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One-dimensional models of surface dynamics are studied analytically and by numerical simula-
tion. In all cases the number of particles that form the deposit is conserved. We find that an initial-
ly flat surface, in general, roughens as a function of time and can be characterized by a width §
which obeys the scaling form &(L,#)=LXf (¢ /L?) for a deposit on a substrate of linear dimension L.
Restricted solid-on-solid (RSOS) -type models in which the microscopic dynamics obeys detailed
balance are shown to be in the “free-field”” universality class with exponents z =4 and y= . On the

other hand, if detailed balance is broken, several universality classes exist. As the

©

‘maximum-

height-difference” constraint in a RSOS model is varied, one can observe a phase transition between
a flat phase (z =2, y=0) and a grooved phase characterized by a steady-state exponent Y =1 but
with no scaling in the relaxation process. At the transition point, a nontrivially rough surface
emerges with exponents (z=~3.67, y=~0.33) close to those of the conserved Kardar-Parisi-Zhang
equation. We propose a phenomenological model that may account for these observations.

I. INTRODUCTION

The origin of dynamic scaling and the identification of
universality classes in nonequilibrium growth and deposi-
tion processes have been extensively discussed in the
literature.! ~!® In growth processes such as ballistic depo-
sition and its variants,’»*>12 or the Eden process,>>’ an
initially smooth interface roughens as the deposit devel-
ops. In the case of deposition onto a substrate of linear
dimension L, the width of the interface & typically obeys
scaling and has the form

EL,t)=LXf(tL™?), (1)

where the steady-state exponent ¥ and the dynamic ex-
ponent z depend on the dimensionality d of the substrate
and on the underlying symmetries of the growth process.®
The scaling function f(x) has the asymptotic behavior
f(x)—>const as x — o0 and f(x)~xX/? as x —0.

The above scaling form can be derived analytically for
a number of growth processes which seem to be well de-
scribed by the following nonlinear differential equation
proposed by Kardar, Parisi, and Zhang'* (KPZ):

—%g;’—t)=vV2h(x,t)+%[Vh(x,t)]2+n(x,t) )
Here h is the height of the deposit, v and A are parame-
ters, and n is a function representing Gaussian white
noise. The important parameter A is in general nonzero
when the number of particles in the deposit grows. When
A is zero, Eq. (2) yields “equilibrium” roughening charac-
terized by free-field exponents (=4 and z=2 for d =1).
For finite A exact results (z=4, Y=1) are available only
for one-dimensional substrates'* where the results of
simulations®>>%° are in excellent agreement with the pre-
dictions of the KPZ equation. In a higher dimension we
have only the scaling relation'*~ !5 z+y=2. The critical
dimension of the KPZ equation is d,=2, and much

8

effort!® has gone into the study of Eq. (2) and of discrete

deposition models>’ %! 713 which may be describable by
this equation at the critical dimension.

The similarities between roughening and dynamic criti-
cal phenomena naturally led to the question of whether
the exponents ¥ and z are dependent on the conservation
laws of the system. With this question in mind, Sun,
Guo, and Grant!’ investigated a model of surface recon-
struction in which the volume of the deposit is conserved.
They studied the following ‘“‘conserved” variant of the
KPZ equation:

%%’;'L’=—v2 vVZh(x,t)-l-%[Vh(x,t)]z

+n(x,t) (3)

which is assumed to be a model of surface reconstruction
driven, not by equilibrium fluctuations, but rather by
some external flux (e.g., electric current or heat flux). In
order to ensure that the volume of the deposit is con-
served, the noise function 7(x,¢) must be a function that
represents conservative white noise, i.e.,

(n(x,2))=0,

4

(q(x,)m(x',t")) =—V28%x—x")8(t—1') . @

It has been shown by both renormalization-group

methods'” and by direct integration of the equations'®

that Egs. (3) and (4) yield a different set of exponents than

those of the KPZ equation. The question then arises as

to what kinds of processes yield the conserved KPZ equa-
tion in the continuum limit.

In Monte Carlo simulations of surface evolution mod-
els, blocks or particles of a certain size are added to,
moved, or subtracted from the deposit according to cer-
tain rules. The connection with a Langevin equation of
the form (2) or (3) can then be made through a master
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equation,® approximated by its long-wavelength limit.

