Article Collection: View Collection Help (Click on the to add an article.)
Phys. Rev. A 43, 52755283 (1991)
[Issue 10 15 May 1991 ]
[ Previous article | Next article | Issue 10 contents ]
View Page Images or PDF (1470 kB)
Scaling properties of driven interfaces: Symmetries, conservation laws, and the role of constraints
- Z. Rácz, M. Siegert, D. Liu, and M. Plischke
- Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A||1S6
Received 11 December 1990One-dimensional models of surface dynamics are studied analytically and by numerical simulation. In all cases the number of particles that form the deposit is conserved. We find that an initially flat surface, in general, roughens as a function of time and can be characterized by a width xi which obeys the scaling form xi (L,t)=L chi f(t/Lz) for a deposit on a substrate of linear dimension L. Restricted solid-on-solid (RSOS) -type models in which the microscopic dynamics obeys detailed balance are shown to be in the ``free-field'' universality class with exponents z=4 and chi =1/2. On the other hand, if detailed balance is broken, several universality classes exist. As the ``maximum-height-difference'' constraint in a RSOS model is varied, one can observe a phase transition between a flat phase (z=2, chi =0) and a grooved phase characterized by a steady-state exponent chi =1 but with no scaling in the relaxation process. At the transition point, a nontrivially rough surface emerges with exponents (z [approx equals] 3.67, chi [approx equals] 0.33) close to those of the conserved Kardar-Parisi-Zhang equation. We propose a phenomenological model that may account for these observations.
©1991 The American Physical Society
URL: http://link.aps.org/abstract/PRA/v43/p5275
DOI: 10.1103/PhysRevA.43.5275
PACS: 05.70.Ln, 05.40.+j, 68.35.Fx, 64.60.Ht
View Page Images or PDF (1470 kB)[ Previous article | Next article | Issue 10 contents ]
References
(Reference links marked with may require a separate subscription.)
- F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).
- M. Plischke and Z. Rácz, Phys. Rev. A 32, 3825 (1985).
- R. Jullien and R. Botet, Phys. Rev. Lett. 54, 2055 (1985).
- F. Family, J. Phys. A 19, L441 (1986) [ INSPEC].
- P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Phys. Rev. A 34, 5081 (1986).
- M. Plischke, D. Liu and Z. Rácz, Phys. Rev. B 35, 3485 (1987).
- D. E. Wolf and J. Kertesz, Europhys. Lett. 4, 651 (1987) [ INSPEC].
- D. Liu and M. Plischke, Phys. Rev. B 38, 4781 (1988).
- J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989).
- J. Krug, J. Phys. A 22, L769 (1989) [ INSPEC].
- J. G. Amar and F. Family, Phys. Rev. Lett. 64, 543 (1990).
- Y. P. Pellegrini and R. Jullien, Phys. Rev. Lett. 64, 1745 (1990).
- B. M. Forrest and L-H. Tang, Phys. Rev. Lett. 64, 1405 (1990).
- M. Kardar, G. Parisi and Y-C. Zhang, Phys. Rev. Lett. 56, 889 (1986) [SPIRES].
- J. Krug, Phys. Rev. A 36, 5465 (1987).
- H. Guo, B. Grossmann and M. Grant, Phys. Rev. Lett. 64, 1262 (1990).
- T. Sun, H. Guo and M. Grant, Phys. Rev. A 40, 6763 (1989).
- A. Chakrabarti, J. Phys. A 23, L919 (1990) [ INSPEC].
- H. Guo and M. Grant (private communication).
- A. De Masi, P. A. Ferrari and J. L. Lebowitz, Phys. Rev. Lett. 55, 1947 (1985).
- It should be noted that this assumption does not exclude induced currents within the interface. These would be described by odd powers in the function f ( sigma i).
- P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977) [SPIRES]; Note that del2 in Eq. (15) should, in principle, be replaced by a more general form that takes into account the fact that the particles move on an interface. The additional nonlinear terms do not, however, affect our conclusion that the Laplacian term is absent in (15).
- L. Golubovic and R. Bruinsma, Phys. Rev. Lett. 66, 321 (1991).
- A. Mazor, D. J. Srolovitz, P. S. Hagan and B. G. Bukiet, Phys. Rev. Lett. 60, 424 (1988); J. Villain, J. Phys. I (France) 1, 19 (1991) [ INSPEC].
View Page Images or PDF (1470 kB)
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 10 contents ]
E-mail: prola@aps.org