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Interfacial roughness in multilayer films may be random or correlated, i.e., replicated from 
layer to layer. It is shown that these can be separated and quantified using x-ray diffraction 
rocking curves and a straightforward analysis. The lateral correlation length along the 
interfaces can additionally be determined. A quantitative evaluation for W/C multilayers 
shows that correlated roughness contributes significantly to the total roughness, even at length 
scales that are surprisingly short, of the order 2-6 nm. 

I. INTRODUCTION 

Artificial multilayered composite structures have a 
range of unique optical, mechanical, and electrical proper- 
ties. Many of these properties result directly from the pres- 
ence of a deliberately engineered one-dimensional lattice of 
alternate layers of different materials. As a consequence, the 
extent to which a multilayer structure exhibits these proper- 
ties depends on the structural perfection of the superlattice. 
This statement is particularly true for optical and electronic 
properties, and specifically for the quality of soft x-ray opti- 
cal elements. For these it is well known that interfacial 
roughness leads to a loss of specular reflectivity,’ which is 
detrimental in both imaging and spectroscopy applications. 
This loss of specular reflectivity appears as an increase in the 
diffusely scattered radiation, leading to a loss of contrast in 
imaging systems.’ 

In general, multilayer structures, no matter what depo- 
sition technique is used, will not be perfect. There are a num- 
ber of possible causes. For example, substrate roughness 
may be replicated by the growing film. If there is insufficient 
lateral mobility of adatoms, surface roughness and hence 
interfacial roughness will increase with the amount of mate- 
rial deposited.3 Even for perfectly epitaxial systems grown 
under conditions of high mobility, a statistical surface 
roughness results because of the finite deposition rate.4 Oth- 
er complications may occur, including interdiffusion and 
chemical reaction at the interfaces. The identification of the 
nature of interfacial roughness is the first step in determining 
its cause and thus to developing procedures for its elimina- 
tion. 

In this paper we present results of a study of interfacial 
roughness in multilayer W/C soft x-ray mirrors whose aim 
is to distinguish between interfacial roughness that is corre- 
lated between layers and roughness that is random. By “cor- 
related roughness” we mean excursions from the mean inter- 
face plane that are replicated from interface to interface in 
the multilayer stack. The fact that correlated roughness may 
occur in multilayer films used for visible-light optical coat- 
ings has long been recognized.s-7 This large-scale figure er- 
ror results from macroscopic digs and scratches on the sub- 
strate that are replicated by the film. Similar roughness 
correlations may also occur in soft x-ray multilayers, but 

here much finer-length-scale roughness, on the order of the 
x-ray wavelength, must be considered. Recent work by 
Zmek etaZ.8*9 has stressed the detrimental effects of correlat- 
ed roughness on x-ray imaging applications. They have sug- 
gested that the degree of roughness correlation depends on 
its lateral length scale, with the correlation becoming ran- 
dom at “short” lengths. Indirect evidence that large-scale 
substrate roughness can be propagated through soft x-ray 
multilayer mirrors has been obtained from high-resolution 
diffraction experiments. lo,’ ’ It was found that the average 
slope error (long-wavelength waviness) measured on bare 
substrates was similar to that present in the multilayers and 
on their surfaces. A second demonstration that a correlation 
of large-scale roughness occurs is that multilayer diffraction 
gratings can be produced by using conventional optical dif- 
fraction gratings as substrates.‘2-‘4 To our knowledge, no 
study has explored roughness correlations in soft x-ray mul- 
tilayer mirrors quantitatively, determining their contribu- 
tion to the total roughness. In addition, we believe that the 
possibility of the existence of fine-scale roughness correla- 
tions has not been adequately addressed. 

We have developed a procedure to obtain directly the 
amount of correlated interfacial roughness present in multi- 
layered films and the lateral wavelength of this roughness. 
To do this, we perform detailed x-ray diffraction measure- 
ments using CuKa radiation. We measure the specular and 
diffuse components of the reflected radiation to determine 
separately the total interfacial roughness and the component 
due to roughness replicated from layer to layer, i.e., correlat- 
ed in some manner with the substrate or due to a growth 
front effect that gives correlation in the film morphology. 
Additionally, we estimate lateral correlation lengths of the 
replicated roughness. We show that a considerable portion 
of the total interfacial roughness arises from correlated 
roughness. The mean wavelength of these correlations can 
be of such a magnitude as to be a significant factor in the 
design of x-ray optics and certainly is in the mirrors we have 
studied. 

We begin, in the next section, with a review of relevant 
x-ray diffraction theory to outline the problem we are attack- 
ing. We will precisely define what we mean by correlated and 
uncorrelated roughness, and by lateral correlation length. In 
the following sections we describe the experiments used to 
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extract roughness and analyze data from samples grown 
with varying numbers of layers as well as grown on different 
types of substrates. We conclude that fine (nano)-scale 
roughness correlations make a significant contribution to 
the total roughness on all films measured, many of which are 
at the state of the art in x-ray mirror technology. 

II. REVIEW OF THEORY OF SCATTERING FROM 
SURFACES, INTERFACES, AND MULTILAYER 
STRUCTURES 

An extensive literature deals with the scattering of elec- 
tromagnetic radiation (both visible and x-ray wavelengths) 
from nonideal surfaces and interfaces, in which the loss of 
specular reflectivity that is a consequence of surface or inter- 
facial disorder is measured or calculated. In general, in these 
papers a mean roughness is obtained.‘,5-7v’5-20 To extract the 
mean surface or interfacial roughness from a reflectivity ex- 
periment, the reduction of the specular reflectivity relative to 
that of a perfect mirror is modeled. If the distribution of 
heights of one or the other material at each interface is as- 
sumed to be a Gaussian and the average interfacial rough- 
ness is the same for each interface, then the specular reflec- 
tivity, bpec, can be written approximately as 

I spec = 1, exp( - Sio-7, (1) 
where I, is the reflectivity of the perfect mirror, S, is the 
perpendicular component of the momentum transfer vector, 
and D is the rms roughness. Since no mirror is perfect, the 
value ofl, can not be obtained through measurement and so 
can only be obtained from a dynamical calculation using 
Fresnel diffraction theory2’ or equivalently from the Ewald- 
von Laue dynamical diffraction theory.22 The exponential 
has the effect of attenuating the reflectivity as either the 
roughness or the perpendicular component of the momen- 
tum transfer vector (i.e., the diffraction order) is increased. 
This approach is analogous to the treatment of the dynamic 
Debye-Waller factor22 resulting from thermal vibrations, 
except that here the disorder is frozen in. Consequently the 
exponential in Eq. ( 1) has been called the static Debye- 
Wailer factor. Equation ( 1) is the result of a kinematic scat- 
tering analysis and is independent of how the roughness is 
correlated from layer to layer. When multiple scattering is 
included the correlation of roughness must be specified. If 
roughness is assumed to be uncorrelated from layer to layer, 
Eq. ( 1) is altered somewhat. ” If the roughness is assumed to 
be replicated perfectly the multiple-scattering analysis gives 
the same result as the kinematic and Eq. ( 1) is recovered.5 
Choosing a height distribution other than Gaussian will give 
rise to a different decay of the specular reflectivity as a func- 
tion ofS, (diffraction order). 15.” For the analysis presented 
in the remainder of the paper we retain the Gaussian approx- 
imation. We discuss the adequacy of this approximation for 
modeling specular reflectivity in Sec. IV. A. 