Alternatively, one can make the connection through sym-
metry arguments by assuming that the continuum limit is
described by an equation that obeys the apparent sym-
metries of the discrete process and that contains the
minimal number of relevant!’ (in the renormalization-
group sense) terms. Each approach has its inherent
difficulties. In the master-equation formalism, one ar-
rives in principle at an infinite hierarchy of equations that
must be decoupled. The consequences of such a mean-
field decoupling are unknown. In the other approach,
there is always the possibility that a hidden symmetry
may be missed. Thus, ultimately, the question of
equivalence is decided by comparing the exponents ob-
tained in a simulation of the discrete process to those pre-
dicted by the continuum equation.

Sun, Guo, and Grant !’ simulated a restricted solid-
on-solid model with short-range hopping dynamics and
found exponents sufficiently close to those of the con-
served KPZ equation to conclude that Eq. (3) is a contin-
vum description of the process. Their model clearly
satisfies the particle conservation law inherent in Eq. (3).
Closer examination of the model reveals, however, an ex-
tra symmetry (h — —h) that excludes the possibility of a
V2 (Vh)? term in the continuum equation.

Thus the question of what kind of process can be de-
scribed by the conserved KPZ equation remains open
and, in this paper, we present the results of our search for
such a process. Our main conclusion in that the breaking
of the symmetry h — —h through a breaking of detailed
balance does not automatically lead to a process describ-
able by Eq. (3). The conserved KZ equation seems to ap-
pear in rather exceptional circumstances when a phase
transition occurs between a flat phase and a grooved
phase.

The structure of this paper is as follows. In Sec. II we
describe the discrete models, which we have simulated,
and discuss the form of the Langevin equation that might
be expected in the long-wavelength limit. Section III
contains the results of the simulations and the con-
clusions drawn from comparison of the numerical results
with the solutions of the Langevin equation.

II. MODELS FOR CONSERVED SURFACE DYNAMICS

We investigate a family of models for surface rear-
rangement that are quite similar to the model of Ref. 17.
A one-dimensional substrate of length L (number of ad-
sorption sites) is considered. The surface is characterized
by the height of the deposit Ah; at site 7, and the moving
particles are blocks of height A that can hop to neighbor-
ing sites within a maximum distance, which we generally
have taken to be two lattice sites. Since no new particles
are introduced, {4 )=(3;h;)/L is conserved, and since
the maximum hopping distance is a finite number in-
dependent of L, the conservation law has a local charac-
ter.

Particles are selected at random, and a move is permit-
ted if the constraint |h; —h; .| < H is satisfied for all i at
the beginning and at the end of the process. The entire
system is subject to periodic boundary conditions. We
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have used two different procedures of implementing the
dynamics.

(i) Once a particle is selected for a trial move a random
number determines whether the particle will be moved to
the left or to the right. If the move would result in a
violation of the constraint |h; —h; ;| < H, the attempted
move is abandoned and a new particle is selected. This
procedure corresponds'’ to that of Ref. 17.

(ii) If a move to the left (right) is rejected, a move to the
right (left) is attempted. If this too is rejected, a new par-
ticle is selected for the next attempted move.

At first glance, the two procedures do not seem
significantly different, and one might expect that they are
related by a simple change of the time scale. A more de-
tailed analysis, presented below, reveals that procedure (i)
obeys detailed balance, whereas procedure (ii) does not
and, concomitantly, breaks the symmetry h(x,t)
— —h(x,t). As we also show below, procedure (i) does
respect the reflection symmetry h(x,t)— —h(x,t) and
therefore cannot, in the long-wavelength limit, be
modeled by an equation of the form (3). The numerical
results presented in Ref. 17, which seemed to be con-
sistent with the renormalization-group predictions for
Eq. (3), are in fact due to finite-size effects. The appropri-
ate continuum equation for procedure (i) is Eq. (3) with
the coefficient A=0. Thus we obtain z=4 and y=1.
Evidence for this will be presented in Sec. III.

We now discuss the violation of detailed balance by
process (ii) for the case A=H /2. In Fig. 1 we show three
configurations of the surface. Configuration (@) may
change into configuration (b) by the hopping of block 2 to
the left, or into configuration (c) by the hopping of block
1 to the left. If block 2 is selected for a trial move, the
probability W(a,b) of the transition to state (b) is 4 as
both a move to the left and to the right are permitted by
the rules. On the other hand, if block 1 is selected, the

L. (b)

W(a,c)=1 W(c,a)=1/2
1 2
—_T] [~ EE— (c)

1

1

1

1

| SO

FIG. 1. Illustration of the breakdown of detailed balance for
the case of procedure (ii). See text for discussion.
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probability W (a,c) of a move to the left is 1 since a move
to the right is forbidden by the constraint |84 | < H =2A.

