Jn 2

A==z 4% is always convergent, illustrates well the departure of the
A# k(l)’ sm(2k‘“d) asymptotic coupling oscillations from the RKKY theory

o — [k — kT o as the coupling strength increases. Thus, with increasing
16%m (2kg"'d) coupling strength, higher harmonics in / become more

k,‘:“zk}“, (19) important,
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We now turn to a more general discussion of 4,, and
B,. In Fig. 3(a), we plot the results of numerical calcula-
tions of A,, of Eq. (14a) as a function of 2k(“d for
several values of z;=k§" /k,. Similarly, in Fig. 3(b), we
plot the results of numerical calculations of By, of Eq.
(14b) as a function of 2k(“a’ All curves are normalized
by a factor 4'9, a function of the coupling strength as
given in Eq. (17), so care must be taken in comparing the
overall amplitudes of the curves of a given plot frame
since each curve of the plot frame is normalized
differently. All curves in Fig. 3(a) rise to the value of uni-
ty as 2k"'d—0 while all curves of Fig. 3(b) approach

0.04

0.024

()
12

-0.02+

-0.04~

A, A

-0.06

-0.08

—+ : ! e
4 <] 8 10 12 14
&5
2 kd

FIG. 3. The strength of the exchange-coupling energy as &
function of paramagnetic spacer thickness d, in units of 2kiHd

0.0008 ~—
2

where kf*' is the Fermi ‘wave number of the electrons of the

paramagnet. Here, zp=kf Y sk,, where ko is proportional to

the square root of the ferromagnetic exchange splitting. Both

sets of curves are normalized to the Heisenberg-like d =0 ex-
change energy 4'Y, which is proportional to k§. Because of the
choice of normalization, the peaks in the strong-coupling curves
of A,, for d¥<0 appear to be smaller than the weak-coupling
ones, although they are actually larger on an absolute scale. (a)
Heisenberg-like exchange energy 4,. Note the shift in the first
antiferromagnetic ( 4,, <0) peak to smaller d with increasing
strength of the ferromagnetic exchange splitting (smaller zg).
(b) The lowest-order (in m,-m,), non-Heisenberg-like exchange
energy Bj,. The curves corresponding to z=0.2 and 0.5 have
absolute maxima which occur off the scale of the plot. These
maxima are B, =0.00344'Y at 2k'd =0.2 for z;=0.2 and
B, =0.00154%) at 2kP’d=0.3 for zz=0.5. All curves ap-
proach zero as d —0.
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zero in this same limit. In Fig. 3(b), the curves corre-
sponding to zz=0.2 and 0.5 have absolute maxima which
occur off the scale of the plot. These maxima are
B;=0.00344%) at 2k{‘d=0.2 for z;=0.2 and
31220.0015,4‘13’ at 2k‘“d=0 3 for z;=0.5.

As we mentioned in the paragraph following Egs. (14),
the overall amplitude of A4, is greater than that of B,, as
a function of 2k*'d, as is evident from Fig. 3. As a com-
parison of the relative strengths of the 4,, and B,
coefficients, we consider the ratio of the first antiferro-
magnetic peak of 4, (4, <0) to the first maximum of
B,,. For example, from our numerical calculations, for
zp=2.0, 1.0, 0.5, and 0.2, this ratio is approximately

2300, 240, 35, and 8, respectively. Thus, as the couphng

strength increases (z; decreases), the amplitude of B, in-

" " creases toward that of A,.

Whlle the overall amphtude of B1z 1s generally smaller

‘ _than that of 4 12> the striking result upon comparing 4,
‘and B, of Fig. 3, is that, in general, 4, and BJ,IZ of a

given zp oscillate out of phase as a function of 2k{d. In

fact, the phase slip between A4, and B, is a function of
k”)d and zy, in particular, decreasing as 2kHd — co.

The fact that the phase slip vanishes in the asymptotic

Timit of large 2k{ 'd is apparent from Eq. (18), where the

nodes 2kf'd=mn (integer n>>1) of A;,=—(A%/2)j,
coincide w1th the nodes of B, =—( 4 fi/2 )j1- Asimplied
by the d =0 forms of A, and B}, [ 4%9 of Eq. (17) and
zero, respectively], the phase slip is Iargest for small
2k d.

In Fig. 4 we plot B, and nodes of A,,, indicated by
the arrows and labeled with integers, for three values of
zp. The panel of figures in Fig. 4 illustrate the phase slip
between 4, and B, as the coupling strength is varied.

- The effect is most pronounced at small values of Zku)d

where the amplitude of B, is greatest. In particular, if
attention is fixed on the node of A4, labeled by the num-
ber “3,” we see that B,, initially greater than zero at
node “3” [Fig. 4(a)], slips past the node with decreasing

..coupling strength (increasing zz), becoming negative at

the node [Fig. 4(c)]. Note, node “3” of A4, itself shifts to
larger 2kVd as the coupling strength decreases (zj in-
creases).