There has been less work on measuring and modeling 
the diffusely scattered (nonspecular) radiation, particularly 
for soft x-rays. Models and measurements of the diffuse re- 
flectivity of multilayer coatings for visible-light applications 
have been made.5-7 For x-rays, the existing work deals chief- 
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ly with scattering from single rough surfaces.‘7-19 In these 
types of studies the lateral correlation of the roughness, i.e., 
its lateral length scale, is determined from the angular profile 
of the diffuse component of the diffracted intensity. The in- 
tensity of the diffuse component integrated over a Brillouin 
zone equals the intensity removed from the specular direc- 
tion. It is therefore also a measure of the total roughness. It 
can be written as5 

J 
I,,,dS= IO [ 1 - exp( - Sfa)]. (2) 

B.Z. 

The shape of the diffuse intensity reflects the scattering by 
the various Fourier components that the roughness repre- 
sents and the strength of these components. These obviously 
in turn reflect correlations in roughness, i.e., the lateral 
height-height correlation function C(X, Y), defined below. 

For a single rough surface, the scattered intensity per 
unit area can be written as’* 

Z(S) = I, exp( - S~a2)/.!7~ 

X 
ss 

dXdYexp[SiC(X,Y)] 

Xexp[ - K?J+S,Y)], (3) 

where IO is the intensity per unit area of the incident beam 
and X, Yare the components of the lateral separation of two 
points on the surface. The correlation function C(X,Y) is 
written 

CLKY) = (z(x - XY - Y)Z(X,Y)), (4) 

where z(x,y) is the vertical displacement of the surface from 
its average height at the site defined by the lateral ‘coordi- 
nates (x,y). Both Gaussian and exponential correlation 
functions have been used to model surface roughness (sur- 
face “finish”).5-‘.“-‘9 More recently attempts to treat the 
rough surface as a fractal have given rise to other 
choices.‘8.‘9 For an isotropic surface, the correlation func- 
tion will depend only on the magnitude of the separation of 
the points X,Y and not on direction. We will discuss the 
relationship between the choice of the correlation function 
and a physical description ofthe inter-facial roughness in Sec. 
IV. B 1. 

Consider, as an example, the exponential correlation 
function 

C(R) = 2 exp( - IR I/l), (5) 

where R = (X2 + Y2)“2 and 6 is the lateral correlation 
length. One can insert C(R) into Eq. (3) and simplify the 
problem to a one-dimensional one by integrating both sides 
of the equation over S,, . This integration is realized experi- 
mentally by detecting the scattered x rays with a sufficiently 
long slit. Information is thereby lost, of course, about the 
correlations in y. The term exp [ S tC(X,O) ] can be expand- 
ed and each term Fourier transformed analytically. The in- 
tensity can be separated into a sum of two terms, a delta 
function and a diffuse term, 
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rcs,,s, ) = 25-4 (e- sq/s,2 

[ 

m 2&Szd>m 
x 273-&S,) + c 

m=l m(m!) 

X 
1 

(1 + S:{2/m2) * 1 (6) 

For this example the diffuse term is a sum of Lorentzians, 
which converges rapidly for a sufficiently small S, (T product. 
The width of the diffuse term is inversely related to { and 
also depends on the magnitude of a, the rms roughness, as 
more terms must be included for a larger U. The area under 
the diffuse component depends only on a, as exprected for a 
kinematic model. A similar analytic result can be obtained 
for a Gaussian correlation function, in which case the diffuse 
term is a sum of Gaussians. More complicated correlation 
functions can be used but the intensities can then be obtained 
only with numerical methods. The general trends of the ef- 
fects of ff and [on the shape of the diffuse intensity will hold 
for the other choices of the correlation function as well. 
Thus, for a given (T, the peak intensity of the diffuse compo- 
nent will be greater for larger 6, (i.e. longer-scale roughness) 
and the diffuse-peak width will be smaller. The peak intensi- 
ty of the diffuse component will of course also increase for 
larger 0 at constant <. 

The question that now arises is what can be learned from 
the study of the diffuse reflectivity of a multilayer stack rath- 
er than of the single rough surface we have just considered? 
If the average layer spacing doesn’t change throughout the 
thickness of the film, as expected for stable deposition condi- 
tions, then the diffraction of x rays from a stack of rough 
interfaces can be treated in a manner similar to thermal dif- 
fuse scattering in 3-d crystals.22 The expected result is, as 
earlier, the sum of a sharp and a diffuse term. The first is the 
intensity scattered from the perfect crystal (but with a re- 
duced magnitude) which arises because the average lattice 
spacing is maintained throughout the crystal. The diffuse 
intensity is due to scattering off the disorder; it has a shape 
that depends on the scatter-scatterer correlation in the direc- 
tion measured. For multiple interfaces both lateral and verti- 
cal roughness correlations must be considered. Just as the 
shape of the diffuse intensity scattered from a single surface 
and measured in a direction parallel to that surface gives 
information on the lateral correlation of the surface rough- 
ness, the shape of the diffuse intensity scattered from a multi- 
layer stack and measured parallel to the interfaces will give 
information on the lateral correlation of the interfacial 
roughness. Conversely, a measurement of the vertical distri- 
bution of the diffuse intensity (i.e., changing the energy or 
the angle of the incident radiation to move along S,) will 
provide information about the vertical correlation of rough- 
ness from layer to layer. 

It is straightforward to describe the results expected 
from scattering off a multilayer film for the special cases of 
vertically perfectly correlated roughness and vertically ran- 
dom roughness. The case of perfect correlation, i.e., sub- 
strate roughness replicated from layer to layer, has been 
treated by Eastman.” The result is simply the product of the 
intensity scattered by a single rough surface and the reflec- 

tivity of the perfect stack. In other words, the configuration 
of the replicated interface can be treated as an effective struc- 
ture factor that can be factored out of the problem. Alterna- 
tively, for no vertical correlation, there is a random phase 
relation between the intensities diffusely scattered from each 
layer. The total intensity will be the incoherent sum of the 
intensities diffusely scattered from each layer plus the re- 
duced specular reflectivity obtained from Eq. ( 1). Note that 
each layer may still individually have lateral correlations in 
roughness and hence produce diffuse scattering with a well 
defined intensity distribution in the S,, S,, plane. The two 
results, vertically perfectly correlated and random rough- 
ness, are quite different and are illustrated schematically in 
Fig. 1. For perfect correlation, the diffuse intensity along S, 
will be peaked at the Bragg conditions, S, = 2~n/d. For 
vertically random roughness, the diffuse intensity will not be 
peaked, but will be spread out uniformly in S,. The contribu- 
tion of the diffuse intensity at the Bragg condition will then 
be weaker by a factor of l/N compared with the diffuse in- 
tensity from layers with the same rms but perfectly correlat- 
ed roughness, where N is the number of layer pairs. 

