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The electrical transport properties of magnetic multilayered structures are dominated by three in-
gredients: (1) the scattering within layers that changes from one layer to another, (2) the additional
scattering resistivity due to the roughness of the interfaces between layers, and (3) the resistivity that
depends on the orientation of the magnetization of the magnetic layers. In the quasiclassical approach
the boundary scattering is treated differently from other sources. Here we present a unified treatment of
all sources of resistivity, and determine the origin of the giant magnetoresistance observed in Fe/Cr su-

perlattices.

PACS numbers: 72.10.Fk, 72.15.Gd, 75.50.Rr

Recent studies of the transport properties of iron-
chromium superlattices found an extraordinary reduction
of resistivity, by as much as a factor of 2, in magnetic
fields of 2 T.'"* Extant analyses of transport phenomena
in layered structures are based on the pioneering work of
Fuchs® and Sondheimer;? this was initially applied to the
resistivity of thin films due to surface roughness, and ex-
tended to multilayers by Carcia and Suna.® Recently,
the giant magnetoresistance of iron-chromium multilay-
ered structures was analyzed by using this quasiclassical
approach by including the spin-dependent interface
scattering as well as a spin-dependent bulk scattering.’
This approach does not treat the interface roughness
scattering on an equal footing with that coming from the
bulk.

What is needed is a unified treatment of the scattering
from the interfaces and bulk. We have derived the con-
ductivity and magnetoresistance of magnetic superlat-
tices by using the quantum approach first used by
Tésanovic, Jari¢, and Maekawa to discuss the resistivity
of thin films coming from the roughness of their sur-
face.® To determine the electrical transport properties of
these multilayered structures we have extended their ap-
proach by considering the surface-roughness scattering
from an array of interfaces, not just one, and by making
the scattering dependent on spin. While our primary in-
tention is to apply our result to periodic superlattices, our
formalism is equally applicable to cases where there is
no periodicity and to sandwich structures of finite thick-
ness, e.g., Fe/Cr/Fe.>>7 We find, inter alia, that while
the translationally invariant homogeneous transport
properties of these inhomogeneous structures are charac-
terized by a mean free path which is related to the diag-
onal part of the conduction-electron Green’s function,
their position dependence comes from the off-diagonal
parts of the Green’s function. Here we present our
derivation of the position-dependent conductivity of
magnetic superlattices, and we apply our result to ana-

lyze the giant magnetoresistance of iron-chromium su-
perlattices in terms of the spin-dependent bulk and inter-
face scattering.

We model the transport properties of Fe/Cr magnetic
superlattices by considering conduction electrons subject
to bulk scattering which occurs within the layers, and in-
terfacial roughness scattering which occurs at the inter-
faces between the iron and chromium layers. We confine
ourselves to low temperatures and neglect phonon and
magnon scattering; the latter should determine the tem-
perature dependence of the magnetoresistance. The
scattering at the interfaces comes from their roughness;
iron atoms find themselves in the chromium layer and
vice versa. As the iron layers are magnetized this pro-
duces spin-dependent interfacial roughness scattering.'
The bulk scattering comes from imperfections and im-
purities in the iron and chromium layers. By following
Té&sanovi¢, Jari¢, and Maekawa® we represent the
surface-roughness scattering by a potential that is ran-
dom in the plane of the interface and a 6 function in the
third dimension. We consider the iron and chromium
layers to be parallel to the x-p plane and to be stacked
along the z direction. We denote the thickness of the
iron and chromium layers as a and b, and in order to
consider antiferromagnetic ordering we take the period
of the superlattice (along z) to be T=2(a+5). The
scattering potential giving rise to resistivity is

V(r,6)=2 V!(8)6(r—R,)

+Z{:Vf(&)f1(p)8(z—z/), Q)

where r=(p,z) (z is normal to the layers), R; is the posi-
tion of an impurity or defect, z; is the position of the /th
Fe/Cr interface, f(p=(x,y)) represents interface
roughness, the sum over i/ is per unit volume, and the
sum over / is per unit length. The spin-dependent poten-
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tials are written as
V(&)Ev+jlolFe-&, (2)

where the operator & represents the Pauli spin matrix,
and Mg, is a unit vector in the direction of the magneti-
zation of an iron layer. The chromium layers are nomi-
nally nonmagnetic; therefore we set jc, =0 in these lay-
ers.

The conduction electrons are subject to different po-
tentials in the iron and chromium layers, and in princi-
ple, one should determine their wave functions for a
Kronig-Penney-like potential representing the Fe/Cr su-
perlattice. However, when the Fermi level is far from
the bottom of the potential and if there are no gaps at
the Fermi level, e.g., in the chromium layers due to
spin-density waves, it is reasonable to use plane waves to
represent conduction electrons in calculating the trans-
port properties of Fe/Cr superlattices. Therefore, to the
lowest order in the scattering, the t matrix near the Fer-
mi surface is

1:kw,6) |y~ = —in [ZA,”(&)e —'V:’+2Af(6)e _“—':’] ,
t !

