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Scaling properties of two-dimensional ballistic deposits grown at near-grazing angles of incidence
are investigated analytically and numerically. We map the problem onto a system of coalescing
Brownian particles and derive exact values for the static and dynamic surface exponents, {=1 and
z =2, and for the exponents characterizing the self-affine columnar microstructure, T=%, vu=~§-,
and v, = % This implies that the average column width increases as the square root of the deposit
thickness. The distribution of surface step heights and the angular variation of the deposit density
are also obtained analytically. The predictions are confirmed by large-scale computer simulations.
Qualitative arguments are given to explain the slow crossover behavior at intermediate angles of in-
cidence, which leads to apparently continuously varying scaling exponents. The substructure ex-
ponents for deposits grown at normal incidence are derived from a general scaling relation. We find
r=1,v,=2, and v,=1, in agreement with previous numerical work.

I. INTRODUCTION

It has been known for a long time' that the roughness
and porosity of vapor-deposited thin films increase if the
deposition process is carried out at oblique incidence.
The deposit develops a characteristic microstructure?
consisting of columnar grains. While its details clearly
depend on material properties and deposition parameters,
the microstructure is commonly believed? to result from
the combined effects of self-shadowing' and limited atom-
ic mobility. Thus it might be possible to capture some
essential structural features in oversimplified theoretical
models, such as the ballistic deposition model first intro-
duced by Vold? in a different context. In this model, par-
ticles are added one by one to the deposit along randomly
chosen, linear trajectories which form a fixed angle 6
with the substrate normal. At the point of first contact
with the deposit, the particles stick irreversibly. This
corresponds to the limit of zero atomic mobility, or a
very low substrate temperature.

Early computer simulations of such models*> focused
on the geometrical structure of the deposit. In particular,
the dependence of the angle ¢, formed by the columnar
grains with the substrate normal, on the angle of in-
cidence 6 was investigated. On the basis of their mea-
surements of  vapor-deposited aluminum films,
Nieuwenhuizen and Haanstra® proposed the empirical re-
lationship tan(6)=2 tan(¢) (the ‘““tangent rule”). This ap-
peared to be confirmed by a number of experimental? and
numerical’® studies. However, other experiments’ ~° were
in conflict with the tangent rule, indicating, in particular,
that ¢ is not uniquely determined by 0, but depends on,
e.g., the substrate temperature as well.””® In view of this,
it is not too surprising that recent large-scale computer
simulations!®!! of the simplest ballistic deposition model
have shown that no universal relation between ¢ and 6
exists.
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The more recent interest in simple computer models of
irreversible aggregation and deposition was triggered by
the observation of Witten and Sander!? that statistically
self-similar (“fractal”!®) structures can be generated by
such models. Although the internal structure of a ballis-
tic deposit grown at normal incidence is uniform on all
but quite short length scales,'*~1® its surface is statistical-
ly self-affine!® and can be characterized by universal scal-
ing exponents.!”!® Moreover, the growth process itself
decomposes the deposit into clusters which have a
power-law mass and size distribution.!® At oblique an-
gles of incidence, these clusters separate and constitute
the columnar morphology of the deposit.'!

One of us (P.M.) recently presented the results of a
simulation study!! (henceforth referred to as I) of ballistic
deposition at oblique incidence. The relationship be-
tween the angles ¢ and 6 and the scaling properties of
both the surface and the deposit substructure were inves-
tigated. One of the main observations was that the scal-
ing exponents appear to change continuously with the an-
gle of incidence and approach certain limiting values at
near-grazing incidence, 6—90°. The main objective of
the present work is to present a simple theoretical picture
of ballistic deposition at near-grazing incidence that al-
lows us to determine exactly the scaling exponents (Sec.
III A), the distribution of surface step heights (Sec. III B),
and the angular variation of the deposit density (Sec.
III C). The latter relates to the shape of clusters grown
by ballistic deposition onto a point seed (Appendix).

In order to verify the theoretical predictions, we have
carried out a series of simulations on finite strips and nu-
merical measurements of the step-height distribution.
Both lattice and off-lattice models for ballistic deposition
onto an inclined substrate have been described previously
in I. Most of the simulations were carried out using a
two-dimensional (square) lattice model in which columns
of the lattice are selected randomly and the site at a

2064 ©1989 The American Physical Society
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height A/ given by

h!=max(h; _, h;+1, h; ;) (1.1

is filled to represent deposition in the ith column. Here,
h; is the maximum y coordinate for any of the occupied
sites in the ith column. At the start of each simulation
the site in the ith column given by

h,=[i tan(8)] (1.2)

is occupied. Here, 6 is the angle of incidence (angle of in-
clination of the substrate) and [x] is the integer closest to
x. In all our simulations, periodic boundary conditions
were used in the lateral direction.

The information gained from these simulations is par-
ticularly valuable at intermediate angles of incidence,
where the behavior is complex and only qualitative
theoretical arguments can be given (Sec. IV). In Sec. II
we introduce the surface and substructure scaling ex-
ponents and derive various exponent identities.”> The
treatment given is general and not restricted to ballistic
deposition. In particular, we show that the substructure
exponents v, and v, are related to the dynamic surface
exponent z through z=v /v, which is used to account
for recent numerical results'® at normal incidence. Some
conclusions and open questions are presented in Sec. V.

Most of our results are restricted to deposition onto a
line, i.e., d =2 spatial dimensions. Numerically, this al-
lows us to determine scaling exponents and other statisti-
cal properties with rather high accuracy. Theoretically,
the main simplifying feature exploited in Sec. III is a
mapping of the deposition process onto a system of in-
teracting particles on the line. Such an approach, which
is naturally limited to d =2, has already proved to be use-
ful in the analysis of other growth models.!%2!%2

A number of continuum theories®?> %5 have been pro-
posed to account for the columnar morphology of vapor-
deposited films. However, a linear-stability analysis?
shows that column formation is driven by a short-
wavelength instability, indicating the importance of the
finite size of the deposited particles. The instability can
be controlled by introducing some amount of surface
diffusion.?*?® The width of the columns is then deter-
mined by the diffusion length.>?*2% In the absence of
such a length scale, the microstructure is scale invariant,
with an average column width increasing as a power of
the deposit thickness. As we will argue below, such a
structure cannot, in principle, be captured in a continu-
um description.

