APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 43, 3395–3422 (1991)

[Issue 4 – 1 February 1991 ]

Previous article | Next article | Issue 4 contents ]

Add to article collection View Page Images , Figure Images or PDF (4754 kB)


Micromagnetics of domain walls at surfaces

M. R. Scheinfein, J. Unguris, J. L. Blue, K. J. Coakley, D. T. Pierce, and R. J. Celotta
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
P. J. Ryan
Seagate Technology, 7801 Computer Avenue, Bloomington, Minnesota 55435
Received 11 September 1990

High-spatial-resolution magnetization maps of ferromagnetic surfaces are generated with use of scanning electron microscopy with polarization analysis (SEMPA). The structure of surface Néel walls is measured by SEMPA and compared directly to the results of micromagnetics simulations. We find that the surface magnetic properties observed with SEMPA can be modeled using standard micromagnetic theory using only bulk parameters. Surface-domain-wall magnetization profiles were measured, using two different probe diameters in each case, for an Fe(100) single crystal and for Permalloy films with thicknesses of 0.12, 0.16, 0.20, and 0.24 µm. In making the quantitative comparison to the surface-domain-wall profiles calculated from (bulk) micromagnetic theory, the rms deviations, the chi 2 statistic, a correlation statistic, and rms deviations at 5% and 95% confidence levels were determined for each case. The calculated and measured domain wall profiles agree on the average to within ±7.8% for 180° walls in semi-infinite crystals of Fe(100), and ±4.5% for 180° walls in thin films of Permalloy. The micromagnetic simulations show the 180° wall of the bulk turning over into a Néel wall at the surface with the magnetization in the plane of the surface. The Néel wall extends from the surface into the bulk over a depth approximately equal to a Bloch-wall width.

©1991 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v43/p3395
DOI: 10.1103/PhysRevB.43.3395
PACS: 75.60.Ch


Add to article collection View Page Images , Figure Images or PDF (4754 kB)