If the criterion for biquadratic coupling By, < —| 41,1,
corresponding to the energy E, of Eq. (12a), is now con-
sidered, then it is apparent from Fig. 4 that the intrinsic
phase difference between the 4,, and B;, coefficients of
our model can give rise to this kind of coupling between
the ferromagnetic layers. Thus, for example, in Fig. 4(a),
in the vicinity of node “1” of A4,,, corresponding to a
critical spacer thickness 2k}‘'d =0.8, B, <0 implies 90°
coupling, but there is no 90° coupling at nodes 2”5
where By, >0. As zp increases, Fig. 4(b) illustrates the
appearance of 90° coupling at node “2” while Fig. 4(c)
shows the onset of 90° coupling at node “3” (and possibly
node “4”), in addition to nodes “1”” and “2.”

Thus, as the coupling strength or exchange splitting of
the ferromagnetic energy bands decreases (z; increases),
the biquadratic state of 90° arrangement of ferromagnetic
moments appears, with increasing 2k\Yd, at successive



47 MECHANISM FOR NON-HEISENBERG-EXCHANGE COUPLING . .. 2633

nodes of A4,,, as depicted in Fig. 4. However, for a given
zp, as 2kfVd — o, the nodes of Ay, and B, eventually
coincide, as we demonstrated from Eq. (18), so the effect
is restricted to a finite number of initial 4,, nodes.

IV. CONCLUSION

From the foregoing, we see that a model of
mismatched majority-spin electrons and matched
minority-spin electrons treated as a finite-barrier tunnel-
ing problem leads to oscillatory biquadratic, as well as bi-
linear, exchange coupling between ferromagnetic films.
Moreover, the biquadratic coupling dominates the bilin-
ear coupling for critical values of spacer thickness, over a
range of coupling strengths, implying the existence of 90°
relative spin orientations in the ferromagnets at these
thicknesses. This model, being free-electron-like, fails to
produce the doubly periodic oscillations seen in many of
the trilayer and multilayer experiments. It is therefore
not possible to make more detailed comparisons between
the experimental results and our model. There may be
several sources of biquadratic coupling; our results never-
theless make clear that biquadratic coupling is a feature
intrinsic to exchange-coupled films.
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APPENDIX

Here, we show how the current ;' can be made to
cancel with part of j'"). The procedure is similar in spirit
to that presented in Ref. 22, but comphcated by the pres-
ence of a denominator in the integrand of j*'

We can express the majority spin-flip current of Eq.
(8a) in the form of the minority spin-flip current of Eq.
(10). After integration with respect to k; and change of
variable z; =k /k,, Eq. (8a) becomes

4223 (22—23 )22 4 z2)e 0%

. (a)
2.0x1 0" z_ =0.2 -+
= o /N PN
- AR EAVARSI I
= Tl 2 3 4 5 +
-2.0%10°% 3
1.0x10°* + + +— t t +
(b)]
i z_=0.7 -1
- o]
= ! \/ N/ M ]
1 2 3
-1.0x10°* + + + = + +
2.0xt Q"5 v ( ¢ ) -,
: z_=1.3
<~ T
= o ANV
= RV A VA S |
£ 1 2 4 5 -
3
-2.0x10° %+ A
o] '2 A‘t és é 1:0 1:2 14

2 kPd

FIG. 4. Plots.of B, vs 2k}‘'d with the zeros (nodes) of 4,
marked by arrows. (a)—(c) illustrate the effect that the coupling
strength has on the relative phases of the 4,, and B, oscilla-
tions. In (a), corresponding to zz=0.2, only for d close to node
“1” can there be 90° coupling (B, <0 when 4, =20); in (b), cor-
responding to z=0.7, the region near node “2” is now also
representative of 90° coupling; and in (c), corresponding to

zr=1.3, enough slippage has occurred that regions of d near

nodes “1”, “2”, and “3” have B, clearly negative.

sin6@

M) ot ld
J 4772m f

I(Zr +iz)? _(ZT —iz)

2o Ko “cosX(6/2)|2

- (AD

where z=1/1—z% and we have used (k(“/ko)2=1+zF Then, changing the variable of mtegratlon from z; toz
where zdz = —z,dz, we may write the equivalent expression

o Pkg o dz,2%(z>—z% (22 +z})e ~Ho%in0
== e - - 2
4r’m Yo |(z—z‘z' )2—(z+iz'f Ye “0%cos(8/2)]?
withz; =V 1— apdsitive number on the interval 0<z < 1.
Now, it is poss1b1e to express the integrand of 7'V as the imaginary part of a complex number. Noting
|z +iz;|*=22+2z% =1, it is easy to verify that
fikd z(z%+zf)
jih=—20 _ sind f dz Im e (A3)
4r’m cos’(6/2) 1—(z +iz; Ve *%cos?(0,/2)

is the same as Eq. (A2).
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Let us digress for a moment and consider the function