Let the steady-state probabilities of states (a), (b), and
(c) be P(a), P(b), and P(c). Since (c) differs from (b) only
by a shift of the entire configuration and since we have
imposed periodic boundary conditions, we have
P(b)=P(c). The relation of P(a) to P(b) is unknown.
However, detailed balance requires

P(a)W(a,b)=P(b)W(b,a) ,

(5)
P(a)W(a,c)=P(c)W(c,a) ,
which leads to the condition
Wia,b) _ W(b,a) 6)

Wi(a,c) Wic,a)

As can be seen from Fig. 1, the left-hand side is 4 while
the right-hand side is 1, and we conclude that detailed
balance is violated. We note that in procedure (i) all
transition  probabilities W (i,j) between allowed
configurations are equal to 1, which means that detailed
balance is maintained.

In Fig. 2 we examine the analogous transitions for the
reflected configurations (h;— —h;, for all i). Denoting
the reflected configuration of (@) by (a’), for example, we
see that W(a',b’')*W (a,b) and W(a',c')*Wl(a,c) for
procedure (ii).  Conversely, for procedure (i),
W(i',j')=W(i,j) for all configurations. Thus we expect
that a Langevin equation for process (i) might contain
terms that have even powers of 4, but that the corre-
sponding equation for process (i) will quite generally be
symmetric under A (x,t)— —h(x,t).

We now discuss the form of the continuum equations
by which one might model the processes described above.

W(b',a')=1/2

W(a',b')=1

W(a',c')=1/2
W(c',a')=1/2

—F-- — (¢

FIG. 2. Illustration of the fact that the dynamics of pro-
cedure (ii) break reflection symmetry. See text for discussion.
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We begin with a master equation for the discrete process.
In the case of a growing surface, we have previously
shown® that Eq. (1) can be obtained in a natural way
through such considerations.

Figure 3 shows a segment of the surface with spacing €
between absorption sites. The height of the surface at
point i can change through the addition or removal of a
block of height A and width €. For simplicity, we consid-
er hopping of blocks only to nearest-neighbor sites. Then
the average rate of change of the height at point i will be
given by

_‘r_oa(hf(t))

A 3 =(W(i—1i)+W(i+1,i)

—W(,i—1)—W(i,i+1)) , (7

where W (i,j) is the probability of hopping from site i to
site j and the average { - - ) is over the probability dis-
tribution P({h;},t), which is the solution of the master
equation with the given hopping probabilities W (i,j). In
general, the hopping probability W (i,j) depends on the
height differences of nearest-neighbor sites and, in the
case of procedure (ii), will involve the heights at points
i—2,i—1,i,i+1,and i +2,1i.e.,

Wi +1)=¢(o

with o;=(h;—h;_,)/e. In the case of procedure (i),
there will be no dependence on o; _;.

Particular realizations of these processes lead to
different functional forms for the transition probabilities.
Rather than presenting a complete derivation for a
specific case, we will argue for a generic form of the con-
tinuum equation. The steps in the argument are as fol-
lows.

(1) The transition probabilities are expanded in powers
of the height differences, i.e., we write

i—100i 41,0 42) ®)

#o; 1,010 41,0;1,)

=1+3ca0i40a T 2dop0iva0irpt - . 9)
a a,f3

(2) A continuous spatial variable x =ie€ is introduced,
and the discrete-valued function h, ; (#) is expanded in
powers of €. The assumption underlying this step is that
a coarse-graining procedure has been carried out, and

i-2 i-1 i i+1 i+2 i+3

FIG. 3. Possible configuration of a section of the interface.
The moving particles are blocks of height A and width €.
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thus 4 (x,t) has become a continuous function of x. The
implementation of such a coarse-graining procedure is a
nontrivial task, and there are few situations for which it
has been done with mathematical rigor.?° Thus, in prac-
tice, coarse graining is replaced by smoothing out the
discreteness of A4 (x,t). For example, step functions like
6(£) can be replaced by continuous functions like
[1+tanh({/a)]/2, where a is an arbitrary parameter.
Since neither the smoothing nor a proper coarse graining
changes the symmetry of the equations, we believe that
this step does not affect our conclusions regarding the
general form of the equation as given below.

