APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. A 43, 900–919 (1991)

[Issue 2 – 15 January 1991 ]

Previous article | Next article | Issue 2 contents ]

Add to article collection View Page Images or PDF (3168 kB)


Columnar growth in oblique incidence ballistic deposition: Faceting, noise reduction, and mean-field theory

Joachim Krug
Theoretische Physik, Ludwig Maximilians Universität, Theresienstrasse 37, D-8000 München 2, Germany
Paul Meakin
Central Research and Development Department, E. I. du Pont de Nemours Company, Experimental Station E356/153, Wilmington, Delaware 19880-0356
Received 13 August 1990

Several aspects of the columnar structure encountered in vapor deposition at oblique particle incidence are studied through a combination of theoretical analysis and computer simulations. First, a general macroscopic theory of columnar growth is presented that yields, among other results, an expression for the columnar growth angle. We then focus on the role of noise in columnar growth, using two simple square-lattice ballistic deposition models–finite-density deposition and noise-reduced deposition–in which the amount of fluctuations in the growth process can be tuned by varying a control parameter. In both models faceting of the column tips stabilizes the columnar morphology. In the finite-density model, we find a faceting transition related to directed percolation. Some characteristics of columnar growth are retrieved within a mean-field approximation. Simulations carried out on d-dimensional hypercubic lattices up to d=6 indicate that the deposit density converges to its mean-field value in the limit d--> [infinity] .

©1991 The American Physical Society

URL: http://link.aps.org/abstract/PRA/v43/p900
DOI: 10.1103/PhysRevA.43.900
PACS: 81.15.-z, 05.70.Jk, 68.55.-a


Add to article collection View Page Images or PDF (3168 kB)