FR)=1—(z+izy )t 0% szg .
When z > | we have z; =i z2—1 so that

—2k,dz 0
*“cos? =, -z>1.

f2)=1—(z—Vz2—1)%
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(Ada)

(A4b)

Note, z—V'z?—1<1 and exp(;;gcbdrzr)icr()sz(e/Z) <1 wilen 2721*, 7vs;hich means

(z—V22—1)4e_?k 0% 26 <1, z=1

so that f(z)>0whenz>1.

(AS)

We have thus shown that the integrand of Eq. (A3) is analytic for z>1. Additionally, the integrand of Eq. (A3) is
zero for z 2 1 since f(z) of Eq. (A4b) is real. We are therefore-allowed to extend the integral of Eq. (A3) to infinity:

(e _ﬁk )  sind

z(z2422)

dz Im
J 4mPm cos¥(0/2) I e —(z4izy )

Note, the integrand of Eq. (A6) is the imaginary part of
a complex number whose real part is unbounded as
z— o0, so we must be careful in what follows. Let us
define the integral
z(z24z})e

I{a)= f dz - - R

—(z+iV1—z%)te ~2k"dzcosz(O/Z)
O<arga< % (A7)
and write
ﬁk4 - N
= 50 SN0 i) (A8)

41*m cosz( 9/ 25 a—0

For reasons that will become apparent, change the vari-
able of integration in Eq. (A7) so that the integral corre-
sponds to a path over the positive imaginary axis, i.e., let
z— —iz. We then have
z(z2—2z})e'*
IHa)= dz —— 5
. 1—(z—V 1+ 22y %0540 /2)

0<arga<% .

(A9)

Again, let us digress for a moment to consider the
singularities of the integrand of Eq. (A9) for Rez,Imz > 0.
Let us examine the function

glz)=1—(z —V/ 1+zz)4e2ik°dzcosz—g— . (A10)
Defining z=Re'¢ and V' 1+z2=R’'e'?, then
R’'=[1+2R%cos2¢+R*]1/* (Alla)
and
2 -
o'= iarctan R—Sinzfé—— (A11b)
2 1+ R%cos2¢

Note, from the form of Eq. (A11b), as R —0, ¢'—0 and
as R—ow, ¢'—¢. In fact, restricting 0<¢d<w/2, it

*2k°dzcosz(9/ 2)

(A6)

should be clear that Eq. (A11b) implies O<¢' <¢=w/2.
Therefore, V'1+2z2 always “lags behind” z in the first
quadrant of the complex plane of z; Rez,Imz >0 we al-
ways have 0 <cos(¢—¢’') <1, which means

1+z
z+V'1

_ R?>+R"—2RR'cos(¢—¢)
R2>+R"4+2RR'cos(¢p—¢')

0<¢<w/2.

?

(A12)

Now consider the zeros of Eq. (A10); the zeros of g(z)
must satisfy

(z—V 1+z2)7‘e'2""°‘”coslg=1 , (A13a)

or equivalently, rearranging the expression and taking
the modulus

2
—V 1152 % ds
ZoV itz | ke 20 g (A13b)
z+V 1+z? i
Clearly, keeping in mind Eq. (A12), Eq. (A13b) cannot
hozl_% ; unless 6=0 and z=0 since otherwise
1 0 Z

le cos¥(8/2)| <1. Thus, g(z) has no zeros except for
the case 8=0, z =0. Furthermore, setting =0 in the in-
tegrand of Eq. (A9), and taking the limit as z—0, we find
the finite value z2/(4—2ikyd). Hence, we can conclude
that the integrand of Eq. (A9) has no poles in the first
quadrant of the complex plane.

If we now consider a contour within the first quadrant

-of the complex plane of z, consisting of the positive imag-

inary axis, the positive real axis, and a radial part taken
infinitely far from the origin, then Eq. (A9) can be equat-
ed to an integral along the real axis. Thus, it is now pos-
sible to write I (a) as

- 2(22—z})ei®
=f dZ 2iky dz ’
0 —(z—V1+z2)% 0sX(6/2)
0<arga<% ;. (Al4)
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In this way, Eq. (A8) yields

fikd o 2(z =V 1422422 — 2} )sin(2k odz )sinf
jh=e [=dz F it . (A15)
4m'm Y0 1—-2(z =V 1+22)cos(2kydz JeosH 6/2)+(z —V 1+ 22)8cos*(8/2)
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