(3) We go to the continuum limit by letting €—0,
A—0, and A?/7y—const. The resulting equation then
has the following form:

HKhlx,0)) . 3hix,0)) _ Hh(x,0)
3t 2 ax? £ axt
2
A 3 []|3hix1)
+2 ax2< X >+— . (10

where the coefficients v,, v,, and A depend on the func-
tional form of the transition probabilities W (i,i +1) and
on the smoothing process. In general, there is also an
infinite sequence of terms which are of higher order ei-
ther in 4 or in the number of derivatives with respect to
x.
(4) Equation (10) is assumed to be derivable from a
Langevin equation by averaging over the noise. It fol-
lows then that this Langevin equation has the form

dh(x,t) _  ’h(x,t) _ 3%h(x,1)
at 2 ax? foaxt
2
A 3% | Bh(x,1)
2 3 “ax +n(x,t), (11)

where the noise function 7(x,) must be consistent with
the conservation laws of the system, i.e., 7 is given by
Egs. (4). We have dropped the infinite sequence of other
terms, which are, in principle, present in Eq. (10). These
can be shown, by power counting, to be irrelevant in the
renormalization-group sense if the noise function 7(x,t)
is conservative.

Thus, steps (1)—(4) of the above argument led us to the
conserved KPZ equation with an extra Laplacian term.
In what follows we interpret our Monte Carlo results in
terms of this equation.

We begin the discussion of possible surface structures
emerging from Eq. (11) by considering the case when the
dynamics obey detailed balance. Then the transition
probability W (i,i +1) is related to the change
AH(i,i+1) of a potential function H when a particle is
moved from site i to i +1. If we assume that this poten-
tial depends only on the slope of the interface, i.e.,
H=J3, f(o;) with o0;=(h;—h;_,)/€, which is reason-
able for conserved dynamics when the movement of the
particles is confined to the interface,?! then the potential
is invariant under the combined transformation
{h;}—>{—h;} and {h;;}—{h;_;41}. Therefore, the
corresponding Langevin equation must be invariant un-
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der the transformation A (x,t)— —h(x,t) and x — —x.
This excludes a term of the form 32(d,/4)* and, conse-
quently, A=0 in eq. (11). Further details are given in the
Appendix.

In the special case when H is a quadratic function of
the slope of the interface

hi—h;_, r

H=JS (12)

€

one can show that the Laplacian term also disappears
from Eq. (11) and thus one obtains

oh(x,t) *h(x,1)

aqt V4 ax4

+n(x,1) . (13)

This equation yields the scaling form (1) for the width of
the surface with exponents y=1 and z =4. As we shall
see in Sec. III, procedure (i) and various generalizations
of it that satisfy detailed balance all have exponents y =+
and z=4. This is a somewhat puzzling result since it is
not obvious that detailed balance would automatically
produce a quadratic potential (12) and thus would ex-
clude the Laplacian term in Eq. (11). A possible argu-
ment for v,=0 in (11) can, however, be given as follows.
Assume that the continuum limit of H exists:

H= [d% f(Vh) (14)

and that, furthermore, the dynamics can be described by
a Langevin equation that conserves the total height.
Then the simplest model that one can write down is mod-

el B in critical dynamics:?

oh _  _,0H

ot v Sh
A straightforward substitution of (14) into (15) then
shows that the Laplacian term does not appear in the
Langevin equation.

The more general equation (11), which applies to the
case in which detailed balance is broken, is more interest-
ing. In this situation, the coefficients v,, v,, and A are all
finite and the scaling behavior resulting from this equa-
tion depends crucially on the sign of the coefficient v,.
Following are three distinct régimes.

(a) v,>0. In this case, the term proportional to v, is ir-
relevant, as is the nonlinear term. Since the Fourier
transform of the noise function is proportional to k? for
small k, the structure factor in the steady state does not
diverge at long wavelength, and the surface is in fact flat
(x=0). The dynamic exponent z is equal to 2.

(b) v,=0. This is a special case as far as Eq. (11) is con-
cerned but may be rather common for discrete models
even if they violate detailed balance. For example, in the
conserved version of the single-step model,® the master-
equation approach described above yields explicit values
for the coefficients v; and A, and due to a symmetry that
we do not fully understand, v,=0, whether or not de-
tailed balance is broken. With v,=0, Eq. (8) becomes the
one-dimensional version of the conserved KPZ equation
[Eq. (2)], and the renormalization-group analysis of Sun,
Guo, and Grant!? applies. The predicted exponents are

+7. (15)
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x=+andz=4—y%.