Previous article | Next article | Issue 2 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. Random Fluctuations and Pattern Growth, Vol. 157 of NATO Advanced Study Institute, Series E: Applied Sciences, edited by H. E. Stanley and N. Ostrowsky (Kluwer, Dordrecht, 1988).
  2. H. Chou and H. Z. Cummins, Phys. Rev. Lett. 61, 173 (1988); X. W. Qian, H. Chou, M. Muschol and H. Z. Cummins, Phys. Rev. B 39, 2529 (1989).
  3. A. Dougherty, P. D. Kaplan and J. P. Gollub, Phys. Rev. Lett. 58, 1652 (1987); R. Pieters and J. S. Langer, 56, 1948 (1986); X. W. Qian and H. Z. Cummins, 64, 3038 (1990).
  4. S.-C. Huang and M. E. Glicksman, Acta Metall. 29, 717 (1981) [dot INSPEC]; M. E. Glicksman and P. W. Voorhees, Metall. Trans. 15A, 995 (1984).
  5. H. J. Leamy, G. H. Gilmer, and A. G. Dirks, in Current Topics in Materials Science, edited by E. Kaldis (North-Holland, Amsterdam 1980), Vol. 6.
  6. H. König and G. Helwig, Optik 6, 111 (1950).
  7. R. P. U. Karunasiri, R. Bruinsma and J. Rudnick, Phys. Rev. Lett. 62, 788 (1989).
  8. S. Lichter and J. Chen, Phys. Rev. Lett. 56, 1396 (1986).
  9. A. Mazor, D. J. Srolovitz, P. S. Hagan and B. G. Bukiet, Phys. Rev. Lett. 60, 424 (1988); D. J. Srolovitz, A. Mazor and B. G. Bukiet, J. Vac. Sci. Technol. A 6, 2371 (1988) [dot INSPEC].
  10. J. Krug and P. Meakin, Phys. Rev. A 40, 2064 (1989).
  11. P. Meakin and J. Krug, Europhys. Lett. 11, 7 (1990) [dot INSPEC]; P. Meakin (unpublished).
  12. Z. Racz and T. Vicsek, Phys. Rev. Lett. 51, 2382 (1983); P. Meakin, Phys. Rev. B 30, 4207 (1984).
  13. P. Meakin, Phys. Rev. A 38, 994 (1988).
  14. R. Baiod, D. Kessler, P. Ramanlal, L. Sander and R. Savit, Phys. Rev A 38, 3672 (1988); Z. Cheng, L. Jacobs, D. Kessler and R. Savit, J. Phys. A 20, L1095 (1987) [dot INSPEC][SPIRES].
  15. F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).
  16. P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Phys. Rev. A 34, 5091 (1986).
  17. N. G. Nakhodkin and A. I. Shaldervan, Thin Solid Films 10, 109 (1972) [dot INSPEC]; D. K. Pandya, A. C. Rastogi and K. L. Chopra, J. Appl. Phys. 46, 2966 (1975) [dot SPIN][dot INSPEC]; K. H. Guenther, Appl. Opt. 23, 3806 (1984) [dot SPIN][dot INSPEC]; K.-H. Müller, J. Appl. Phys. 58, 2573 (1985) [dot SPIN][dot INSPEC].
  18. W. Kinzel, Ann. Isr. Phys. Soc. 5, 425 (1983) [dot INSPEC]; J. W. Essam, A. J. Guttmann and K. De'Bell, J. Phys. A 21, 3815 (1988) [dot INSPEC].
  19. D. Richardson, Proc. Cambridge Philos. Soc. 74, 515 (1973); R. Durrett and T. M. Liggett, Ann. Prob. 9, 186 (1981); R. Savit and R. Ziff, Phys. Rev. Lett. 55, 2515 (1985).
  20. J. Kertész and D. E. Wolf, Phys. Rev. Lett. 62, 2571 (1989); C. Lehner, N. Rajewsky, D. E. Wolf and J. Kertész, Physica A 164, 81 (1990) [dot INSPEC].
  21. J. Krug, J. Kertész and D. E. Wolf, Europhys. Lett. 12, 113 (1990) [dot INSPEC].
  22. G. H. Gilmer, M. H. Grabow and A. F. Bakker, Mater. Sci. Eng. B 6, 101 (1990).
  23. J. Szép, J. Cserti and J. Kertész, J. Phys. A 18, L413 (1985) [dot INSPEC]; C. Tang, Phys. Rev. A 31, 1977 (1985); J. Kertész and T. Vicsek, J. Phys. A 19, L257 (1986) [dot INSPEC]; and, 21, 1271 (1988) [dot INSPEC]; J.-P. Eckmann, P. Meakin, I. Procaccia and R. Zeitak, Phys. Rev. A 39, 3185 (1989); and, Phys. Rev. Lett. 65, 52 (1990).
  24. P. Meakin, Phys. Rev. A 38, 418 (1988).
  25. J. Kertész and D. E. Wolf, J. Phys. A 21, 747 (1988) [dot INSPEC]; and, 20, L257 (1987) [dot INSPEC]; and, Europhys. Lett. 4, 651 (1987) [dot INSPEC].