A real multilayer film will have a vertical roughness 
correlation somewhere between these two limiting situa- 
tions. It has long been expected that large-scale figure error, 
due to large-amplitude, low-frequency roughness in the sub- 
strate, is replicated by each layer deposited. In contrast, 
high-frequency roughness has generally been assumed to be 
uncorrelateds*9V”*L6 (with one exception*‘). The total inter- 
facial roughness can formally be separated into parts that are 
correlated perfectly in z (like a perfect 3-d crystal) and un- 
correlated (fluctuations away from the perfect crystal), i.e., 

do, =4 +a2,. (7) 

This can be demonstrated by considering the dependence on 
S, of the reflectivity integrated over S, , S,, . Doing so throws 
away information on correlations in the x and y directions 
and the intensity will depend only on correlations in Z, 
C(O,O,Z>. It will have maxima at the positions of the Bragg 
peaks and a diffuse intensity between peaks that is due to 
uncorrelated or partially correlated roughness. From Eq. 
(2), the integral of the diffuse reflectivity will have a value 
1, [ 1 - exp( - Sza2, ) 1. The specular reflectivity is the in- 
tegral in S, of the intensity over the Bragg peak minus the 
contribution of the uncorrelated diffuse intensity and equals 
IO [ exp( - SfaU ) 1. This intensity is then the sum of the 
true specular reflectivity and the value of the diffuse term 
due to the vertically correlated roughness at S, = S,, = 0. 
Thus, the correlated diffuse reflectivity can be written as 

IdiR (correlated) = IO exp( - Sso$) 

X[l- expt-SSSti)], (8) 

while the true specular reflectivity can be written as 

&CC =I0 exp[ -St(o’, +d)]. (9) 
Equations (8) and (9) lead directly to the result that the 
ratio of the true specular reflectivity to the integral of the 
correlated diffuse reflectivity depends only on a, and sug- 
gests a method for separating out the contribution of each 
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FIG. 1. A schematic view of correlated and uncorrelated interfacial 
roughness and corresponding reciprocal lattices. (a) correlated perfectly 
from layer to layer and (b) uncorrelated from layer to layer. The recipro- 
cal-space representation for each situation is shown in the lower panels. 
Perfect correlation concentrates the diffuse intensity in .S,,S, planes cen- 
tered at .S, = 2m/d, the Bragg conditions. For uncorrelated roughness 
diffuse intensity is spread in all directions. 

kind of roughness. The total rms roughness can be obtained 
by fitting a theoretical calculation to a measurement of the 
intensity of the specular reflection as a function of,!?, . Fitting 
the shape of the reflected peak in S,, S,, with the models for 
the single surface will give the rms roughness and lateral 
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correlation length of the vertically correlated disorder. It 
should be noted that the specular peak intensity must be 
corrected for the contribution of the diffuse intensity arising 
from both correlated and uncorrelated roughness to obtain a 
true rms roughness. Similarly, the diffuse intensity in the 
S,, S, plane at S, = 271-n/d (the Bragg conditions) must be 
corrected for the contribution of the intensity due to the 
uncorrelated roughness in order to obtain a true measure of 
the correlated roughness. 

Ill. EXPERIMENT 

A. Sample preparation 

Multilayer films were deposited in a dc magnetron sput- 
ter deposition system with a base pressure of 3 X lo- ’ Torr, 
shown schematically in Fig. 2. Substrates were loaded onto a 
turntable and passed alternately over carbon and tungsten 
sources. The sputtering gas was Ar with a typical value of the 
partial pressure during deposition of 5 mTorr. Deposition is 
nominally at room temperature, although the substrates 
may reach 100 “C for some deposition conditions. The resul- 
tant growth rates, with a stationary table, for C and W were 
0.9 and 1.8 A/s, respectively. Layer thicknesses were con- 
trolled by varying the table-speed. The nominal bilayer spac- 
ing, d, was chosen to be 40 A with C and W layers of approxi- 
mately equal thickness. Such a layer spacing is appropriate 

STEPPING 
MOTOR 

n , ROTATING I I I SUBSTRATE 
TABLE 

ANODE 
RING 

FIG. 2. A schematic view of the deposition system showing the tungsten 
and carbon dc magnetron sputtering sources and the substrate turntable. 
The turntable isdriven by acomputercontrolled stepper motor coupled to 
a rotary ferrofluidic feedthrough. 
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for near-normal-incidence applications involving shorter 
wavelength x rays in the soft x-ray range. Smaller layer spac- 
ings lead to a degradation of mirror quality that is generally 
ascribed to the increased importance of the part of each layer 
that is rough as the films get thinner. The ratio of film thick- 
nesses, IY = f w /(t w + t c ) = l/2, was chosen in order to 
maximize the integral of the first-order reflectivity while 
minimizing the second. 

Forty, sixty, and eighty-layer-pair mirrors were deposit- 
ed on Si( 100) wafer substrates. Forty-layer pair films were 
also deposited on Suprasil silica substrates. Substrates were 
cleaned untra sonically in acetone and then methanol. More 
complex cleaning procedures, such as ones involving remov- 
al of the native oxide layer on the Si( 100) substrates, always 
gave poorer results. 

B. X-ray diffraction measurements 

kleasurements to distinguish correlated from uncorre- 
lated roughness were made with a conventional two-circle x- 
ray diffractometer. The angle between the source and sample 
(w ) and the angle between source and detector (28) can be 
varied independently and are stepper motor controlled to an 
accuracy of 0.001”. The source is a Cu x-ray tube and the 
detector incorporates a graphite crystal monochromator set 
to detect CL&Y radiation. The source slits subtend an angle 
of0.03” with respect to the source within the plane of diffrac- 
tion and the detector aperture subtends an angle of0.01” with 
respect to the source. The source slit height subtends an an- 
gle of 3.5” with respect to the sample while the exit slit height 
subtends an angle of 2.08”. 

To obtain the absolute reflectivity of the layer stack at 
the CL&Y wavelength ( 1.54 A), we made separate measure- 
ments of the incident and first-order reflected beams under 
the same power settings. For measurements of the weaker 
reflections, higher source power settings were used and over- 
lapping scans at both settings were made to scale the reflec- 
tivity to the incident beam. 