II. SCALING PROPERTIES
OF THE GROWING SURFACE
AND THE DEPOSIT SUBSTRUCTURE

As first noted by Family and Vicsek,!” a growing sur-
face can be characterized by two scaling exponents,
which describe, respectively, its static and dynamic scal-
ing properties. Starting from a flat substrate at time
t =0, the surface develops a stationary (time-
independent) roughness on a length scale £, that grows
with time as
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g el 2.1)
This defines?® the dynamic exponent z. The magnitude &,
of the transverse surface fluctuations on the scale &, is

. . . bos
determined by the (static) wandering exponent®’ ¢
through

§1°C§ﬁ-

Much of the work on surface growth and deposition pro-
cesses has been aimed at determining the exponents { and
z, which are expected to be universal for large classes of
models.'®2122 As an application of (2.1) and (2.2), we
consider the width of the active zone for a ballistic depos-
it grown from a substrate of linear dimension L. The ac-
tive zone is defined?® as the set of unoccupied surface sites
at which growth can occur. The scaling properties of the
active zone are the same as those of the surface, and the
two terms will be used synonymously in the following.
The width £ is given by

(2.2)

L
EL,h)?*=(1/L) S (h;—h)? 2.3

i=1

where h; is the height of the active-zone site above the
substrate site i and A is the mean deposit thickness, which
is proportional to the time ¢z. The growth process be-
comes stationary when the correlation length §; is of the
order of the system size L, i.e., by (2.1) when A ~L* In
the transient regime (h << L?) the width increases as

ExtfehP, 2.4)
with B={/z. In the stationary limit A >>L? it saturates
at a value

E,<LS. (2.5)
This is summarized in the scaling form'”%°
EL,h)=L5f(h /L% (2.6)

where f(x — o )=const and f(x —0) < x?.

A large class of interfacial growth processes can be de-
scribed by the continuum equation of Kardar, Parisi, and
Zhlz(i)nZ%.‘8 In these cases the surface exponents are related
by ™

E+z=2. (2.7

In the following we give an intuitive derivation of (2.7).
For simplicity, we restrict our discussion to a one-
dimensional surface, although the argument [and the re-
lation (2.7)] is valid in arbitrary dimensions. On a macro-
scopic scale, a growth process is characterized by*? the
growth velocity v =0h /9t as a function v (u) of the sur-
face slope u =0h /dx. Here, h(x,t) measures the height
of the surface above some (fixed) reference plane. Both
h(x,t) and u (x,t) are averaged over some hydrodynamic
volume that is large compared to the size of the particles.
It follows that u (x, ) satisfies a macroscopic conservation
equation?%30

-Q-u(x,t):iv(u)‘—“v’(u)iu(x,t) . (2.8)

at dx ox
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A piece of the surface with slope u translates along the x
axis with velocity v'(#). We now consider a typical sur-
face hump of height £, and width §. The sides of the
hump have slopes u,+§, /£, where u, is the average in-
clination of the surface. Their relative velocity is there-
fore

0"y +E /6 — v (ug— & /E) ~v " (uo)E,/E)

since §,/§; <<1. Thus the hump widens at a rate propor-
tional to (2.9),

with
A=1v"(ug)l .

(2.9)

(2.10)

(2.11)

As an example, consider a horizontal surface (uy=0)
that grows at a fixed speed v, in the direction of the local
surface normal. Then v=v, cos(0) with tan(8)=u, and
A=[v"(0)|=v,. The scaling relation (2.7) now follows by
comparing (2.10) to (2.1) and (2.2). Physically, (2.7)
demonstrates that if the surface is rough (£ >0), then its
fluctuations spread faster’® than diffusively (z <2). In ex-
ceptional cases it may happen?? that A=0. Then the cou-
pling between static and dynamic fluctuations, as de-
scribed by (2.10), does not take place and (2.7) is violated.
In Sec. IV this will be shown to occur for ballistic deposi-
tion at near-grazing incidence.

A different kind of scaling description applies to the
deposit substructure.'® Suppose that at the beginning of
the growth process the substrate sites are labeled by, e.g.,
their coordinates. Each newly added particle is then
given the same label as the deposit particle to which it
sticks. (If this prescription is not unique, one of the pos-
sible candidates is chosen according to some probabilistic
or deterministic rule.) The deposit is thus subdivided
into treelike clusters of particles that share the same la-
bel. The cluster-size distribution »n (s), giving the number
of clusters of mass s, turns out to have a power-law decay

n(s)ecs™ 7, (2.12)

where, typically,’"3?> 1<7<2. Moreover, the average
width w and height A of a cluster scale with its mass as

wis)xst, h(s)<s . (2.13)

We note that similar exponents occur in static models
such as directed percolation and directed lattice an-
imals.*?

In the cases of interest here, both the individual clus-
ters and the deposit as a whole are compact, with the
fractal dimension equal to the spatial dimension d. As a
consequence, the substructure exponents satisfy the scal-
ing relations'®

v +(d—1)v,=1 (2.14)
and
(2.15)

T=2_ﬁ“

leaving only one independent exponent. A third scaling
law relating v, and v, to the dynamic surface exponent z
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can be obtained as follows. Consider a cluster which ex-
tends from the substrate to the surface of the deposit.
The height 4 of the cluster is then proportional to the
time ¢ (or the deposit thickness) and its width w may be
identified with the surface correlation length £,. Compar-
ing (2.1) with (2.13), we conclude that

v /vi=z . (2.16)

Physically, this reflects the fact that the deposit substruc-
ture consists of “frozen” surface fluctuations. Thus (2.16)
provides a quantitative example of how the properties of
the active zone determine the bulk structure of a random
aggregate.?® A relation analogous to (2.16) links the
directed animal exponents to the dynamic exponent of a
one-dimensional lattice gas with negative fugacity.>*

To conclude this section, we relate (2.16) to the numer-
ical estimates for the substructure exponents obtained in
Ref. 19 for ballistic deposition at normal incidence and
Eden growth. For a one-dimensional surface (d =2) it is
known that z=2 exactly in these models.'®*%3% Tt fol-
lows then from (2.14)-(2.16) that

vi=H V=5 75, (2.17)
in excellent agreement with the numerical values,!’
v, =0.405, v”=0.610, and 7=1.401 for on-lattice ballis-
tic deposition. In d =3, various numerical simula-
tions'*%¢~38 and a recent theoretical treatment® suggest
that z=23. Using this value, we get

v, =$=0.273, v,=3;=0.455, r=1=1.545,

11 1
(2.18)

very close to the results of Ref. 19 (v, =0.283, v;=0.452,
7=1.566). We shall see below that the scaling relations
(2.14)-(2.16) continue to hold for ballistic deposition at
oblique incidence, although the exponents differ from
(2.17).