  26. P. Devillard and H. E. Stanley, Phys. Rev. A 38, 6451 (1988); and, Physica A 160, 298 (1989) [dot INSPEC].
  27. J. Krug and H. Spohn, Phys. Rev. A 38, 4271 (1988).
  28. J. Krug and H. Spohn, in Solids Far From Equilibrium: Growth, Morphology and Defects, edited by C. Godre-graveche (Cambridge University, Cambridge, England, 1991).
  29. W. van Saarloos, Phys. Rev. A 37, 211 (1988).
  30. W. van Saarloos, Phys. Rev. A 39, 6367 (1989).
  31. D. Bensimon, B. Shraiman, and L. P. Kadanoff, in Kinetics of Aggregation and Gelation, edited by F. Family and D. P. Landau (Elsevier, Amsterdam, 1984).
  32. D. Bensimon, B. Shraiman and S. Liang, Phys. Lett. 102A, 238 (1984); S. Liang and L. P. Kadanoff, Phys. Rev. A 31, 2628 (1985); A. V. Limaye and R. E. Amritkar, 34, 5085 (1986); and, 36, 3395 (1987).
  33. P. Ramanlal and L. M. Sander, Phys. Rev. Lett. 54, 1828 (1985).
  34. J. Krug, J. Phys. A 22, L769 (1989) [dot INSPEC].
  35. P. Meakin and R. Jullien, J. Phys. (Paris) 48, 1651 (1987) [dot INSPEC]; R. Jullien and P. Meakin, Europhys. Lett. 4, 1385 (1987) [dot INSPEC].
  36. J. Krug and H. Spohn, Phys. Rev. Lett. 64, 2332 (1990).
  37. J. M. Nieuwenhuizen and H. B. Haanstra, Philips' Technische Rundschau 27, 177 (1966).
  38. A. A. Chernov, Kristallografiya 7, 895 (1962) [Sov. Phys. Crystallogr. 7, 728 (1963)]; D. E. Wolf, J. Phys. A 20, 1251 (1987) [dot INSPEC].
  39. J. Krug and P. Meakin, J. Phys. A 23, L987 (1990) [dot INSPEC].
  40. C. Rottman and M. Wortis, Phys. Rep. 103, 59 (1984) [dot INSPEC]; A. F. Andreev, Zh. Eksp. Teor. Fiz. 80, 2042 (1981) [Sov. Phys. JETP 53, 1063 (1982)] [dot SPIN].
  41. The numerical procedure used to determine the columnar growth angle is described in Ref. 13.
  42. M. Kardar, G. Parisi and Y. C. Zhang, Phys. Rev. Lett. 56, 889 (1986) [SPIRES]; E. Medina, T. Hwa, M. Kardar and Y. C. Zhang, Phys. Rev. A 39, 3053 (1989).
  43. For a different type of rough-to-rough transition in surface growth, see J. G. Amar and F. Family, Phys. Rev. Lett. 64, 543 (1990), and Ref. 36.
  44. P. Meakin, J. Phys. A 20, L1113 (1987) [dot INSPEC].
  45. M. Matsushita and P. Meakin, Phys. Rev. A 37, 3645 (1988).
  46. M. Plischke and Z. Ra-gravecz, Phys. Rev. A 32, 3825.
  47. H. Kondoh, M. Matsushita and Y. Fukuda, J. Phys. Soc. Jpn. 56, 1913 (1987) [dot INSPEC]; H. Takayasu, I. Nishikawa and H. Tasaki, Phys. Rev. A 37, 3110 (1988).
  48. E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 311 (1984).
  49. M. Bramson and D. Griffeath, Z. Wahrscheinlichkeitstheorie verw. Gebiete 53, 183 (1980).
  50. L. Peliti, J. Phys. A 19, L365 (1986) [dot INSPEC]; K. Kang and S. Redner, Phys. Rev. A 30, 2833 (1984).
  51. Z. Cheng, R. Baiod and R. Savit, Phys. Rev. A 35, 313 (1987).
  52. J. Cook and B. Derrida have independently developed a mean-field theory for ballistic deposition starting from the updating rule (1.1).
  53. D. G. Aronson and H. F. Weinberger, Adv. Math. 30, 33 (1978); M. Bramson, Mem. Am. Math. Soc. 285, 1 (1983).
  54. M. Bramson (unpublished).
  55. H. Brandstetter, Diploma Thesis, University of Munich (unpublished).
  56. D. Dhar, Phys. Lett. A 130, 308 (1988) [dot INSPEC].
  57. M. Eden, in Symposium on Information Theory in Biology, edited by H. P. Yockey (Pergamon, New York, 1958).
  58. W. Renz (private communication).
  59. J. J. González, P. C. Hemmer and J. S. Høye, Chem. Phys. 3, 228 (1974) [dot INSPEC].


Add to article collection View Page Images or PDF (3168 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 2 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org