In order to separate correlated from uncorrelated 
roughness we must first determine the true specular reflec- 
tivity, i.e., we must subtract contributions of the diffuse in- 
tensity to the specular intensity. In addition, we want to de- 
termine how the diffuse reflectivity is distributed in 
reciprocal space. To do so, data were obtained in several 
different geometries as shown in Fig. 3. These various geo- 
metries map out the distribution of the scattered intensity in 
different cuts through reciprocal space necessary to separate 
out the types of roughness we described above. They are: ( 1) 
(8,269, (2) rocking curve, and (3) offset (8,28). In the 
(8,20) geometry, the specular reflectivity is measured as a 
function of the incident angle, producing a scan of the inten- 
sity integrated over the detector as a function of S,. In the 
rocking curve geometry, 28 is held fixed and w is varied. 
Through the use of a narrow entrance slit to the detector, 
this type of measurement profiles the angular distribution of 
the scattered x rays in a cut perpendicular to the surface 
normal. Such a measurement allows one to separate out the 
value of the true specular reflection, which appears as an 
instrument-limited spike above a slowly varying diffuse 
background. Finally, in the offset (8,28) geometry, mea- 

. ._.. 
/ / DETECTOR 

(a) 

‘A&.u -I 

(cl 

FIG. 3. Ewald constructions showing how the three different measure- 
ment geometries sample reciprocal space. (a) (0,269 scan: diffracted in- 
tensity normal to the surface, Z(O,O,S, ), is collected; (b) rocking curve (I 
vs 0): by rocking the sample (i.e., fixing 26) and using a narrow detector 
aperture, a radial cut that approximates a cut in the S,, S,, plane, Z(.S,, 0, 
const), is obtained; (c) offset (8, 28) scan: the crystal is tilted a small 
fixed amount and a conventional (8,20) scan taken. Profiles of the diffuse 
intensity in a direction nearly normal to the sample surface are obtained. 
The figure is otherwise identical to (a). 

surements are made with the crystal rotated a small fixed 
amount in order to profile the vertical distribution of the off- 
specular radiation IdiF vs S, ). This allows one to separate 
the intensity due to correlated roughness, which is confined 
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to the S’,, S, plane at the Bragg condition S, = 2m/d, 
from that due to the uncorrelated roughness. 

The choice of the azimuthal direction of the incident x- 
rays was important because of long-range anisotropies in the 
grown films and because the incident x-ray beam is much 
higher than it is wide. The film thickness varied - 10% over 
the length of the sample (5 cm) in the radial direction of the 
rotating table, leading to a gradual variation of the bilayer 
spacing in that direction. Such a variation will appear in a 
(8,2@ scan as an increase in the angular width of the reflect- 
ed peak as a function of the diffraction order. This effect is 
observed when the incident azimuth is chosen along the tan- 
gential direction. In that case, the detector integrates the 
scattered intensity from an - 1 cm line on the sample along 
the radial direction. For the results we report here, the inci- 
dent azimuth was chosen along the radial direction so that 
the exit slit integrates intensity along the tangential direction 
(a line of uniform d spacing) and no broadening of the dif- 
fracted peaks with order was observed. 

IV. RESULTS AND ANALYSIS 

A. Specular reflectivity 

Examples of measured specular reflectivity [ (8,28) 
curves] from 40-layer-pair mirrors grown on two different 
types of substrates are plotted in Fig. 4. The solid curves are 
the data and the dashed are calculated using the theory of 
Peterson et all6 Also shown, as solid triangles, are peak in- 
tensities from the rocking-curve measurements (see below) 
through the specular beam obtained at different values of 20 
with the contribution of the diffuse background subtracted. 
Mirrors grown on a polished Si( 100) substrate exhibit a 
higher reflectivity and more diffraction orders than those 
grown on Suprasil silica, implying that the sample grown on 
the Si wafer has less disorder. This result can be quantified 
using model fits to data such as that shown in Fig. 4 in which 
a,,, and I are free parameters. The calculated curves were 
obtained under the assumption that for a given film, the sur- 
face and all interfaces had the same degree of roughness. For 
the 40-layer pair film grown Si( lOO), the best fit gives 
u t0t z 3.4 A. From the film grown on quartz a,,, r 6.6 A. 

In these measurements no distinction can be made 
between correlated and uncorrelated roughness. As was 
mentioned previously, kinematic diffraction theory predicts 
the static Debye-Waller factor reduction of the specular re- 
flectivity independent of how the roughness is correlated. 
Dynamical-diffraction calculations of the specular reflectiv- 
ity will depend on whether roughness is correlated, but the 
magnitude of the effect is small. To obtain information on 
the roughness correlations, other measurements, reported 
below in Sec. IV B, must be performed. 

In order to examine the effect of film thickness on the 
total roughness, (0,20) scans were made for films consisting 
of different numbers of layer pairs deposited on Si( 100) wa- 
fers. The results indicate no clear trend for the range of 
thicknesses we have so far investigated, although it appears 
that the roughness at first increases. Model fits to some of the 
data are summarized in Table I. The range of roughness 
values extracted from the fit for any one mirror arises be- 
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FIG. 4. Specular reflectivities obtained from 40 W/C layer pairs deposited 
on different substrates using the (0, 20) scan geometry. The data (solid 
curves) along with calculated fits (dashed curve) and the specular reflectiv- 
ity after the contribution of the diffuse intensity in the specular direction 
was subtracted (solid triangles) are plotted. (a) Si( 100) wafer substrate 
(solid line), with fit (dashed curve); first through fifth orders, using 
I = 0.47, d = 41.9 A, and a,,, = 3.4 A; (b) fused silica substrate (solid 
curve), first through third orders. The solid triangles give the intensity after 
the diffuse intensity due to interfacial roughness (Fig. 6) is subtracted. The 
dashed curve is a fit to these latter values, using r = 0.48, d = 40.4 A, and 
0 (o( = 6.6 A. 

cause no single o,,, could be found to fit the reflectivity for 
all orders. This appears to be a problem in careful attempts 
to fit (8,281 scans. ” Either the intensity of the first order is 
overestimated or that of the highest orders is underestimat- 
ed. Fitting the highest orders gives a lower limit to the total 
roughness but predicts a first-order reflectivity that is in 
some cases too high by as much as 50%. One possible origin 
of this discrepancy is that the sample depth being probed 
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TABLE I. Summary of the results of fitting the specular reflectivity 
[ (0,20) ] curves. The total interfacial roughness, a,,, , along with the bilayer 
period, d, and the fraction of the bilayer thickness that is tungsten, F, are 
shown for each sample. The large range of roughness values for the N = 60 
and 80 layer-pair samples arises from the difficulty in fitting all orders with 
the same roughness value. The asterisked values are from fitting the first 
order preferentially. 