(c) v, <0. Less is known about the solutions of Eq. (11)
in this regime than for the previous two cases. In the
noise-free case, there are a number of particular solutions
for the steady-state profile. The one that seems to corre-
spond most closely to the simulations reported below is a
roof-top-like shape with period L. This phase with £~L
(x=1) will be called the grooved phase henceforth. We
note that similar equations with v, <0 have been dis-
cussed recently by a number of authors.”>?* These au-
thors, however, considered deposition processes, and con-
sequently the particle conservation law is not present in
their models.

III. MONTE CARLO SIMULATIONS

We have carried out extensive simulations for a num-
ber of variants of the models described in Sec. II. For ex-
ample, one can consider a conserved version of the
single-step model.® In this model, h;, —h; _,==1 at all
times. The block size A is 2 for this model. The con-
served version of the Kim and Kosterlitz model® differs
from this model by allowing h; —h; _; to be zero as well
and by the size of the blocks (A=1). We will report only
representative results for the two important categories,
namely models that obey detailed balance [procedure (i)]
and for those that do not [procedure (ii)].

(i) Surface diffusion with detailed balance. We consid-
er blocks of size A=1 and allow height differences be-
tween neighboring sites up to a maximum value H=1.
Since the dynamic exponent in this case is expected to be
z =4, if the arguments leading to Eq. (13) are correct, the
number of Monte Carlo steps per site needed to achieve
the steady state scales as L*. This makes it impossible to
carry out simulations for very large substrates. Never-
theless, finite-size effects are not very strong, and we are
confident that we have reached the thermodynamic limit.

This confidence is also supported by the following ex-
act calculation of the steady-state value of £2. Since de-
tailed balance is satisfied and since the transition rate is
the same between any pair of states, which can be ob-
tained from each other by a single hop of a particle, one
concludes that all possible states are equally probable in
the steady state. The calculation then proceeds as de-
scribed in Ref. 6 with the conclusion that

_L+1
18

In Table I we list the numerical values of the square of
the steady-state width together with the values predicted
from Eq. (16) for L <160. The agreement is excellent.

In previous work®%® we have shown that the steady-
state exponent } can be determined accurately from the
small-k behavior of the structure factor S (k) given by

E(t=o) A%, (16)

S(k,t)=%<z'hm(t)hj(t)e”‘(”‘_j’> . (17)
m,j
The width £ is related to the structure factor through
2 _ 1 1 pn
(L,t)=—3SS(k,t)=— .
3 7 2Stt) szﬂ/LdkS(k,t) (18)
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TABLE I. The square of the steady-state width of the model
with A/H=1 and with dynamics that obey detailed balance
[procedure (i)]. The effective exponent Y.4(L) is defined in Eq.

(19).
EXL, ) EXL, )

L Simulations Eq. (16) XealL)
10 0.581 0.611

20 1.14 1.167 0.486
40 2.27 2.278 0.497
80 4.48 4.500 0.490

160 8.89 8.944 0.494

The divergence of the width is due to the divergence of
the structure factor for small k. If S(k)~k ~2%" the
width diverges as L'~ 772, Thus y=(1—7)/2. In Fig. 4
we show a log-log plot of the steady-state structure factor
for systems of size L <160. The straight line drawn
through the small-k data points corresponds to 7=0.
Thus we conclude that Y=0.5, consistent with the pre-
dictions of Eq. (13).

In Fig. 5 we show the relaxation of the interfacial
width toward its steady-state value for short times and
for a number of values of L as a function of the scaled
variable tL ~* The data collapse rather well to a single
universal curve, even for rather small values of L, sup-
porting the conclusion that this model is in the free-field
universality class.

We have also simulated the same model with A=1 and
1 and the conserved single-step model with detailed bal-
ance. In all cases the results are consistent with those re-
ported above.

