Article Collection: View Collection Help (Click on the to add an article.)
Phys. Rev. B 44, 93789384 (1991)
[Issue 17 1 November 1991 ]
[ Previous article | Next article | Issue 17 contents ]
View Page Images or PDF (1207 kB)
Temperature dependence of the magnetoresistance of sputtered Fe/Cr superlattices
- J. E. Mattson, Mary E. Brubaker, C. H. Sowers, M. Conover, Z. Qiu, and S. D. Bader
- Materials Science Division, Argonne National Laboratory, Argonne, Ilinios 60439
Received 19 April 1991The temperature dependence of the resistivity of three sputtered Fe/Cr superlattices was analyzed. Two are antiferromagnetic and one is ferromagnetic. Also, a series of Fe/Cr superlattices was characterized as a function of Cr thickness by means of resistivity, Kerr-rotation, and x-ray-diffraction measurements. Magnetoresistance measurements for films with 32-Å Fe layers confirm the presence of three oscillations with peaks at ~11, 27, and 42 Å Cr. The Kerr-rotation measurements for fixed Fe thicknesses of 15, 25, 32 and 40 Å indicate that the first antiferromagnetic region is always between ~6 and 17 Å Cr thickness. The low-angle x-ray results show that the structure is not ideal, based on comparison to dynamical simulation or to the quality of similarly prepared Fe/Mo superlattices. The magnetoresistivity of the antiferromagnetic films decays from its maximum value at low temperature with a T2 behavior below ~100 K, while a ferromagnetic film could be similarly approximated by a T3/2 behavior. These power laws are a consequence of the thermal excitation of magnons in these anisotropic antiferromagnetic and ferromagnetic superlattices, respectively. The resistivities due to sd-interband scattering rho sd are approximated by a T2 behavior and roughly a T3 behavior, respectively. This indicates that for the antiferromagnetic films the dominant contributions to rho sd come from processes mediated by magnons as well as phonons.
©1991 The American Physical Society
URL: http://link.aps.org/abstract/PRB/v44/p9378
DOI: 10.1103/PhysRevB.44.9378
PACS: 72.15.Gd, 75.70.Fr, 78.20.Ls, 81.15.Cd
View Page Images or PDF (1207 kB)[ Previous article | Next article | Issue 17 contents ]
References
(Reference links marked with may require a separate subscription.)
- P. Grüberg, R. Schreiber, Y. Pang, M. B. Brodsky and C. H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).
- M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
- S. S. P. Parkin, N. More and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).
- B. Heinrich, Z. Celinski, J. F. Cochran, W. B. Muir, J. Rudd, Q. M. Zhong, A. S. Arrot, K. Myrtle and J. Kirschner, Phys. Rev. Lett. 64, 673 (1990).
- W. R. Bennett, W. Schwartzacher and W. F. Egelhoff, Jr., ., Phys. Rev. Lett. 65, 3169 (1990).
- S. Pescia, D. Kerkmann, F. Schumann and W. Gudat, Z. Phys. B 78, 475 (1990); A. Cebollada, R. Miranda, C. M. Schneider, P. Shuster, and J. Kirschner (unpublished); D. H. Mosaca, F. Petroff, A. Fert, P. A. Schroeder, W. P. Pratt, Jr., R. Laloee and S. Lequien, J. Magn. Magn. Mater. 94, L1 (1991) [ INSPEC]; S. S. P. Parkin, R. Bhadra and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).
- M. E. Brubaker, J. E. Mattson, C. H. Sowers and S. D. Bader, Appl. Phys. Lett. 58, 2306 (1991) [ INSPEC].
- Y. Wang, P. M. Levy and J. L. Fry, Phys. Rev. Lett. 65, 2732 (1990); W. Baltensperger and J. S. Helman, Appl. Phys. Lett. 57, 2954 (1990) [ SPIN][ INSPEC]; H. Hasegawa, Phys. Rev. B 42, 2368 (1990).
- R. E. Camley and J. Barnas, Phys. Rev. Lett. 63, 664 (1989).
- P. M. Levy, S. Zhang and A. Fert, Phys. Rev. Lett. 65, 1643 (1990).
- Mahbub R. Kahn, C. S. L. Chun, G. P. Felcher, M. Grimsditch, A. Kueny, Charles M. Falco and Ivan K. Shuller, Phys. Rev. B 27, 7186 (1983); M. Piecuch and L. Nevot, Mater. Sci. Forum 59, and 60, 93 (1990),; Sec. 4.2 is particularly pertinent to this analysis.
- J. Zak, E. R. Moog, C. Liu and S. D. Bader, J. Magn. Magn. Mater. 89, 107 (1990) [ INSPEC].
- CRC Handbook of Chemistry and Physics, 71st ed., edited by David R. Lide (CRC, Boca Raton, 1990).
- G. S. Krinchik and V. A. Artem'ev, Zh. Eksp. Teor. Fiz. 53, 1901 (1967) [Sov. Phys. JETP 26, 1080 (1968)].
- E. R. Moog, S. D. Bader and J. Zak, Appl. Phys. Lett. 56, 2687 (1990) [ SPIN][ INSPEC].
- A. Barthélémy, A. Fert, M. N. Baibich, S. Hadjoudj, F. Petroff, P. Etienne, R. Cabanel, S. Lequien, F. Nguyen Van Dau and G. Creuzet, J. Appl. Phys. 67, 5908 (1990) [ SPIN][ INSPEC].
- J. E. Mattson, Ph.D. thesis, Northwestern University, 1990. In this work a similar decomposition was shown to provide helpful insight toward understanding the temperature dependence of the magnetoresistance in thin Cr films.
- A. Singh, Z. Tesanovic, H. Tang, G. Xiao, C. L. Chien and J. C. Walker, Phys. Rev. Lett. 64, 2571 (1990).
- Z. Q. Qiu, J. E. Mattson, C. H. Sowers, V. Welp, S. D. Bader, H. Tang, and J. C. Walker (unpublished).
- S. Zhang and P. M. Levy, Phys. Rev. B 43, 11 048 (1991).
- F. Petroff, A. Barthélémy. A. Hamzic, A. Fert, P. Etienne, S. Lequien and G. Creuzet, J. Magn. Magn. Mater. 93, 95 (1991).
- A. H. Wilson, Proc. R. Soc. London, Ser. A 167, 580 (1938); A. H. Wilson, Theory of Metals (Cambridge University, Cambridge, 1954); see also S. D. Bader and F. Y. Fradin, Superconductivity in d- and f-Band Metals (Plenum, New York, 1976), p. 567.
- T. Kasuya, Prog. Theor. Phys. (Kyoto) 16, 58 (1956); 22, 227 (1956).
- D. A. Goodings, Phys. Rev. 132, 542 (1963).
- George Terence Meaden, Electrical Resistance of Metals (Plenum, New York, 1965).
- M. B. Brodsky, A. J. Arko, A. R. Harvey, and W. J. Nellis, in The Actinides: Electronic Structure and Related Properties, edited by A. J. Freeman and J. B. Darby, Jr. (Academic, New York, 1974), Vol. 2, p. 186.
- S. Doniach, in The Actinides: Electronic Structure and Related Properties (Ref. 26), p. 51.
View Page Images or PDF (1207 kB)
[Show Articles Citing This One] Requires Subscription[ Previous article | Next article | Issue 17 contents ]