III. DEPOSITION AT NEAR-GRAZING
ANGLES OF INCIDENCE

As the angle of incidence of the particle trajectories
with respect to the surface normal, 0, varies from 0° to
90°, the deposit undergoes a striking transition from
homogeneous to columnar morphology. The treelike
clusters which form the deposit substructure become well
separated and appear to grow independently of each oth-
er. The remarkable stability of the structure is illustrated
in Fig. 1. Since the separation between clusters is much
larger than their width, different clusters never collide.
Moreover, there is hardly any tip splitting. If two
branches form at the tip of a cluster, one of them is soon
screened by the other and stops growing. The clusters
grow at a fixed angle ¢ with respect to the particle beam,
which has a value of about 33° for on-lattice deposition.'!
The origin of such a limiting angle will be discussed at
the end of Sec. IIT A. First, we analyze an effective model
of independently growing trees, which presupposes the
existence of a structure like that shown in Fig. 1, and
takes into account only the mutual long-range screening
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between different clusters. The model is solvable by vir-
tue of a mapping onto a system of coalescing Brownian
particles on the line.

A. Scaling of independently growing trees

We idealize the columnar structure as an array of rods
growing at an angle ¢ =6—1) with respect to the normal

10 000 DIAMETERS
(b)
FIG. 1. Ballistic deposits grown on wide substrates at near-
grazing angles of incidence. (a) Lattice model, 6=285°. (b) Off-
lattice model, 6=287.5°.
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of the inclined substrate (Fig. 2). The substrate is taken
to be infinitely extended. Since the sole interaction be-
tween rods is through mutual screening from the incom-
ing flux, we need to follow only the motion of the tips.
Once the tip of a rod is screened, the rod is frozen in its
present state and grows no further. The tip of an ‘“‘ac-
tive” rod (which has not yet been screened) moves at
some fixed average speed in the direction of growth. The
fluctuations in the particle flux cause random-walk-like
displacements from the average motion.

At a given instant of time, we label the active rods by
an index j and denote by x;(#) the x coordinate of the tip
of the jth rod. The x axis is chosen perpendicular to the
beam direction (Fig. 2). We interpret the x,(¢) as the po-
sitions of particles on the real line. The particles have a
drift to the left and a diffusion constant D. The drift is
immaterial to the relative motion of the particles and
may be eliminated by going to the moving frame. The
mutual screening of neighboring rods has a simple image
in the particle system: If the tip of the jth rod is screened
by the (j + 1)th, the corresponding particles coalesce and
continue to move as one. We conclude that the tip posi-
tions x;(¢) are a collection of coalescing Brownian parti-
cles.®® "A number of exact results*~* are known for this
system, which carry over directly to the present context.

As can be seen from Fig. 2, the active zone consists of
straight pieces with slope —cotan(vy) relative to the x
axis, interrupted by discontinuous jumps. Let us first
focus on the straight segments. The projection of the jth
segment onto the x axis, A;, is equal to the distance be-
tween the corresponding Brownian particles,

(3.1

Aj=x;1—x; .

dj

3
b
p-----
S

FIG. 2. Schematic view of a deposit of independently grow-
ing trees which interact only through screening. The mapping
of the tip positions to a system of coalescing particles on the line
is indicated.
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In the long-time limit, the distribution function for the A ]
is therefore®

P(A,t)=(m/2)[A/1(t)*]exp{ —(m/B[A/1(1)])*} ,
3.2)
where

1(t)y=V27Dt (3.3)

is the average interparticle distance.*’ Clearly, I corre-
sponds to the correlation length & defined in (2.1). Thus
we conclude that the dynamic surface exponent is

z=2, (3.4)

i.e., surface fluctuations spread diffusively. The faster
propagation of fluctuations that occurs at normal in-
cidence, where z=%, is impeded by the columnar mor-
phology.

The substructure exponents now follow from the scal-
ing relations (2.14)-(2.16). We find

(3.5)

=2
ViTn T

Wl

=1
vl_—:{"

This implies, in particular, that the average width of the
trees grows as the square root of the deposit thickness.
Numerical estimates for v and 7 were reported in I. The
values are close to the predictions (3.5) for angles of in-
cidence exceeding 6~75° e.g., v,=0.699 and 7=1.332 at
6=80°. We note that the same substructure exponents
have been derived for the river-network model,** using a
similar mapping to a system of Brownian particles.

Next, we turn our attention to the discontinuities in
the active zone. Let §; denote the vertical jump from the
tip of the jth active rod (Fig. 2). 8, remains unchanged as
the tip position x;(¢) diffuses along the x axis. Upon
coalescence of x; and x;_;, the jump which belongs to

J
the surviving rod (the jth) is the sum 8; ,+6;. Thus §;

is an additive property of the Brownian Jparticle x;, which
we may identify with the particle mass. Initially all parti-
cles have equal mass. In the course of the coagulation
process, the masses of coalescing particles are added and
a characteristic mass distribution®’ builds up. This will
be discussed in the next section. The total mass is a con-
stant of motion. It can be determined by noting that the
average slope of the active zone is tan(8). Thus we have,
for a strip of (horizontal) width L,

Z[Sj—cotan(l/z)Aj]’—:L tan(0) (3.6)
j

which implies, using Zj A, =L,

> 8;=L[cotan(¢))+ tan(6)] . (3.7)
J

Moreover, it follows from (3.6) that the average mass
8(2)=1(8;(2)) is

8(t)=[cotan(y)+ tan(8)]I(z) =< t1/? . (3.8)

Since 8 is the magnitude of a typical transverse surface
fluctuation on the scale /, the relation (3.8) determines the
wandering exponent £ through 8 « /¢ [cf. (2.2)]. Thus
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£=1, (3.9)

and the short-time exponent B=¢/z [cf. (2.4)] is
B=1. (3.10)

As the surviving clusters have independent height fluc-
tuations, the exponent is the same as for the random-
deposition model.!” However, in that model the surface
is spatially uncorrelated, and the exponents { and z are
not defined. Values of B close to 1 were obtained both
from the lattice simulations in I (8=0.488 at 6=287.5°)
and from off-lattice simulations*® (3=0.447 without res-
tructuring, 5=0.46 with restructuring, at 6=85°).