(3)

where

AL(8) =plep)(VE(E) D), ,
4)
AF(8) =plep) VI[P,

k=(k,v) has been used (i.e., k =k, k, are the directions
in reciprocal space parallel to the layers, v=k. is normal
to the layers, v=v—1V'), and p(er) is the density of
states of conduction electrons at the Fermi surface. To
arrive at this form we averaged the bulk scattering po-
tential ¥?(8) over a random distribution of impurities in
a plane ¢ parallel to the layers, and we used a “white
noise” surface profile for the uncorrelated atomically
rough Fe/Cr interface; i.e., we take {|f;(k)|?) a constant
independent of k.8 For the matrix elements of the
scattering potential to exist for all vectors v, and not just
those of the reciprocal lattice of the superlattice, it is
necessary that the parameters A/ (Af) are random. As
the real parts of these parameters have the periodicity of
the superlattice we must make these parameters complex
and take their imaginary parts to be random. In addi-
tion we make the assumption that the A’s are indepen-
dent of v near the Fermi surface. In normal metals, i.e.,

Sform electric field. Our discussion of the transport prop-
erties of superlattices is limited to currents parallel to the
layers, i.e., the longitudinal conductivity; this is the case
that has been experimentally studied.'"™* When a uni-
form electric field E, is applied in the x direction, the
position-dependent current in the x direction is

j(2)=0()E,, (5)

where o(z) is the position-dependent conductivity due to
the inhomogeneous nature of the problem.

We calculate the conductivity o(z) by using the Kubo
formalism®® in which the current response is given in
terms of Matsubara Green’s functions. We separate the
Green’s functions into diagonal and off-diagonal parts,

G (k,w) =G (k,0)8,,/5
+G2 (k)T (k,0)G? (k,w)(1 —8,.) ,
(6)

where

T =129+ X 1 GITES @)
V101,V20)
and 1% is the spin matrix element of the s matrix, Eq.
(3), which is an operator in spin space. The G¢ is the di-
agonal part of the Green’s function which is written as

GI=1/(w— e, +iA°),
where
A°= =z ' ImTI™) (kg er) (8)

and T29*) is the irreducible self-energy, which to lead-
ing order is the diagonal part of the # matrix, Eq. (3). In
adopting the integral equation (7) we are neglecting in-
terference terms from scatterings at different sites (these
are usually quite small). By placing Eq. (6) in Eq. (7)
we find an integral equation for T which cannot be
solved exactly. Nonetheless, we can solve for the Fourier
transform of the product G,T,, which enters the expres-
sion for the conductivity. Upon placing Eq. (6) into Eq.
(7) and taking the transform of the product GT we are
able to uncouple the ensuing expressions by using the
property that our ¢ matrix Eq. (3) is of the form

Loy = — l.nzel(v - \’):,Al i 9)
1
where the A, are independent of v and v' near the Fermi

surface. We find the position-dependent conductivity at
zero temperature is given as

. . 2 -
no Kondo effect or resonant scattering at the Fermi sur- o(z)=2_% I+a”°(z)
face, this is an entirely reasonable approximation. 2m? T [+a°@DM1+a ()] —b°(2)b ()
The loss of translational invariance requires us to cal- (10)
culate the current at finite q even though we apply a uni- |
where
1+a°(z) =$ [Z ReAf% _‘:_:’l/xa+2ReAi"’e —|_~—.-1|/).°] ,
! i
bo(z) =% [Z ReA? ~“e _’:—:’l/ku+ZReAi’ %% —I:—:,l/x“] ,
t /
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h=1, and A° is a spin matrix element of the scattering
potential Eq. (4). The mean free path is derived from
the diagonal part of the Green’s function

A=kp/mA° (e, =€F) , n

where

o=l [ Y ReAP + Y, ReA/‘"’]EA,‘,’+A§’, (12)
T /er IET

and kr=(3x2n)'. Finally, the average conductivity is
obtained by averaging o(z) over a period 7. In the lim-
iting cases of the mean free paths much greater and
much smaller than the period T our result reduces to the
correct forms. We have also confirmed that the conduc-
tivity is independent of the direction of the spin quanti-
zation.

We have applied these results to determine the mag-
netoresistance of a metallic superlattice, e.g., Fe/Cr.
The amplitude of the magnetoresistance is defined as the
difference of the resistivity in the antiferromagnetic and
ferromagnetic ordered states,

p(H=0)—p(H;) ©OH,—OH=0
R= - ,
p(H=0) OH

s

(13)

where oy is the average of the conductivity Eq. (10)
over the period 7.