Previous article | Next article | Issue 4 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. F. Bloch, Z. Phys. 74, 295 (1932).
  2. L. Landau and E. Lifshitz, Phys. Z. Sowjet Union 8, 153 (1935).
  3. L. Néel, Cah. Phys. 25, 1 (1944).
  4. L. Néel, Cah. Phys. 25, 21 (1944).
  5. E. C. Stoner, Phys. Soc. Rep. Prog. Phys. 11, 43 (1948).
  6. C. Kittel, Rev. Mod. Phys. 21, 541 (1949).
  7. B. A. Lilley, Philos. Mag. 41, 792 (1950).
  8. L. Néel, J. Phys. Radiat. 15, 225 (1954).
  9. S. Middlehoek, J. Appl. Phys. 34, 1054 (1963).
  10. W. F. Brown and A. E. LaBonte, J. Appl. Phys. 36, 1380 (1965).
  11. A. E. LaBonte, J. Appl. Phys. 40, 2450 (1969) [dot INSPEC].
  12. A. Aharoni, J. Appl. Phys. 37, 3271 (1966).
  13. A. Aharoni, J. Appl. Phys. 38, 3196 (1967).
  14. A. Aharoni, Philos. Mag. 26, 1473 (1972) [dot INSPEC].
  15. A. Aharoni, Phys. Status Solidi A 18, 661 (1973) [dot INSPEC].
  16. A. Aharoni, J. Appl. Phys. 46, 908 (1975) [dot SPIN][dot INSPEC].
  17. A. Aharoni, J. Appl. Phys. 46, 914 (1975) [dot SPIN][dot INSPEC].
  18. A. Hubert, Phys. Status Solidi 32, 519 (1969).
  19. A. Hubert, Phys. Status Solidi 38, 699 (1970) [dot INSPEC].
  20. J. P. Jakubovics, Philos. Mag. 30, 983 (1974) [dot INSPEC].
  21. J. P. Jakubovics, Philos. Mag. B 37, 761 (1978) [dot INSPEC].
  22. J. P. Jakubovics, Philos. Mag. B 38, 401 (1978) [dot INSPEC].
  23. H. A. M. van den Berg, J. Appl. Phys. 57, 2168 (1985).
  24. H. A. M. van den Berg, J. Appl. Phys. 60, 1104 (1986).
  25. M. E. Schabes and A. Aharoni, IEEE Trans. Magn. MAG-23, 3882 (1987) [dot INSPEC].
  26. M. E. Schabes and H. N. Bertram, J. Appl. Phys. 64, 1347 (1988) [dot SPIN][dot INSPEC].
  27. C. C. Shir, J. Appl. Phys. 49, 3413 (1978) [dot SPIN][dot INSPEC].
  28. R. Victora, Phys. Rev. Lett. 58, 1788 (1987).
  29. R. Victora, J. Appl. Phys. 62, 4220 (1987) [dot SPIN][dot INSPEC].
  30. U. Hartmann, Phys. Status Solidi A 101, 227 (1987).
  31. U. Hartmann, Phys. Status Solidi A 103, 247 (1987) [dot INSPEC].
  32. N. Hayashi, T. Inoue, Y. Nakatani and H. Fukushima, IEEE Trans. Magn. MAG-24, 3111 (1988).
  33. H. W. Fuller and M. E. Hale, J. Appl. Phys. 31, 238 (1960).
  34. H. Happert and P. Schmiesing, Phys. Status Solidi A 4, 737 (1971) [dot INSPEC].
  35. C. G. Harrison and K. D. Leaver, Phys. Status Solidi A 12, 413 (1972) [dot INSPEC].
  36. C. G. Harrison and K. D. Leaver, Phys. Status Solidi A 15, 415 (1973) [dot INSPEC].
  37. D. C. Hothersall, Phys. Status Solidi B 51, 529 (1972).
  38. S. Tsukahara and H. Kawakatsu, J. Phys. Soc. Jpn. 32, 1493 (1972) [dot INSPEC].
  39. T. Suzuki, K. Suzuki and Y. Igarashi, Jpn. J. Appl. Phys. 15, 707 (1976) [dot INSPEC].
  40. T. Suzuki and K. Suzuki, IEEE Trans. Magn. MAG-13, 1505 (1977) [dot INSPEC].
  41. J. N. Chapman, G. R. Morrison, J. P. Jakubovics and R. A. Taylor, J. Magn. Magn. Mater. 49, 277 (1985) [dot INSPEC].
  42. G. R. Morrison, H. Gong, J. N. Chapman and V. Hrnciar, J. Appl. Phys. 64, 1338 (1988) [dot SPIN][dot INSPEC].
  43. I. R. McFayden, J. Appl. Phys. 64, 6011 (1988) [dot SPIN][dot INSPEC].
  44. K. Tsuno, Rev. Solid State Sci. 2, (4), 623 (1988).
  45. I. Beardsley, IEEE Trans. Magn. MAG-25, 671 (1989).
  46. F. Schmidt, W. Rave and A. Hubert, IEEE Trans. Magn. MAG-21, 1596 (1985) [dot INSPEC].
  47. D. A. Herman, B. E. Argyle and B. Petek, J. Appl. Phys. 61, 4200 (1987) [dot SPIN][dot INSPEC].
  48. P. Ryan and T. B. Mitchell, J. Appl. Phys. 63, 3162 (1988) [dot SPIN][dot INSPEC].
  49. A. L. Olson, H. N. Oredson, E. J. Torok and R. A. Spurrier, J. Appl. Phys. 38, 1349 (1967).
  50. U. Hartmann and H. H. Mende, J. Phys. D 18, 2285 (1985) [dot INSPEC].