Sample 

Fused silica substrate 
N=40 

Si ( 100) substrate 
N=40 
N=60 
N=80 

d(A) r UK,, (A) 

40.4 0.48 6.6TO.2 

41.9 0.47 3.4 - 4.1* 
37.5 0.41 3.6 - 5.0* 
36.5 0.41 4.4 - 5.6* 

varies with the angle of incidence, the probed depth being 
less at more grazing angles of incidence. Thus the value for u 
obtained from fitting the first order reflects preferentially the 
interfacial roughness near a film’s outer surface, while the 
value for oobtained from fitting the higher orders represents 
more of an average interfacial roughness. The intensity of 
the first order then is attenuated preferentially either if 
roughness is increasing throughout the thickness of the film 
or, alternatively, if the surface roughness is much larger than 
the average. In either of these cases the value of u obtained 
from fitting the higher orders is more representative of the 
average value for the bulk of the sample. 

Another possibility for the discrepancy in fit between 
orders is that the assumption of a Gaussian distribution of 
inter-facial heights is not correct. Other distributions, as out- 
lined by Stearns, ” were used to fit the decay of the specular 
reflectivity with order. The rms roughness values obtained 
from fitting the first order were in reasonable agreement 
with the values obtained with the Gaussian distribution. The 
fit to the higher orders with the other distributions was in 
general worse than with the Gaussian. This suggests that, 
while a function that we have not tried may fit the specular 
decay more closely than the Gaussian does, it is likely that 
the resultant roughness values will be similar to those ob- 
tained with the Gaussian. 

B. Diffuse reflectivity 

The total of the diffusely scattered intensity reflects the 
amount of roughness at the various interfaces while its distri- 
bution in reciprocal space reflects the degree of correlation 
present. We begin by presenting results that show that a sig- 
nificant amount of vertically correlated roughness is present 
on all samples and that its lateral correlation length is quite 
short. We will then quantify this observation with the use of 
the model presented earlier. 

In Fig. 5 (a) (8,20) curves taken in the specular geome- 
try and with the sample rotated 0.5” off specular [offset 
(0,28) curves] are plotted for a 40-layer pair film grown on 
Si ( 100). In Fig. 5 (b) a similar set of curves is plotted for a 
film grown on fused silica. The angular range covered in 
each scan contains the second and third orders. Note that in 
both data sets the relative contribution of the diffuse intensi- 
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FIG. 5. Diffracted intensity for two geometries; (8, 28) scans (solid) and 
offset-(@ 26’) scans with a 0.5” offset angle (dashed), through the second 
and third orders for 40-W/C layer-pair films deposited on different sub- 
strates, (a) Si( IOO), (b) fused silica. The figure shows that the diffuse in- 
tensity has the same S, dependence as the specular intensity, but grows with 
increasing order relative to the specular intensity. 

ty (the dashed curves) increases with order, as expected 
from Eq. (2), and has essentially the same shape as the 
specular intensity. This peaking of the diffuse intensity in 57, 
at the Bragg condition implies that vertically correlated 
roughness is present. (Recall that for perfect vertical corre- 
lation of the roughness all the diffuse intensity is confined to 
the S, , S,, plane at the Bragg condition S, = 2rn/d.) The 
greater proportion of diffuse reflectivity in the total reflectiv- 
ity for the films grown on fused silica is consistent with a 
larger total roughness and suggests a larger value of correlat- 
ed roughness for this sample as well. 

An estimate of the lateral length scale of the vertically 
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correlated roughness can be obtained from rocking curves. lateral correlation but, for equal amounts of correlated and 
In Fig. 6, a series of rocking curves is plotted for the first uncorrelated roughness, this diffuse intensity will be weaker 
through fifth orders for a N-layer-pair mirror grown on by a factor of l/N than that due to the correlated roughness. 
Si ( 100). The curves show two components, a sharp central Because the rocking curves are measured through the S,, S,, 
spike and a broad diffuse background with the diffuse com- plane at the Bragg condition, the shape of the diffuse intensi- 
ponent becoming relatively stronger with increasing order. ty predominantly reflects the correlation in the x,y plane of 
The diffuse intensity again consists of components due to the vertically correlated roughness, unless the uncorrelated 
correlated and uncorrelated roughness. The diffuse intensity part of the roughness is very much larger than the correlated 
due to correlated roughness is peaked in the S, , S,, plane at part. The offset (8,213) curves shown in Fig. 5 verify that the 
the Bragg condition. The vertically uncorrelated roughness diffuse reflectivity at the Bragg conditions (S, = 27Wd) is 
will also produce a diffuse intensity in S,, S, that reflects its dominated by the vertically correlated roughness. The mag- 
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FIG. 6. First- through fifth-order rocking curves (a)-(e) obtained from 40- 
layer pair films deposited on Si( 100). The curves have two components, a 
central instrument-limited peak and a slowly varying diffuse background. 
The relative contribution of the diffuse component increases with diffrac- 
tion order. Note the change in scale of the abscissa. For higher orders, a 
wider .S, range can be reached. 
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nitude of the diffuse reflectivity due to uncorrelated rough- 
ness is reflected in the intensity measured away from the 
Bragg condition in S,, which for these samples appears to be 
negligible. 

Because the sample blocks respectively the incident or 
exit beam when w approaches 0” or 28 (the angle between the 
source and detector, which is fixed in a rocking measure- 
ment ), the rocking curves can be taken only over the limited 
angular range of 20. This in turn limits the lateral correlation 
length scale that can be probed in reciprocal space to 
S, = f S, sin 8 = + 27T/Z,imit. The lo” angular range at the 
highest-order peak [see Fig. 6(e) ] corresponds to a cutoff of 
lengths smaller than -990”. At these limits there is still signif- 
icant intensity, implying that lateral roughness correlations 
exist to a scale of less than 90”. This result is formalized in the 
next section where the model fits are presented. 

Because the rocking curves are obtained at a grazing 
geometry the volume of the sample being probed is changing 
with the angle of incidence. This volume is proportional to 
its projected area, A&in w, and in kinematic diffraction the- 
ory the diffracted-beam intensity is proportional to the sam- 
ple volume.” This leads to asymmetry in the rocking curves, 
with the low angles more intense than the high ones, as is 
observed. To remove this asymmetry, we multiply the mea- 
sured rocking curves by sin w/sin 8, which has the effect of 
normalizing the data to a constant sample volume. 

Finally, we note that there exist satellite peaks in the 
diffuse background of the higher-order rocking curves. 
These arise at resonance conditions where the incoming or 
exit beam satisfies a Bragg condition and is doubly diffract- 
ed. We will return to a discussion of this effect in a later 
section. 