The wandering exponent { can also be estimated
directly from (2.5) by measuring the stationary surface
width £ as a function of the substrate size L. Simula-
tions were carried out using strips of width L =32, 64,
128, 256, 512, and 1024 lattice units, and & was measured
in the stationary (A >>L?) limit. For the larger values of
L, the fluctuations in & are quite large, and quite large-
scale simulations are required to reduce the statistical un-
certainties to reasonably low levels. For 6=80° and
L =1024, the width § was obtained from four simulations
in which a total of 1.4X10!° sites were deposited. A
similar set of simulations was carried out for angles of in-
cidence of 87.5° and 70°. In addition, single large ( =10'°
sites) simulations were carried out for 6=85°, L =1024
and 6=87.5°,L =2048. The results are presented in
Table I. A least-squares fit of the data for 6=287.5° gives
£=0.98+0.03. The behavior of { away from grazing in-
cidence will be discussed below in Sec. I'V.

We are now prepared to address the origin of the limit-
ing growth angle . Qualitatively, the direction of
growth of a cluster is pushed towards the surface normal,
i.e., >0, due to partial screening of the particle flux by
the cluster in front of it.2 For a more quantitative treat-
ment, we supplement the rods in Fig.2 by tips of finite ex-
tension, which we for simplicity idealize as circular discs
of radius R. We pick a pair of adjacent active rods and
fix their horizontal distance A. If A <2R, part of the first
disk is screened by the second. The center of gravity of
the mass deposited onto the disk then determines the mo-

mentary growth angle of the first rod as
~ 1 R
A)y=— i .
PY(A) A fR;Adx arcsin(x /R) (3.11)

where we have used that the x coordinates of the particle

TABLE 1. Steady-state surface width £, as a function of the
horizontal strip width L for various angles of incidence 8. The
substrate length is L / cos(8) in each case.

L 6=170° 6=80° 6=287.5°
32 15.47 40.19
64 26.8 76.09 388.3
128 45.08 142.45 772.5
256 734 264.3 1553.0
512 118.4 486.5 2980
1024 180.4 873.4 5892
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trajectories are uniformly distributed on the line. The
average growth angle of the structure is now obtained by
averaging (3.11) relative to the distribution (3.2),

y= fo”dA FHAP(A, L), (3.12)
which depends only on the ratio R /l. The limiting be-
havior of (3.12) is ¥—0 for R <</ and yY—w/2 for
R >>1. We conclude that a nontrivial growth angle
(0 <y <m/2) emerges only if the width of the clusters, R,
scales as their mutual distance /. In the present case both
R and ! grow as t!/2 [Egs. (3.3) and (3.5)], so the limit
r=Ilim,_, , R /I exists and is nonzero. We note that the
whole argument does not depend on the angle of in-
cidence, showing that ¥ becomes independent of 6 in the
regime where the clusters are well separated.!’ This is
confirmed by the exact solutions for deposition onto nar-
row strips presented below in Sec. IIIC. On the other
hand, r clearly does depend on model details, so ¥ is not
universal.!' Setting r =1 in (3.12) yields 1= 234", fortui-
tously close to the numerical value for the lattice model.

We note that the surface exponents (3.4) and (3.9) do
not satisfy the scaling relation (2.7). This is clearly due to
the strongly discontinuous structure of the active zone,
which does not permit a continuum description. Stated
differently, for deposition at near-grazing incidence the
active zone is dominated by short-wavelength rather than
by long-wavelength fluctuations.? This has important im-
plications for the distribution of surface step heights,
which we outline in the following.

B. Step-size distribution

In this section we study the distribution of step heights

o, =|h;—h; 4l (3.13)
for the lattice model of ballistic deposition. Here, h; is
the height of the active-zone site in the ith lattice column,
measured from the horizontal x axis along the column (in
the direction of the incoming particle trajectories). At
normal incidence (6=0) the o; are exponentially distri-
buted, with an average step size of order unity.!® Starting
from a flat substrate, the distribution becomes stationary
after a relaxation time that is independent of the system
size. The step-size distribution has no influence on the
long-wavelength fluctuations of the surface, which dom-
inate the long-time behavior of the surface width. Thus
the scaling exponents § and z are the same both for stan-
dard ballistic deposition and a related model'® where the
step heights are constrained to o;=1. In fact, the ir-
relevance of short-range details is decisive for the appli-
cability of continuum theories.'?

The situation is clearly quite different at near-grazing
incidence, where the deposit consists of separated clus-
ters. There are now two different kinds of steps o, de-
pending on whether the two active-zone sites belong to
the same cluster or not. In the former case, o, is again of
order unity. If, however, 4; and A;, belong to different
clusters, then the active zone has a discontinuity at site i,
with an average magnitude growing as t!/2 [cf. (3.8)].
Thus we expect the step-size distribution to consist of

2069

two parts: one corresponding to the small steps, which
becomes stationary as t— <, and one corresponding to
the discontinuities in the active zone, which has a mean
proportional to ¢!/ and never becomes stationary.

This is illustrated in Fig. 3(a), where step-size distribu-
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o N d OO @
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1n[32 N(3)]

8 i 1 1 1/ ! 1 1 1
-3 -2 -1 (o] 1 2 3 4 5 6
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FIG. 3. Numerical results for the distribution of surface step
heights. The lattice width was L =2'3=262 144 in all cases. (a)
Step-size distributions measured at different times for 6=88.5°.
(b) The data of (a) scaled according to (3.14). (c) Step-size distri-
butions measured at different times for 6=70°. (d) The data of
(c) scaled according to (4.6).

1 1
30 35
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tions measured at different times are superimposed.
Simulations were carried out on wide strips (L =2'% or
262 144 sites) for angles of incidence of 30°, 45°, 60°, 70°,
80°, 85°, 87.5°, and 88.5°. In these simulations
10°-2 X 10° sites were deposited for each value of . The
step-size distribution was measured each time ¢ exceeded
an integer (each time the total number of deposited sites
exceeded an integer multiple of L) and was averaged over
2.5% increments in the total mass (number of deposited
sites).