  51. U. Hartmann, J. Magn. Magn. Mater. 68, 298 (1987) [dot INSPEC].
  52. H. P. Oepen and J. Kirschner, Phys. Rev. Lett. 62, 819 (1989).
  53. M. R. Scheinfein, J. Unguris, R. J. Celotta and D. T. Pierce, Phys. Rev. Lett. 63, 668 (1989).
  54. D. T. Pierce, R. J. Celotta, J. Unguris and H. C. Siegmann, Phys. Rev. B 26, 2566 (1982).
  55. D. Muari, D. Scholl, H. C. Siegmann and E. Kay, Phys. Rev. Lett. 61, 758 (1988).
  56. J. Mathon and S. B. Ahmad, Phys. Rev. B 37, 660 (1988).
  57. J. Mathon, Physica B 149, 31 (1988).
  58. R. Allenspach, M. Taborelli, M. Landolt and H. C. Siegmann, Phys. Rev. Lett. 56, 953 (1986).
  59. A. J. Freeman and C. L. Fu, J. Appl Phys. 61, 2256 (1987).
  60. C. H. Smith, J. Appl. Phys. 64, 6032 (1988) [dot SPIN][dot INSPEC].
  61. G. G. Hembree, J. Unguris, R. J. Celotta and D. T. Pierce, Scanning Microsc. Int. Suppl. 1, 229 (1987).
  62. K. Koike, H. Matsutama and K. Hayakawa, Scanning Microsc. Int. Suppl. 1, 241 (1987).
  63. T. VanZandt, R. Browning, C. R. Helms, H. Poppa and M. Landolt, Rev. Sci. Instrum. 60, 3430 (1989) [dot SPIN][dot INSPEC].
  64. J. Unguris, D. T. Pierce and R. J. Celotta, Rev. Sci. Instrum. 57, 1314 (1986) [dot SPIN][dot INSPEC].
  65. M. R. Scheinfein, D. T. Pierce, J. Unguris, J. J. McClellend and R. J. Celotta, Rev. Sci. Instrum. 60, 1 (1989) [dot SPIN][dot INSPEC].
  66. M. R. Scheinfein, J. Unguris, M. H. Kelley, D. T. Pierce and R. J. Celotta, Rev. Sci. Instrum. 61, 2501 (1990) [dot SPIN][dot INSPEC].
  67. J. Unguris, M. R. Scheinfein, R. J. Celotta, and D. T. Pierce, in Chemistry and Physics of Solid Surfaces VII, edited by R. Vaneslow and R. Howe (Springer-Verlag, Berlin, 1990).
  68. F. R. N. Nabarro, J. Phys. 33, 1089 (1972).
  69. M. R. Scheinfein, J. Unguris, D. T. Pierce and R. J. Celotta, J. Appl. Phys. 67, 5932 (1990) [dot SPIN][dot INSPEC].
  70. D. E. Newbury, D. E. Joy, P. Echlin, C. E. Fiori, and J. I. Goldstein, Advanced Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1986).
  71. H. Seiler, J. Appl. Phys. 54, R1 (1983) [dot SPIN][dot INSPEC].
  72. M. B. Wilk and R. Gnanadesikan, Biometrika 36, 293 (1968).
  73. G. T. Rado and J. R. Weertman, J. Phys. Chem. Solids 11, 315 (1959).
  74. G. R. Rado, Phys. Rev. B 40, 407 (1989).
  75. C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
  76. G. Shirane, V. J. Minkiewicz and R. Nathans, J. Appl. Phys. 39, 383 (1968).
  77. B. D. Cullity, Introduction To Magnetic Materials (Addison-Wesley, Reading, MA, 1972).
  78. G. T. Rado, Phys. Rev. B 26, 295 (1982).
  79. G. A. Prinz, G. T. Rado and J. J. Krebs, J. Appl. Phys. 53, 2087 (1982) [dot SPIN][dot INSPEC].
  80. M. Sparks, Ferromagnetic Relaxation Theory (McGraw-Hill, New York, 1964).
  81. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls In Bubble Materials (Academic, New York, 1979).
  82. M. R. Scheinfein and J. L. Blue, J. Appl. Phys. (to be published).
  83. N. Smith, D. Markham and D. LaTourette, J. Appl. Phys. 65, 4362 (1989) [dot SPIN][dot INSPEC].
  84. S. Chikazumi, Physics of Magnetism (Wiley, New York, 1964).
  85. The Fe wiskers were furnished by A. Arrott.
  86. N. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1966).
  87. B. Efron, The Jacknife, the Bootstrap and Other Resampling Plans (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1982).
  88. H. Hoffmann, IEEE Trans. Magn. MAG-4, 32 (1968).
  89. M. R. Scheinfein, P. Ryan, J. Unguris, D. T. Pierce and R. J. Celotta, Appl. Phys. Lett. 57, 1817 (1990) [dot SPIN][dot INSPEC].


Add to article collection View Page Images , Figure Images or PDF (4754 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 4 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]