1. Procedure for fitting the rocking curves 
As stated above, the shape of the diffuse intensity in the I 

vs w (rocking) curves reflects predominantly correlation of 
roughness in the x,y plane that is also correlated in z. The 
procedure used to fit the rocking curves involves the follow- 
ing steps. We begin by guessing a functional form for the 
correlation function C(X,Y) and generating a theoretical 
profile in the same way as for single-surface roughness. This 
result is next multiplied by an envelope function that cor- 
rects for geometrical factors, which include beam attenu- 
ation and the effect of the cut through reciprocal space a 
rocking curve makes (it is not quite constant in S,, which, 
for the case of correlated roughness, will cause an attenu- 
ation in the measured intensity at the extremes of the rocking 
curves). The profile is then convolved with a function repre- 
senting the instrumental broadening, normalized to the peak 
intensity of the measured profile, and compared. The aver- 
age roughness and the correlation length are varied to obtain 
the best fit. This procedure can be repeated for a new choice 
of the correlation function to improve the fit. 

We have chosen to model the interfacial roughness in 
the same way as Sinha et aZ.‘* modeled surface roughness. 
Assume that for two points on a surface separated by some 
small distance R = (X2 + Y *) I”, the mean of the square of 

the difference in heights, ([z(r) - z(r - R)12) increases 
proportionately to R 2h. This is known as self-affine rough- 
ness, where h is related to the fractal dimension, D = 3 - h. 
For h = 1, the surface height is varying relatively slowly. 
For smaller values of h, the surface is more jagged. For larger 
separations self-affine roughness diverges. This seems un- 
physical for a film of finite thickness. Therefore, the mean of 
the square of the height difference is chosen to approach a 
constant for large separations, the mean-square roughness 
cr.2 A function that has these two limits is’* 

{([z(r) - z(r-- R)]‘)) = 2o-?l - exp[ - (R/Q’” I), 
(10) 

from which the correlation function 

C(R) = [(z(r)z(r--R))] =c?exp[ - (R/g)2h] 
(11) 

is obtained. Inserting values of h = 1 or l/2 into Eq. ( 11) 
gives the conventional forms for the correlation function 
that have been used to model visible-light scattering from 
rough surfaces. Differences due to the choice of h will appear 
in the shape of the diffuse component of the diffracted inten- 
sity. Reducing the value of h from 1 to l/2 will put more of 
the diffuse intensity into higher angles while changing the 
FWHM of the diffuse function negligibly. Since the area un- 
der the diffuse curve increases with increased a,, a larger 
value of CT, would be required in order to fit a curve with 
h = l/2 than with h = 1 to account for the increased area at 
the higher angles. 

Before discussing the two geometrical factors that affect 
the shape of rocking curves, we address whether the detector 
slits are long enough to integrate over an amount of the dif- 
fuse intensity sufficient so that they can be treated as infinite- 
ly long to reduce the problem to a one-dimensional one. This 
will, of course, depend in part on the lateral length scale of 
the roughness. The problem can be addressed by generating 
a profile that would correspond to that obtained with a point 
detector, i.e., from Eq. (4). This profile can be revolved and 
integrated over a finite range in S,, , mimicking the effect of a 
detector slit of finite length, and compared with the result 
obtained assuming an infinite slit length, e.g. from Eq. (7). 
For values of (T and 6 used in our fits the two results were 
equivalent, allowing us to use the simpler one-dimensional 
formulation. 

The first geometrical factor to be accounted for in rock- 
ing curve fitting is the change in beam attenuation with w 
that arises because the path length the x-rays travel is also 
changing. The change in path length is symmetric about the 
scan center and is depicted in Fig. 7. The longer path length 
at grazing incident and exit angles leads to a reduction of 
intensity at these extremes, causing the angular distribution 
of the diffuse scattering to be more sharply peaked than it 
would be if there were no attenuation. The magnitude of this 
effect can be estimated using kinematic diffraction theory. 
The change in intensity due to attenuation for an N-bilayer 
mirror of period d, at constant S, = S, (Bragg) can be writ- 
ten: 
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~(20~) = Cl+ exP[ - Na(2&w)l - 2 exp[ - Na(28,~)/2]} , 
Cl -t- ev1 - (r(20,w)] - 2 exp[ - a(28,w)/2]} ’ (12) 

Here a (28, w) is an attenuation coefficient that depends on 
20 and w and is written: 

a (2844 = [(wclw + (I- n.k] 

x{d [I/ sin(w) + I/ sin(20 - w)]]. 
(13) 

The term in square brackets is the average of the Wand C 
linear x-ray absorption coefficients weighted by their rela- 
tive layer thicknesses, where F is again the fraction of the 
bilayer spacing that is tungsten. The term in the curled 
brackets is the path length an x-ray travels in one bilayer. 
Equation ( 12), when multiplied with a term described next, 
is used as an envelope function with which to multiply the 
calculated rocking curves. 

The second geometrical effect that must be accounted 
for when modeling rocking curve shapes is the geometry of 
the cut through reciprocal space. For perfectly correlated 
roughness the diffuse intensity is confined to planes parallel 
to the surface centered at the Bragg conditions. Because the 
rocking curve takes a radial cut in reciprocal space, the mea- 
sured intensity will fall off with increasing value of 
](w-e)]asth d t t d e e ec or eviates more and more from the 
S, , S, plane through S, (Bragg). The S, dependence of this 
intensity at any w can be obtained from the (8,20) measure- 
ments at w = 0 and can be used to create a factor that cor- 
rects for this effect. The factor can be written 

GLS’,) =I[S,(e,w)]/I[S, =S,(Bragg)]. (14) 
which has the effect of attenuating the intensity as S, devi- 
ates from the Bragg condition. For a rocking curve, the value 
of S, varies symmetrically about the scan center. Its 28 and 
o dependence can be written 

s,(e,0) = (277/A)[sinw+ sin(20---)I. (15) 
This relationship can be used to map the intensity depen- 
dence of Eq. ( 14) into 28 and w variables. 

To continue the calculation, the envelope function [a 
product of Eqs. (12) and (14)] is multiplied by the struc- 
ture of a single interface, i.e., the single-surface result. Only 
the correlated roughness is included in this structure factor. 
The envelope function is sufficiently slowly changing so that 
it does not dominate the shape of the rocking curves near the 
scan center for the higher orders. This is essential, because 
the information we want to obtain is present in the structure 
factor of the single interface and a rapidly varying envelope 
would obscure it. The envelope functions for the third 
through fifth-order rocking curves are plotted in Fig. 8. We 
note that the envelope varies more slowly at higher orders 
and so at these orders it will affect the shape of the rocking 
curve less. Thus, higher-order rocking curves are more sensi- 
tive to the fit parameters. 