(ii) Models without detailed balance. We now discuss
the simulations for procedure (ii). As in the previous
case, we have carried out the simulations for several ver-
sions of the basic model. We report here on the results
for various ratios A/H, which turn out to be a control

1000

100 + a L=160
o L=80
S(k) [ e L=40
o L=20
0T L=10

3 a Lo

g 4

Qyg

0.1 : } S S =

0.01 1

k/2n o1

FIG. 4. The steady-state structure factor S(k) [Eq. (17)] for
procedure (i). The straight line has a slope 2, supporting the
conclusion that y=0.5.
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The same as Table I for the model with

A/H =0.49 and with dynamics that do not obey detailed bal-

ance [procedure (ii)].

L ENL,») XewlL)

10 0.451

20 0.614 0.22
40 0.755 0.15
80 0.828 0.067
160 - 0.868 0.034

5280
1 £
. . ;A;AA.@SAQQA&&RA&‘A
[ o, ¥
0.8 |- sl
O N
(:U' Foal
=06+ ,°
S Y o L=160
0.4 _; o L=80
. a L=40
» a L=20
0.2 +
0 f f +— —
0 0.2 0.4 0.6 08 1
L

FIG. 5. The relaxation function for procedure (i). The data
support the conclusion that z=4.

parameter that affects the coefficient v, in the phenome-
nological equation (11). The system is always initialized
in the flat state. Blocks of size A are then moved from a
randomly selected site to a nearest or next-nearest neigh-
bor subject to the constraint that |h;—h; | <H at all
times. As described in Sec. II, if an attempted move in
one direction fails, we attempt to move the block in the
opposite direction. It is clear from the constraint
|h;—h; | <H that, for a given random-number se-
quence, the sequence of allowed moves will be identical
for all ratios A/H in the range 1/n>A/H>1/(n +1).
Thus the exponents ¥ and z can change only at these ra-
tional numbers of the control parameter A /H.

(a A/H > 1. In Fig. 6 we have plotted the structure
factor S(k, o) for A/H=0.49. It is clear that, rather
than diverging at small k, S(k, «) saturates. Thus, in-
stead of diverging as L — oo, the width will reach a finite
value. This conclusion is supported by the data for
EXL,x) in Table II for L <160, where we have also
given the values of the effective exponent

It is clear that this exponent is rapidly approaching zero
as the system size increases.

The dynamic exponent z is difficult to determine from
the short-time behavior of the width. Since there is no
long-wavelength divergence of the structure factor, all
modes are equally important, and finite-size effects play
an important role. We have determined an effective dy-
namic exponent z (L) by examining the relaxation of the
time-dependent structure factor S(k,t) for the smallest
wave vectors. Specifically, we vary z to obtain the best
possible collapse of the data for the function

S (k,1)
Y(k,t)=1 Sk, o)
when plotted as s function of k% for the five smallest
wave vectors for a given value of L. The value that pro-
duces the best fit is z4(L). The values are z 4(40)=2.85,
z.4(80)=2.5, and z.4(160)=2.3. These results are con-
sistent with an extrapolated value z =z g( 0 )=2.0.

The behavior of the steady-state structure factor and
relaxation function (20) indicates that the appropriate
continuum equation for this value of A/H is Eq. (11) with
v,>0. This implies that the other terms in this equation
are irrelevant in the renormalization-group sense al-
though they will in general be present and contribute to
the rather pronounced finite-size effects.

(b) A/JH=1. In Fig. 7 we display the steady-state
structure factor for this case for systems of size up to

(20)

In[&(L) /&L /2)
yo(L)=101¢ 1n(§) 1 (19)
15
re u] e L=160
Skt * i o L=80
e A L=40
1 -+ A.\] A L=20
o L=10
®
D‘
05 + ﬁ:‘jﬂ@
.
A
0 Ly : -
0.01 k/2r 0.1 1

FIG. 6. The steady-state structure factor for procedure (ii)

for A/H =0.49.

1000
——Slope -1.65
S(k) o L=160
100 - A L=80
a L=40
o L=20
10 L L=10
1 4
-
9 = gram
0.1 = }

FIG. 7. Same as Fig. 6 but for A/H =

1
3+
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L =160. In contrast to the previous case the structure
factor now shows a clear power-law divergence for small
k. The straight line, which provides an excellent fit to the
data over at least half the Brillouin zone, has slope
—1.65, which indicates that y=0.35. The data for the
equilibrium width are consistent with this conclusion.

Figure 8 shows the relaxation of the width of the inter-
face to its steady-state value plotted as a function of the
scaled time ¢tL ~Z with z=3.67. The collapse of the data
is very good and, although there is an uncertainty of or-
der 0.1 in the estimate of z, the value of 4.0 that we ob-
tained for the case of procedure (i) is clearly ruled out at
least for systems of this size.

