APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. A 43, 5275–5283 (1991)

[Issue 10 – 15 May 1991 ]

Previous article | Next article | Issue 10 contents ]

Add to article collection View Page Images or PDF (1470 kB)


Scaling properties of driven interfaces: Symmetries, conservation laws, and the role of constraints

Z. Rácz, M. Siegert, D. Liu, and M. Plischke
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A||1S6
Received 11 December 1990

One-dimensional models of surface dynamics are studied analytically and by numerical simulation. In all cases the number of particles that form the deposit is conserved. We find that an initially flat surface, in general, roughens as a function of time and can be characterized by a width xi which obeys the scaling form xi (L,t)=L chi f(t/Lz) for a deposit on a substrate of linear dimension L. Restricted solid-on-solid (RSOS) -type models in which the microscopic dynamics obeys detailed balance are shown to be in the ``free-field'' universality class with exponents z=4 and chi =1/2. On the other hand, if detailed balance is broken, several universality classes exist. As the ``maximum-height-difference'' constraint in a RSOS model is varied, one can observe a phase transition between a flat phase (z=2, chi =0) and a grooved phase characterized by a steady-state exponent chi =1 but with no scaling in the relaxation process. At the transition point, a nontrivially rough surface emerges with exponents (z [approx equals] 3.67, chi [approx equals] 0.33) close to those of the conserved Kardar-Parisi-Zhang equation. We propose a phenomenological model that may account for these observations.

©1991 The American Physical Society

URL: http://link.aps.org/abstract/PRA/v43/p5275
DOI: 10.1103/PhysRevA.43.5275
PACS: 05.70.Ln, 05.40.+j, 68.35.Fx, 64.60.Ht


Add to article collection View Page Images or PDF (1470 kB)

Previous article | Next article | Issue 10 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).
  2. M. Plischke and Z. Rácz, Phys. Rev. A 32, 3825 (1985).
  3. R. Jullien and R. Botet, Phys. Rev. Lett. 54, 2055 (1985).
  4. F. Family, J. Phys. A 19, L441 (1986) [dot INSPEC].
  5. P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Phys. Rev. A 34, 5081 (1986).
  6. M. Plischke, D. Liu and Z. Rácz, Phys. Rev. B 35, 3485 (1987).
  7. D. E. Wolf and J. Kertesz, Europhys. Lett. 4, 651 (1987) [dot INSPEC].
  8. D. Liu and M. Plischke, Phys. Rev. B 38, 4781 (1988).
  9. J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989).
  10. J. Krug, J. Phys. A 22, L769 (1989) [dot INSPEC].
  11. J. G. Amar and F. Family, Phys. Rev. Lett. 64, 543 (1990).
  12. Y. P. Pellegrini and R. Jullien, Phys. Rev. Lett. 64, 1745 (1990).
  13. B. M. Forrest and L-H. Tang, Phys. Rev. Lett. 64, 1405 (1990).
  14. M. Kardar, G. Parisi and Y-C. Zhang, Phys. Rev. Lett. 56, 889 (1986) [SPIRES].
  15. J. Krug, Phys. Rev. A 36, 5465 (1987).
  16. H. Guo, B. Grossmann and M. Grant, Phys. Rev. Lett. 64, 1262 (1990).
  17. T. Sun, H. Guo and M. Grant, Phys. Rev. A 40, 6763 (1989).
  18. A. Chakrabarti, J. Phys. A 23, L919 (1990) [dot INSPEC].
  19. H. Guo and M. Grant (private communication).
  20. A. De Masi, P. A. Ferrari and J. L. Lebowitz, Phys. Rev. Lett. 55, 1947 (1985).
  21. It should be noted that this assumption does not exclude induced currents within the interface. These would be described by odd powers in the function f ( sigma i).
  22. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977) [SPIRES]; Note that del2 in Eq. (15) should, in principle, be replaced by a more general form that takes into account the fact that the particles move on an interface. The additional nonlinear terms do not, however, affect our conclusion that the Laplacian term is absent in (15).
  23. L. Golubovic and R. Bruinsma, Phys. Rev. Lett. 66, 321 (1991).
  24. A. Mazor, D. J. Srolovitz, P. S. Hagan and B. G. Bukiet, Phys. Rev. Lett. 60, 424 (1988); J. Villain, J. Phys. I (France) 1, 19 (1991) [dot INSPEC].


Add to article collection View Page Images or PDF (1470 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 10 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org