Finally, the effect of finite instrumental resolution is in- 
cluded by convolving the theoretical curve with a function 
representing the instrumental broadening. An upper limit to 
the instrumental broadening is experimentally determined 
from the first-order rocking curve by subtracting the diffuse 
background, which is weak in any case for the first-order 
peak. This procedure gives a peak that has a full width at half 
maximum of -0.03”. Convolving this function with the 
theoretical profile, which is a delta function plus a diffuse 
component, results in the sum of an instrument limited cen- 
tral spike and a diffuse component that is relatively un- 
changed because it is typically much broader than the instru- 
ment function. The main effect of the instrumental -c A, . -. --- Y- / \ \ \ / / 
! n 

\ \ / I/ \ A WI \ \ 4 I \ .4 5 I \ I \ I I 

FIG. 7. Schematic diagram showing how the x-ray path length changes 
with the rocking angle, w, during a rocking curve measurement. The reflec- 
tion off the backsurface of the sample is shown. 
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FIG. 8. Plots of the envelope function, the product of Eqs. ( 12) and ( 14), 
using mirror parameters N = 40, d = 40 b;, and F = l/2 (a) for the third 
order, (b) for the fourth order, and (cl for the fifth order. Linear absorp- 
tion coefficients of 12.2 cm- ’ for carbon and 33OOcm - ’ for tungsten (Ref 
25) were used to calculate the attenuation coefficient. 
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broadening for these measurements is to influence the ratio 
of the intensity of the central spike to the peak intensity of 
the diffuse component. 

A second effect of instrument broadening is to limit the 
ability to resolve a lateral length scale of roughness larger 
than some length. For the above angular width and for a 
fifth-order rocking curve, this length is in the worst case on 
the order of micrometers. Because the instrument profile is 
much narrower than the diffuse component we measure, the 
length scale cutoff is much larger than the lateral correlation 
length of roughness present in the films. Such a cutoff would 
be important only in measurements of large-scale ( >,um) 
figure error. 

The features that were used to determine a good fit were: 
( 1) the ratio of the peak intensities of the central spike and 
diffuse components, which depends on both o’c and E, (2) 
the width of the diffuse component, which depends primar- 
ily on [, and (3) the overall shape of the diffuse component, 
which depends on the choice of the correlation function, i.e., 
on h. For a given value of h, a range of good fits can be found 
for various (CT,, c) combinations. The error bars for the re- 
ported fits will reflect this uncertainty. 

2. Correlated roughness 

In Fig. 9, an example of a range of fits is shown for the 
fifth-order rocking curve of the 40-layer-pair film on 
Si( 100) using h = l/2 in the correlation function. The val- 
ues of the parameters for the best fit are a, = 1.9 A and 
5 = 35 A. The range of fits shows the relative uncertainty in 
o’c and ,$ for a given correlation function. Corresponding fits 
for the third and fourth orders of the 40-layer pair film 
grown on Si( 100) are plotted in Fig. 10, again for h = l/2. 

3. .e 
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.c : ----- lower bound 
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. . . . . best fit 
, -0:07 -0.00 , b 1 “, b II 1 
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FIG. 9. The fifth-order rocking curve for 40 W/C layer pairs deposited on 
Si( 100) (solid curve) and a range of calculated $ The solid squares are 
obtained using h =01/2, (T, = 2.2 A, and g = 20 A, the solid triangles using 
h = l/2, o, = 1.7 +, and 6 = 50 4, and the solid circles, and best fit, using 
h= 1/2,u< = 1.9A,and&=35A. 
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FIG. 10. Third- and fourth-order rocking curves for 40 layer pairs deposit- 
ed on Si( 100) and calculated fits using h = l/2, o, = 1.7 A, and 6 = 35 A. 
(a) the third order, (b) the fourth order. 

Best-fit values of a, = 1.7 A and g = 35 L% were obtained for 
both orders, in good agreement with the fifth-order fit. The 
second-order fit parameters were the same as for the third 
and fourth. Given that essentially a single set of parameters 
can be used to fit the second through fifth orders gives confi- 
dence in the modeling and justifies the assumption that verti- 
cally correlated roughness is Gaussian distributed in z. It 
also suggests that for this sample the correlated roughness is 
not changing significantly as a function of depth (lower or- 
ders are more surface sensitive). 

A value of h = 1 could also be used to fit the rocking 
curves, giving a smaller value for a,, o, = 1 .O A, and the 
same value for c,g = 35 b;, although the overall fit was not 
as good. With a choice of h = 0.2 a fit was not achievable. 
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a. Dependence on substrate. It is reasonable to expect 
that changing the substrate material will affect predomi- 
nantly the correlated roughness. From the specular reflec- 
tivity results [Sec. IV. (A) 1, it was found that the 40-layer- 
pair mirror deposited on fuszd silica had a relatively greater 
total roughness, a,,, = 6.6 A, than that for the equivalent 
mirror deposited on Si( lOO), a,,, = 3.4 A. This difference 
can be attributed almost entirely to differences in the corre- 
lated roughness, as will be shown here. The best fit for the 
third-order rocking curve for forty layer pairs deposited on 
fused silica is plotted in Fig. 11. U$ng h = l/2, the best fit 
parameters were cr= = 5.6 + 0.5 A and 6 = 1890 & 80 A. 
The uncorrelated roughness can be estimated using Eq. (7) 
and is of the same order for each mirror, c,, - 3 A. The sim- 
plest explanation is that substrate roughness is replicated by 
the deposited overlayers. Another possibility is that chang- 
ing substrate material will affect how the initial layer nu- 
cleates. This change in the initial layer formed could then be 
replicated during the rest of the growth. 

It is interesting to note that the lateral correlation length 
is much greater for the film grown on fused silica. Again one 
might expect that this difference arises from differences in 
the substrate roughness, although we have no direct evi- 
dence at this time. Such a difference should be observable on 
the substrates. Initial work measuring the roughness of 
Si( 100) wafers using scanning tunneling microscopy 
(STM) gives values for the roughness parameters consistent 
with the values obtained from the rocking curves, including 
a reasonable agreement with the correlation function using 
h = 1/2.23 Additional work is being performed on fused sili- 
ca substrates covered with a thin conducting coating so that 
STM can be used. 

6. Dependence on layer number. Correlated roughness 
appears to be relatively unchanged by increasing the number 
of layers deposited. The values for the correlated rms rough- 

( I~-7?r-TTrTr r, 
-10 02 -0 01 0 0:j 'i' i? 1 

s, (c-l) 
0.c2 0.03 

FIG. 11. The third-order rocking curve for 40 layer ptirs deposited onfused 
silica and the calculated fit using h = l/2, a,. = 5.6 A, and ( = 180 A. 

ness ranged from a low of a, = 1.4 A to a high of a, = 2.3 A 
for layers deposited on Si( 100). This range is most likely 
attributable to variations in substrate roughness and is con- 
sistent with the range of values for substrate roughness ob- 
tained from STM scans on Si( 1OO).23 

Additional evidence that the correlated roughness is rel- 
atively independent of the number of deposited layers is 
found from the order dependence of the fit values. For all 
films only small changes in the parameters were needed to 
give reasonable fits for the second through highest orders. 

The results of the rocking-curve fitting for all samples 
along with estimates of the uncorrelated roughness are sum- 
marized in Table II. The values of the uncorrelated rough- 
ness were derived using the lower-limit values for o,,, and so 
also represent lower limits. 