Here we focus on the large steps. Let N(8,7) denote
the number of large steps of height & at time ¢. Since the
average step height grows as t!”2, we write this in the
scaling form

N(8,t)/L=8"2f(8/t'?), (3.14)

where L is the (horizontal) lattice size and the exponent
—2 of the prefactor arises from the normalization condi-
tion (3.7). The scaling function f can be determined from
the analogy with coalescing Brownian particles. As ex-
plained in the preceding section, the problem is then re-
duced to finding the mass distribution of the particle sys-
tem. This was recently achieved by Spouge.*> Here we
use his result for coalescing Brownian particles on a one-
dimensional lattice that is completely occupied by parti-
cles of unit mass at t =0. The concentration of particles
of mass k at time ¢ is given by*

¢, (1)= exp(—4Dt)[I, _,(4Dt)—1I, , (4Dt)] , (3.15)

where I, is a modified Bessel function of order k and D is
the diffusion constant. Using the asymptotics of I, (x) for
large x and the recursion relation®’

I ()= I 1 (x)=(2k /x)I(x) , (3.16)

it can be shown that in the scaling limit ¢t — o0, k— o,
k?/t —const, (3.15) reduces to

e, (1)=(4m)" [k /(2Dt)*"*] exp( —k?/8Dt) . (3.17)

This may also be derived using the duality to the voter
model.*! Comparing (3.17) to (3.14) and using (3.7) and
(3.8), it follows that the scaling function is

f(x)=C72327D3) " *x3 exp[ —x?/(8DC?)]

with C =cotan(y)+ tan(8). In Fig. 3(b) we show a scal-
ing plot of 82N (8,t) as a function of 8/¢t'/2. The small-x
behavior f (x) «x3is clearly seen, as well as the Gaussian
maximum of the scaling function. From the position of
the maximum the tip diffusion constant D can be estimat-
ed. We find D =0.43 for 6=288.5°, D =0.41 for 6=87.5°,
and D =0.35 for 6=285°. As 0 decreases away from graz-
ing incidence, the large step part of the distribution be-
comes less pronounced and eventually vanishes. This will
be addressed in Sec. IV.

(3.18)

C. Steady-state structure and deposit density

If deposition is carried out on a strip of horizontal
width L, the growth becomes stationary after a relaxation
time of the order L? (cf. Sec. II). At near-grazing in-
cidence, the competitive screening effects lead to a
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steady-state structure that consists of a single large clus-
ter. The periodic (helical) boundary conditions force the
cluster to wind around the strip, thus forming a periodic
pattern of stripes and voids as shown in Fig. 4(a). In this
section we give a quantitative characterization of the
steady-state structure, based on analytical results for
L =1and?2.

It is useful to think of unwrapping the strip in Fig. 4(a)
along the x axis, thus producing a pattern of horizontal
period L. From this point of view, deposition occurs
simultaneously at every Lth column of the infinitely ex-
tended lattice. This amounts to imposing a long-
wavelength cutoff on the fluctuations of the particle flux.
We see that the finite system size acts as a noise-
reduction mechanism that selectively suppresses the
long-wavelength components of the noise. This is in con-
trast to the noise-reduction method introduced by Wolf
and Kertész*®*® and applied in I to ballistic deposition,
which is intended to suppress (irrelevant) short-
wavelength fluctuations. The two mechanisms coincide,
however, in the limit of infinite noise reduction, L =1
and m = oo, respectively, where m is the noise-reduction
parameter.*® Then the growth becomes deterministic.?!
We start from the inclined substrate, Eq. (1.2). For non-
negative integer values of n = tan(60), all height variables
h; have the same dynamics given by (1.1),

h(t +1)=max(h(t)+1, h{t)+n) . (3.19)
Thus the growth velocity is
1, 645
v(0) (3.20)

= |tan(6), 6>45°

which is easily shown to hold for arbitrary 6, 0= 6 <90°.
Since time is counted as t =M /L, where M is the number
of deposited particles, the deposit density is

p(8)=1/v(6) . 3.21)

For 60 <45° the growth proceeds layerwise and the deposit
is maximally compact (p=1). For 6>45° the mutual
screening of growth sites leads to a microstructure of nee-
dles growing perpendicular to the particle flux [Fig. 5(a)].
Thus at large angles of incidence the deposit consists of
well-separated ‘““clusters” that grow at a fixed angle

¥, =90 (3.22)

with respect to the particle beam. The large value of ¢, is
in qualitative agreement with the observation in I that
strong noise reduction tends to increase the growth angle

The case L =2 is more interesting. Let n =2 tan(8) be
a non-negative integer. Then the two height variables
hy,h, evolve according to

h,(t +1)=max(h(2)+1, h,(1)),
(3.23)
h,(t +1)=max(h,(t)+1, h(t)+n) .
At each time step, one of the two columns (or one of the

two sublattices, if we think of the equivalent process on
the infinite lattice) is chosen at random and updated fol-
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lowing (3.23). The dynamics is most easily described in
terms of the step variable

o(t)=h,(t)—h (1), (3.24)

which performs a random-walk-like motion on the in-
tegers. There are no transitions into the region 0 <o <n.
Thus, in the steady state, 0 =0 or o = n. Qualitatively,
the step-size distribution is therefore similar to that dis-

cussed in the preceding section, with a small step (o <0)
and a large step (o = n) part. We introduce the probabil-
ities

pix =Prob(oc=—k)=Prob(oc=n +k) , (3.25)

k=0,1,2.... These depend only on whether n =0 or
n=>1. For n =0, the transition probabilities I'(k —k")
are given by

5869

0 =87.5°

512 Lattice Units

0 =87.5°

256 LATTICE UNITS

256 LATTICE UNITS

256 LATTICE UNITS

FIG. 4. Steady-state structure at 6=287.5°. (a) Deposit grown on a strip of horizontal width L =256. The patterns are displayed in
an orientation in which the substrate is horizontal. The substrate length is L/cos(68)=5869. The height range is 0-10000,
40000-50000 and 90000-100000 for parts 4, B, and C, respectively. (b) Tip of steady-state clusters grown on strips of width
L =512. The arrows indicate the direction of the incoming particle beam. Note that the orientation of the figure differs from (a).
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ro—-1)=1 (3.26a) All quantities of interest in the L =2 model can be cal-
d culated from the p,. In particular, the growth velocity is
an
v,=1+n/2 3.29
[k —k+1)=T(k—-0)=1 (3.26b) T (29
. forn =1, and

for k = 1. From (3.26a) it follows that p,=p,, and (3.26b)

yields p; 4 ,=py /2 for k = 1. Thus the stationary distri- vo=4% (3.30)

bution is

po=% p=%2""70 k21, (3.27)

For n = 1, the transition rates are given by (3.26b) for all
k including £ =0, and, consequently,

k:2‘1k+l)

p (3.28)

for all £ = 0.