The exponents z=~4 and y~1 as well as the scaling
law z +y=4, which the data support, lead us to conjec-
ture that at A/JH=1 is a critical point of the model
where the coefficient v, in Eq. (11) vanishes. As was
shown in Ref. 17, the nonlinear term is then relevant for
substrate dimensions less than 2. The renormalization-
group treatment of the continuum equation then pro-
duces the exponents z= 4 and Y =1 to first order in an €
expansion about the critical dimension d, =2.

(c) A/H <}. The entire regime A/H <1 can be
characterized as a grooved phase in which the width of
the surface is proportional to the length of the substrate.
However, the asymptotic behavior of the system sets in at
smaller and smaller values of L as A/H becomes smaller.
Here we will report only the results for A/H= L. For
this case one can see the onset of the asymptotic behavior
for systems as small as L =80.

In Table III we list the steady-state value of the mean-
square width for systems up to size L =240 together with
the effective exponent defined in Eq. (19). In contrast to
the flat phase and the critical phase, the width of the sur-
face in this phase increases very rapidly as a function of
L. For example, for L =160, the steady-state value of &2
for A/H = is more than 200 times as large as that for
A/H =0.33. Indeed, the effective exponent X.g is larger
than 1.0 for all values of L as shown in Table III. This is
already an indication that we have not reached the

12
1 o g e A
. PﬁAﬁA‘:’A.
3 08— wd" o
S
w9 L
= &
S, 06 ‘jﬁﬁ o L=160
r o L=80
04 ¢ A L=40
£ a L=20
0.2 -8B
[ ]
0 L { Lo { L1 } TR % L1
0 0.2 04 4 = 06 0.8 1

FIG. 8. Relaxation function for procedure (ii) with A/H = %
The data are plotted as function of tL ~* with z=3.67.
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TABLE III. The same as Table I for the model with
A/H= ;‘% and with dynamics that do not obey detailed balance

[procedure (ii)].

L E(L, o) Xen(L)

10 0.424

20 2.01 112

40 19.2 1.63

80 1283 1.37
160 634.4 1.15
240 1501.0 1.06

asymptotic regime in these simulations since y =1 for any
system for which the slope of the surface is bounded (in
this case by H). As shown in Table III, the effective ex-
ponent attains a maximum as a function of L and then
decreases toward a limiting value which we believe to be
exactly 1.0. This behavior is generic in the grooved
phase; only the turning point varies with A /H, appearing
at decreasing values of L as A /H is decreased.

The average shape of the surface in the grooved phase
(Fig. 9) appears to be the deterministic (noise-free)
steady-state solution of the conserved KPZ equation (3):

172
] . @D

Here x, and h are chosen to fit the position and value of
the maximum height of the surface, while A and b can be
used to fit both the curvature at the maximum and the
maximal height difference. Figure 9 shows a comparison
of a typical steady-state Monte Carlo configuration for
A/H = with Eq. (21). The quality of the fit is similar in
the entire range A/H < 4.

There are two problems with the solution (21). The
first is that the conserved KPZ equation has another lo-
cally stable solution, namely 4 (x)=0. A plausible resolu-
tion of this difficulty is that the diffusion coefficient v, in

h(x):ho—-)%—ln [cosh — (x —xq)

40
20 + .
h(X,OO) 0 T i
-20 ——A/MH =1/40,L =160 T
----- A=.121,b=.08
-40 -
-60 -t ——t——
0 20 40 60 80 100 120 140 160
X

FIG. 9. Typical steady-state configuration of the interface for
A/H = (solid curve) and fit to Eq. (21) (dashed curve).
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Eq. (11) is positive for A/H =1, zero for A/H =1. Thus
by continuity one expects it to be negative for AH < 1.
The change of sign in v, then provides the instability
mechanism that destabilizes the solution 4 (x)=0, and
the shape of the surface is actually given by the solution
of Eq. (11) with a small negative v,.