We make two main observations from these data. The 
first is that the lateral correlation length of the propagated 
roughness can be quite short, as little as 20-60 b; for the films 
grown on Si( lOO), suggesting that assumptions treating 
fine-scale roughness as uncorrelated from layer to layer are 
not justified at least for this length scale. The second is that 
the contribution of the correlated roughness to the total 
roughness can exceed that of the uncorrelated part. Even for 
our best mirrors they are comparable. For ones deposited on 
silica, the correlated roughness dominates. 

C. Rocking-curve satellites 

In all rocking curves of order greater than the first, we 
observe extra peaks (or valleys) spaced symmetrically about 
the central peak. The strongest of these occurs when either 
the incident or exit beam satisfies the first-order Bragg con- 
dition, i.e., B (incident or exit) = sin - ’ (/z /2d). For rocking 
curves of order greater than 2, additional peaks are observed 
at positions corresponding to the second-order Bragg condi- 
tion. These were relatively weaker. The presence of these 
satellites can be understood in terms of double diffraction. 
Because the intensity of the diffracted beams can be quite 
strong, ( -60% of the incident beam for the first-order 
peak) double diffraction must be included. In Fig. 12, we 
show the Ewald construction for a second-order rocking 
curve somewhere in S, off the exact Bragg condition while 
the incident beam satisfies as well the exact first-order Bragg 
condition. A subsequent scattering of the first-order diffract- 

TABLE II. Roughness and correlation length for several mirrors. The val- 
ues of the correlated interfacial roughness, o,, and lateral correlation 
length, 6, are from fits to rocking curves using h = 112 in Eq. (10). The 
values for the uncorrelated roughness are determined from Eq. (7) using 
the values for total roughness shown in Table I. 

Sample g<(A) 0, (A) {(‘k 

Fused silica substrate 
N=40 

Si (100) substrate 
N=40 
N=60 
N= 80 

5.6 + 0.2 3.5 180T40 

1.7 f 0.3 2.9 30 - 20/ + 30 
1.5 + 0.2 3.3 7OF20 
2.3 I/z 0.3 3.8 SOT20 
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FIG. 12. Ewald construction for a second-order rocking curve at a reso- 
nance condition. The solid arrows show the diffraction geometry for the 
second-order peak at a value of S, away from the central peak. For this 
angle of incidence, the first-order diffraction condition is exactly satisfied 
(dot-dashed arrow). This reflection is strong and the diffracted beam can be 
scattered again. This scattering is shown in reciprocal space by translating 
the dot-dashed curve to the origin (dashed arrow) and drawing a new 
Ewald sphere; which crosses the first-order reflection at a value of .S, +O 
(dotted arrow). The exit angles of the dotted and solid arrows are the same; 
hence both features appear in the detector at this specific angle. 

ed beam is possible. The figure shows that the scattered in- 
tensity due to both the singly scattered second-order and the 
doubly scattered first-order beams leave the sample at the 
same angle, the angle at which the leftmost satellite occurs. 
The interference of these two beams gives the extra feature at 
this diffraction condition. Similar resonances have been ob- 
served for rocking curves measured on single surfaces.” 
Here the resonances occur when the incident or exit angle 
satisfies the critical angle for total external reflection. A dy- 
namical diffraction model will be needed to fit the detailed 
shape of the rocking curves near the resonance conditions. 
We are attempting to make such calculations. 

V. DISCUSSION 

The results of the correlated-roughness analysis lend in- 
sight into the mechanisms of film growth for the IV/C sys- 
tem. The result that the correlated roughness remains rela- 
tively constant throughout the film thickness suggests that 
the films are neither smoothening nor roughening apprecia- 
bly on the lateral length of the correlated roughness, 6. In 
other words, an initial perturbation present in the substrate 
or arising from the first deposited layer neither damps out 
nor grows during the deposition for our near-room-tempera- 
ture conditions. This suggests that the lateral diffusion 
length of the deposited atoms is of the order of or less than 
the lateral correlation length. On the other hand, any trend 
in the increase in uncorrelated roughness is weak and cer- 
tainly nowhere near that predicted by random filling (Pois- 
son statistics), f-7 = t I”, where t is the total film thickness. 

Therefore, some lateral diffusion of adatoms must be occur- 
ring. The degree of diffusion and level filling can probably be 
predicted by fitting the results to rate equation models of the 
growth.4 

Correlated roughness in these films will have an impact 
on their applicability for various soft x-ray optical elements. 
Correlated roughness leads to a relatively strong diffuse halo 
around the specular beam. How much of an effect it will have 
on imaging applications will depend in part on the wave- 
length being imaged and the lateral scale of the correlated 
roughness. A small value for 6 should prove beneficial as it 
spreads the diffuse intensity into a large angle, thus reducing 
its contribution near the specular direction. If the lateral 
correlations are much smaller than the wavelength of the 
scattered radiation, they will not contribute to the diffuse 
reflectivity. It should be noted that correlations exist over a 
larger length scale than 6. The length 6 represents the l/e 
value for the correlation function used. From the samples we 
measured 6 ranged from 20 to 200 A, and so the correlated 
roughness will play an important role in optical elements 
designed for use in this wavelength range. It will be neces- 
sary to characterize the mirrors at wavelengths at which 
they will be used. We are pursuing such work.24 

VI. SUMMARY 

We have presented a method using x-ray diffraction by 
which the contribution of correlated roughness to the total 
interfacial roughness for multilayered thin films can be ex- 
tracted. The method entails fitting the shape of rocking 
curves, collected with a narrow detector aperture, with a 
kinematically derived interface structure factor. From this 
fitting the magnitude and lateral correlation length of the 
correlated roughness is extracted. By using the traditional 
approach of modeling specular reflectivity, we obtain as well 
a value for the total interfacial roughness. 

We have examined a series of W/C soft x-ray mirrors 
using this method. We find that roughness correlations are 
present to a significant extent on all samples. In addition, the 
lateral length scale of the correlated roughness can be sur- 
prisingly small. In our samples it ranged from 20 to 200 A. 
We find, as might be expected, that the choice of substrate is 
important in determining the degree of correlated rough- 
ness. However, the correlated roughness appears to be inde- 
pendent of film thickness. Both the C and the W layers show 
no sign of crystallinity, suggesting that the deposition can be 
modeled with atoms more or less sticking where they hit, but 
with some short-range lateral diffusion (i.e. atoms falling 
into the nearest lattice site). The substrate roughness is then 
replicated quite precisely but there are additional random 
fluctuations in thickness. It will be interesting to compare 
films deposited at higher temperatures at which diffusion 
should become more significant. 

This method of determining interfacial roughness corre- 
lations is applicable to any multilayer films that have enough 
difference in their layer structure factors to provide a dif- 
fracted beam. It may therefore be useful in checking rough- 
ness in such other classes of materials as heteroepitaxial mul- 
tilayers for optoelectronic devices, metallic superlattices, or 
semiconductor-insulator composites. 
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