R 0 (a)

1

FIG. 5. Periodic structure generated by deposition on strips
of width (a) L=1 and (b) L =2, with helical boundary condi-
tions. The unscreened growth sites are indicated by arrows.

for n =0. The deposit is porous (p<1) at normal in-
cidence also. At angles between 6=0 and
0=0,=arctan] (n =1), the growth velocity interpolates
linearly between v, and v,;. Thus we have, for 0 =6 <90°,

[4+ tan(0)]/3, 0<6,

2(0)= 11+ tan(9), >0, .

(3.31)

As for L=1 [Eq. (3.20)] there is a break in slope at
6,=arctan(1/L).

If n =2, the forbidden region 0 <o <n in the steady-
state distribution of o leads to the formation of voids.
Suppose that at some time A ,(¢) = h,(t). Then the next
deposition event onto the second column yields, accord-
ing to (3.23), h,=h;+n, and provided that n =2
(6=45°) a void is formed. The corresponding unwrapped
periodic pattern is shown in Fig. 5(b). In contrast to the
case L =1, where each needle could grow only at the side
edge of the leftmost particle, the needles now have two
unscreened growth sites, at the side edge and at the top
edge of the tip, which are chosen with equal probability.
Thus the microstructure is an array of parallel directed
random walks, with an average orientation

¥, =45° (3.32)

with respect to the beam direction. This is considerably
closer than (3.22) to the asymptotic (large L) limiting an-
gle =~=33°.

We return now to the case of general (large) L and dis-
cuss in some detail the emergence of the striped steady-
state structure. As usual, the strip is oriented in the
direction of the particle beam, with helical boundary con-
ditions in the transverse direction. Consider the moment
when the tip of a new stripe is just about to enter the
strip at the right-hand boundary [Fig. 4(b)]. It moves
across the strip at a transverse velocity v,. For the lattice
model, it is easy to see that v, =1. The lower edge of the
cluster forms an angle with the strip direction which we
identify as the limiting angle ¢. The overall shape of the
cluster is discussed in the Appendix. Eventually the clus-
ter hits the left boundary and reenters the strip on the
right. At this point the rightmost part of the cluster has
received a total flux of L /v, particles per unit strip
width. It is screened by the reentrant tip and grows no
further. Thus the mass contained in a complete stripe is
L?/v,. The volume occupied by the stripe and the corre-
sponding void is L?[cotan(y)+ tan(6)]. This determines
the density p of the structure or, equivalently, the growth

velocity v =1/p as a function of 9,
v(6)=v [cotan(y)+ tan(6)] , (3.33)

which is expected to hold for large enough 6. Indeed, the
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exact expressions (3.20) and (3.31) are of this form (with
v, =1) in the regime L tan(8)> 1. For L =1, y=14,=90°
and thus v=tan(@). For L=2, y=9¢,=45 and
v =1+ tan(6). To test (3.33) for large L, we have grown
large deposits (10® particles) on a strip of width L =1000
with 0= tan(0)<10. Some of the results are shown in
Fig. 6, together with the exact formulas (3.20) and (3.31).
For tan(6)=2, the agreement with (3.33) is essentially
perfect. A least-squares fit gives a value of 1.0007 for the
prefactor of tan(@), and the constant term is co-
tan(y)=1.600+0.007, corresponding to an angle
1=32.0°, in good agreement with previous estimates.!
Similar results were obtained from a simulation of small-
er deposits (L =1000, 5X10° particles) in the range
0= tan(8) =200.

Conversely, (3.33) now provides us with a convenient
method to determine the limiting angle ¥ from a mea-
surement of the steady-state growth velocity. In Table II
we give values for ¥ and the deposit density at normal in-
cidence, p,, as functions of the strip width L. Both 1 and
po decrease with increasing L. We observe that the ratio
tan(1)/p, appears to be independent of L.

We have checked that (3.33) can be fitted to the data
obtained in Ref. 46 for off-lattice deposition with and
without restructuring, for large enough angles 6. In these
cases v, <1. A similar angular variation of the density
has also been observed in vapor-deposition experiments.’
We should mention that it is not obvious that (3.33),
which was derived in the stationary limit ¢t >>L 2 also ap-
plies to deposition on an infinite (large) substrate with
t <<L? However, the same expression can be derived
from the approximate model of Sec. IIT A (Fig. 2) by not-
ing that v, is the drift velocity of the Brownian particles.
Numerical simulations on wide strips also confirm (3.33),

LY o

growth velocity
N

[/] 1 2 3 4
surface slope

4]

FIG. 6. Vertical growth velocity v(0) as a function of the
surface slope tan(6). From bottom to top the width of the strip
is L=1, 2, and 1000. The results for L =1 and 2 are exact [Eqgs.
(3.20) and (3.31)]. For L=1000, tan(0) was varied in steps of
0.1 in the range 0 =< tan(6) <2 and in steps of 1 in the range of
2< tan(0) <5. A deposit of 10® particles was grown for each
value of tan(9).
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TABLE II. Limiting growth angle ¥ and deposit density at
normal incidence, p,, as functions of the strip width L. The re-
sults for L =1 and 2 are exact. For the other values of L, a clus-
ter of more than 10°L particles was grown for each integer value
of 0=tan(8)=50 (L=3,5), respectively, 0= tan(8)=12
(L =5-100). This gives the growth velocity v(6). Then
po=1/v(0) and ¥ was determined by fitting v(0) [for tan(8) = 2]
to (3.33). The fit was better than 1% in all cases.