The spin dependence of the interface scattering comes
from placing V(&), Eq. (2), in Af(6), Egs. (3) and (4).
The ensuing expression for the conductivity Eq. (10) can
be written in terms of the coefficients entering Eq. (2),
i.e., v and p=,j/v. To keep our adjustable parameters to
a minimum we set (vZ.)=(0&)=(lu), PFe=pm=P
(int means interface), and pc,=0. In this way we find
three parameters enter our model for o(z), i.e.,

Ao =aokp/mlc@pler) ,
AM=2x,/(a+b) =ke/med(fa0p(er)

and p; a and b are the thickness of the iron and chromi-
um layers and ag=by is the common lattice constant for
iron and chromium. The mean free path A%, Eq. (11),
depends on the angle between the iron moments in adja-
cent layers. For Fe/Cr superlattices they are antiparallel
in zero magnetic field. As a function of field the angle
between the Fe moments decreases until “saturation” H;
when they are parallel. The origin of the magnetoresis-
tance is a short circuit for which k}>>k}, so that
Ap=Ap AL > Aar =200 WA =2)F).

To calculate the magnetoresistance we specify the
thickness of the layers a and b, and we must choose
values of Ay, Ag, and p which best fit the data. The bulk
scattering A, determines the length scale for the depen-
dence of the magnetoresistance on #¢,; therefore we start
by fitting A, to the data on R(tc;). Then, as bulk and
interface scattering produce very different dependences
for R(tg.) we fix the ratio A;/As to fit that data. Finally,

we choose p to obtain the experimental magnitude of the
magnetoresistance. From our knowledge of the scatter-
ing of chromium impurities in iron'® we know that
p=0.42-0.55. With this restriction we have fitted Eq.
(13) to the data on epitaxially grown Fe(001)/Cr(001)
multilayers at 7=4.2 K,'! and we find reasonable fits
with A, =19 A, A/ =1.1, and p =0.55. For a superlattice
with a =30 A and B=12 A, this yields A =23 A, so that
the ratio of the interfacial to bulk resistivity is 0.83. A
further check is that of the absolute value of the resistivi-
ty. For the above parameters we find p(H =0, T=0
K) =83 uQcm which is well within the scatter of the
values found for Fe/Cr superlattices. In Fig. 1, we show
the variation of the amplitude of the magnetoresistance,
Eq. (13), as a function of thickness of the iron layers
tre=a for b=12 A, and as a function of chromium layer
thickness ¢, =b for a =30 A. While the variation with
a is very gradual, it is much stronger with 5. This is in
agreement with the experimental data available to date
on Fe/Cr superlattices.!* While the data from Ref. 1
give the impression that there is a sharper decrease
around b =18 A, there may be other effects that contrib-
ute to this decrease, e.g., a change in sign of the inter-
layer coupling in this range of thickness.® By varying
the values of Ay, A;, and p we gradually worsen the fits
to the experimental data; nothing drastic happens.

It is of interest to compare our quantum-mechanical
model to the semiclassical approach of the Fuchs-
Sondheimer (FS) type.>’ This approach treats interface
scattering phenomenologically by introducing the pro-
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FIG. 1. The magnetoresistance R, Eq. (13), of Fe/Cr super-

lattices as a function of the thickness of iron layers for b =12
A, and for variable thickness of the chromium layer for a =30
A. The parameters used for these curves are p =0.55, A, =19
A, and A{=1.1; the calculation is for 7=0 K. The solid
squares refer to data at 7=4.2 K on R vs 7cr and the open ones
to R vs tre taken from Ref. 1, except for the point e =7 A and
tcr=12 A which comes from recent (unpublished) data of the
same group.
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portion of electrons transmitted 7, and those scattered
1 —T,; in our approach bulk and interfacial scattering
are treated in the same way by introducing bulk and in-
terface scattering potentials. While there is a large de-
gree of overlap in the qualitative results of the two mod-
els, the proportion of interface to bulk scattering cannot
be as freely tuned in the FS approach as in our model.
While this does not seem to present problems for the
small resistivities of the sandwich structures discussed by
Camley and Barnas,’ difficulties show up when we have
attempted quantitative fits to data on Fe/Cr superlattices
with large resistivities.!' A second advantage of our ap-
proach is that we can relate the magnetoresistance to the
interface roughness, see Eq. (4); from A{ and by assum-
ing, in first approximation, the values of V/(c) corre-
sponding to Cr impurities in Fe,'? we find the rms rough-
ness of the interfaces in the Fe/Cr superlattices
((f2) ' is about ao/5. This is reasonable as it repre-
sents a rms deviation of only 40% of the distance be-
tween atomic planes. Finally, our approach avoids the
well-known drawbacks of the semiclassical models in the
limit when the mean free path is much larger than the
layer thickness.®
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