The second problem with (21) is the lack of periodicity.
One can, however, construct periodic solutions by past-
ing together solutions of the form (21) shifted by kL,
where k is an integer and where the shifted function gives
the solution in the range kL =(x —x,)=(k +1)L. The
bottoms of the grooves then become singular points at
which the slope of the surface changes from —g to g with
q~O0(1). It should be noted, however, that the
differential equation that governs the steady-state shape
contains only (34 /9x )* and even derivatives of . Thus
all the quantities that appear in the differential equation
are continuous functions at the singular points. (Note
that if we consider functions that are symmetric about
the point x, then the functions are symmetric about the
points where the solutions are pasted together as well.)

Thus we believe that Eq. (11) with a small negative v,
describes the steady-state shape of the surface for
A/H = 1. We do not, however, have a ready explanation
for the fact that (21) gives an excellent fit to the data in
the entire range A/H <1, thus implying that v, remains
very small in that entire range. It is, of course, a possibil-
ity that v,=0 for A/H = and that the loss of stability of
the solution A (x)=0 of the conserved KPZ equation is
due to some nonlinear term not accounted for in Eq. (11).

The relaxation towards the steady state seems to be an
activated process and does not show scaling behavior.
Typically, for a system of size L, the width initially grows
with a power-law dependence on ¢, similar to case (b).
However, at some reasonably short time, of order L*, an
instability develops, and the width rapidly shoots up to
the steady-state value. We have, therefore, not found it
useful to characterize the relaxation in terms of a scaling
function.

If our conjecture that the grooved phase can be de-
scribed by Eq. (11) with v, <0 is correct, then we have a
phase transition as a function of the control parameter
A/H from the flat phase to this grooved phase. Precisely
at the critical point A/H =1 (v,=0), the model displays
nontrivial scaling and exponents consistent with the
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renormalization-group predictions for Eq. (11). We note
also that Eq. (11) has been discussed by Golubovic and
Bruinsma?® for the case of nonconserved noise, i.e., a
growing deposit. They also make a point that negative v,
leads to an instability of a flat surface toward grooves and
overhangs in systems where these are allowed.

We note also that the same transition from a flat to a
grooved interface can also be seen as function of a con-
tinuous control parameter (rather than the rational
values A/H=1/n). If one allows variable size blocks
drawn from a distribution with a cutoff A_,, <H, then
A.</H plays the same role as A/H in the present simu-
lations but can take on any value. We have done a few
calculations for such a model and observed both flat and
grooved phases, presumably separated by a critical point
with the properties described in case (b).

In conclusion, we have shown that a simple model of
surface dynamics exhibits a surprisingly rich phase dia-
gram. The model in which the dynamics violate detailed
balance displays a phase transition from a flat to a
grooved phase. Precisely at the critical point, the model
seems to be in the universality class of the conserved
KPZ equation.
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APPENDIX

We restrict ourselves to the case of transition probabil-
ities [Eq. (8)] that exhibit left-right symmetry. The calcu-
lation can easily be generalized. Then the following rela-
tions hold:

Wi,i+1)=¢(0;-1,0,,0;11,0,42) ,
W(i+1Li)=¢(—0,43,

(A1)
042,041, 0;)

Expanding the right-hand side of (7) in powers of
(h; —h; _|)/€ results in the following expression:

%az(h,?: —26($1+dy+ 3+ 6)(B3h; ) —+)[25¢,+T(dy+¢,) + 3 1( 33, )

+€2(2¢11+3¢12+2¢13+¢14+¢22—¢44+¢23_¢34)<a)zc(axhi ?¥Y+oh?),

where
d": a¢(§1’§2’§3’§4)
i agl =0 ’
) (A3)
= a ¢(§1!§2’§3’§4)
Y agiagj £=0

(A2)

[

and (32h;) denotes the discrete version of the second
derivative, i.e.,

<a)2chi>=<ht+1‘2hi+hi~1>/€2 .

The other derivatives are defined analogously. When de-
tailed balance holds, derivatives of ¢ with respect to the
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first argument vanish, i.e., ¢;=0 and ¢>1,j=0,
j=1,...,4, and we have the additional symmetry
#(82,83,64) = (84,63, 85). Therefore, ¢,=¢,, and
$,;=¢,; for j=1,...,4. This results in the disappear-
ance of the conserved KPZ term (92(d,h;)?). The
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coefficient ¢,+¢;+¢@, is generally nonzero. In the
detailed-balance case we believe, however, that this
coefficient vanishes as a consequence of the coarse-
graining process yielding a result consistent with our
simulations of procedure (i).

*On leave from Institute for Theoretical Physics, E6tvés Uni-
versity, 1086 Budapest, Hungary.
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