L ¥ (deg) Po tan(y)/po
1 90 1
2 45 3 3
3 40.9 0.661 1.31
5 37.9 0.584 1.33
10 344 0.527 1.30
20 334 0.497 1.33
50 324 0.482 1.32
100 32.1 0.475 1.32

indicating that the deposit density becomes stationary on
a time scale independent of L, even if the steady-state
structure has not yet been reached.

In the Appendix we show that v(6) is related to the
shape of the fanlike clusters which grow by ballistic depo-
sition onto a point seed.!*?* As an immediate conse-
quence, we rederive Eq. (3.33) for large angles 0 and esti-
mate its range of validity. It is seen in Fig. 6 that devia-
tions from the linear form (3.33) occur for tan(8)<2. In
this regime, collisions between substructure trees can no
longer be neglected, and the scaling behavior changes.
This is discussed in the next section.

IV. CROSSOVER BEHAVIOR

At intermediate angles of incidence, the surface is sub-
ject to two conflicting mechanisms. As the density in-
creases, the substructure trees tend to come into contact,
allowing the surface fluctuations to spread more rapidly.
The surface becomes smoother and the deposit more
homogeneous. The corresponding length scale §f‘” fol-
lows from (2.10) with & «§&;”* for a continuous, one-
dimensional surface,

§h“(t)°<(7»t)2/3. 4.1)

On the other hand, nonlocal screening still generates
discontinuities in the active zone which impede the la-
teral spread of fluctuations. The length scale §f|2) associ-
ated with this process is the typical distance between two
such discontinuities, from (3.3),

é—hZ)(t)O:tl/Z X 4.2)
Since (4.1) grows more rapidly with time than (4.2), one
might expect the lateral spread of fluctuations to dom-
inate the long-time behavior of the surface. The scaling
exponents would then cross over to the values predicted
by the continuum theory, z =32 and § =1, on a time scale
t. determined by §h”( t.)x §f|2)( t.),ie.,

S (4.3)
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However, as noted above in Sec. II, the coupling constant
A may actually vanish. In general, it is given by the
second derivative of the growth velocity v with respect to
the surface slope u [Eq. (2.11)]. In the present case,
u = tan(0), and we know from (3.33) that v (u) is a linear
function of u for large enough angles. It is difficult to ex-
tract the second derivative of v () from noisy numerical
data, but our simulation results (cf. Fig. 6) do indicate
that v’’(u) is smaller than the statistical uncertainties for
tan(6)=2. Thus in this range the crossover time ¢, is
essentially infinite. Although the columnar morphology
is, in principle, unstable with respect to the lateral spread
of long-wavelength fluctuations, the crossover does not
take place due to the smallness of the coupling. In that
sense, the columnar morphology constitutes a metastable
state of the system.

This picture is in qualitative agreement with the nu-
merical results presented in I. There, an apparently con-
tinuous variation of the scaling exponents was found as a
function of 6. In particular, the measurement of the sur-
face width £ =< t? as a function of time showed no sign of
a crossover of B towards the value at normal incidence,
B=1, for 6260°. The substructure exponents 7 and v,
were also found to vary continuously from their values at
normal incidence [Eq. (2.17)] to values close to (3.5) over
the range 45°<6=<75°. Since f={/z and z is related to
the substructure exponents through (2.16), £ can be cal-
culated from the measured values of B and 7 according to

E=p2—7)/(r—1) . (4.4)

For comparison, we have determined § directly from the
steady-state width of the active zone (Table I). The re-
sults are summarized in Table III. It is seen that the
measured values are fully consistent with the scaling rela-
tion, indicating that the scaling theory of Sec. II also ap-
plies to the situation at intermediate angles of incidence.
Some insight into the nature of the fluctuations which
tend to destabilize the columnar morphology can be
gained from the approach of the surface width to its
steady-state value £_. In Fig. 7 we show the time evolu-
tion of £ on a strip of width L =1024 for (a) 6=87.5° and
(b) 6=80°. In both cases there is an initial power-law in-
crease, followed by an intermediate regime of very strong
fluctuations. At this stage there is only a small number of
growing clusters left in the system, and § makes a jump
every time a cluster is lost through screening. For
6=287.5° the system finally settles in the steady state, with
a single cluster winding around the strip as described in

TABLE IIlI. Effective wandering exponent { for different an-
gles of incidence 6. The numbers in the first column, (1), were
obtained from a fit of the data in Table I. Those in the second
column, (2), were calculated from the values of B and T reported
in I, using the scaling relation (4.4).

6 (deg) Ikl &
87.5 0.98+0.03 1.04%0.05
80.0 0.89+0.01 0.89+0.04
70.0 0.71%+0.03 0.72%0.03
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Sec. III C. Correspondingly, the surface width saturates
and stays constant. In contrast, for 6=280° the surface
width continues to fluctuate by a factor 2 and more. We
interpret these fluctuations as being due to occasional
splitting of the single surviving cluster into two branches.
This results in a sharp drop in &, followed by an increase
when eventually one of the two branches is screened by
the other. It is this “intermittent” behavior which
effectively lowers the exponent {. Due to the conflicting
mechanisms described above, the system is unable to set-
tle in a proper steady state with a well-defined value of £.

The step-size distribution changes in two ways as 8 is
decreased away from grazing incidence. Firstly, the part
of the distribution corresponding to the large steps,
N(8,t), becomes less pronounced. Secondly, the scaling
form (3.14) for N(8,¢) has to be modified. As long as the
large steps exist, they will dominate the long-time behav-
ior of the surface width. Thus the average step height
grows as

(8,(2)) < (1)< tP, 4.5)

where the appropriate (effective) value of S must be used
for a given angle of incidence. Then (3.14) is generalized
to

N(8,t)/L=8""f(5/tP) . (4.6)

The exponent u is determined through a normalization
condition. The total number of large steps equals the
number of clusters, which decays as t ~!/Z [cf. (2.12) and

9 T T T T L T T T T T A T T
//
ol @ L=1024, 0=87.5° - |
Pt
-

71 i
=
£ 6 7
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7 (b) L =1024, 6 =280°
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FIG. 7. Approach of the surface width £ to its equilibrium
value £, on a strip of width L=1024. (a) 6=287.5° and (b)
6=80".
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(2.13)]. This gives
u=1+1/§.

Thus u>2 if { <1, indicating that the total mass in the
related system of Brownian particles, i.e., the sum of
(large) step heights (3.7), is no longer conserved. It de-
cays as t ~ (1787 (cf. Ref. 21).

Figure 3(d) shows that the numerical data are well
represented by (4.6) at least for 6= 70°. At smaller an-
gles, the large steps become increasingly difficult to
detect.

4.7)

V. CONCLUSIONS

We have presented a detailed study of ballistic deposi-
tion at near-grazing angles of incidence. The columnar
microstructure was found to be scale invariant, with the
average column width increasing as the square root of the
deposit thickness. This confirms an earlier conjecture'*
that ballistic aggregates, while having a finite density,
may possess structure on all length scales. The surface
and substructure scaling exponents were determined ex-
actly, as well as structural properties of the deposit, such
as the step-size distribution and the deposit density. All
theoretical predictions compare favorably with the re-
sults of large-scale simulations.

The situation at intermediate angles of incidence ap-
pears to be more complex. The deposit can be consistent-
ly described by continuously varying exponents which
satisfy the expected general scaling relations. We have
attributed the peculiar marginal stability? of the colum-
nar morphology to a competition between lateral growth
and nonlocal screening. Further clarification of this
point would certainly be welcome.

For obvious practical and theoretical reasons, it is of
great interest to extend the present work to deposition
onto two-dimensional substrates. Experimentally, it
seems'? that the columnar grains tend to form continu-
ous rows in a direction perpendicular to the projection of
the particle beam. This is easily understood in terms of
the picture outlined above. Perpendicular to the beam,
there is no long-range screening, and the lateral fluctua-
tions are free to propagate. This leads to a more homo-
geneous structure in that direction. We expect then
strongly anisotropic scaling properties, possibly with
different scaling exponents perpendicular and parallel to
the beam direction. This problem is currently under in-
vestigation.

Finally, we emphasize that an experimental verification
of our results would be highly desirable. As a realization
of the two-dimensional model, one could think of vapor
deposition onto wires or fibers. The electrodeposition ex-
periment of Matsushita, Hayakawa, and Sawada*® has
demonstrated, for the related case of diffusion-limited
deposition,®! the feasibility of extracting scaling ex-
ponents such as 7 and v from experimental data. In fact,
the screening mechanism responsible for the structures
considered here is quite general and should be found in
macroscopic systems also. One example is the aggrega-
tion of ice particles on electric wires and antennae in a
steadily blowing snowstorm.*°
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Note added in proof. A numerical study of the cluster
shape in on-lattice ballistic deposition onto a point seed
was performed by Liang and Kadanoff.®> They obtained
a value of 32.0£0.5° for the growth angle .
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APPENDIX: GROWTH VELOCITY
AND CLUSTER SHAPE

Here we relate the growth velocity as a function of the
surface slope, v(u), to the asymptotic shape of clusters
grown by ballistic deposition onto a point seed.!*? A
schematic picture of such a cluster is shown in Fig. 8(a).
It consists of a lower triangular part with an opening an-
gle 21y and a domed upper part. The dome joins the
straight edges of the triangle at an angle « relative to the
horizontal. The left and right corners of the cluster move
apart at a rate 2v |, with v, =1 for the lattice model.

The domed surface constitutes the active zone of the
cluster. Let h(x,t?) denote the height of the active zone
above the x axis, with —v,t <x <v,t. Asymptotically,
the cluster attains an invariant growth shape,

h(x,t)=tu(x/t), (A1)

where the shape function p is defined on the interval
[—v,,v,]. A piece of the surface propagates at a speed
determined by its slope 94 /0x,

8, . |8
ath(x,t)—v axh(x,t) , (A2)
4 h(x,t)
7/
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FIG. 8. (a) Schematic growth shape of a cluster grown by
ballistic deposition onto a point seed at the origin. (b) Growth
shape calculated from the growth velocity (3.31) of the L =2
model.
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where the function v (#) is assumed to be given. Inserting
(A1) into (A2), we get

py)—yu' (y)=v(u'(y)) (A3)

which implies that v(u) is the Legendre transform of
u(y). The two functions are thus related by

v(u)=max[u(y)—uy] (A4)
y

and

p(y)=min[v(u)+yu] . (AS)

This is equivalent to the well-known Wulff construction,
which has been used to determine growth shapes of crys-
tals’! and Eden clusters.’> Ramanlal and Sander?® have
presented a calculation of the growth shape of ballistic
aggregates based on the tangent rule. Their result is
recovered from (AS) with v (u)=(1+u?)174,

It is instructive to apply (AS5) to the explicit expression
(3.31) for the growth velocity of the L =2 model. In this
case the cluster is grown from a point seed by simultane-
ous deposition at every other column of the infinite lat-
tice, with a random choice of one of the two sets of
columns at each time step. The reader is invited to carry
out a few steps of this growth process. The resulting
growth shape [Fig. 8(b)] is easily deduced from (3.31) by
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using the well-known fact that the Legendre transform
takes vertices to edges and vice versa. The discontinui-
ties in the slope of v(0) at =0 and 6=6,=arctan’ give
rise to facets of inclination # =0 and u =4. The facets
join at y=1. The range 6 > 6, maps onto the corners at
y==1.

Conversely, the existence of sharp corners at y=xv,
in the general case [Fig. 8(a)] forces v(u) to be linear for
large u. This is an immediate consequence of (A4). For
large u, the maximum on the right-hand side is attained
by choosing the smallest available value of y, y=—v,,
and hence

v(w)=pl—v)+tvu . (A6)
Since u(—v,)=v,/tan(y) [Fig. 8(a)] we have thus
rederived Eq. (3.33). Moreover, it follows from (A4) that
(A6) becomes exact when O=arctan(u) exceeds the
corner angle a.

For an estimate of a, we return to the steady-state
structure described in Sec. III C. The tip of a steady-state
cluster [Fig. 4(b)] grows in the same manner as the
corners of the cluster in Fig. 8(a). Thus asymptotically it
has the shape of a sharp edge with opening angle
90°—y¢+a. From the plots shown in Fig. 4(b), we infer
that a¢=60°-70°. This is in qualitative agreement with
the results of Sec. III C, where (A6) was found to hold for
tan(6) = 2.
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