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We present a detailed analysis of one-dimensional models where frustration results from the
presence of nonconvex interparticle interactions. The phase diagrams, obtained numerically, are
qualitatively different depending on whether or not the particles, in the ground state, experience
the nonconvex part of the interaction potential. When the particles experience only the convex
part of the interaction potential, only phases where the winding number is uniquely defined are
found and the transitions among these phases are suggestive of a complete devil’s-staircase behav-
ior. When some of the particles, in the ground state, experience the nonconvex part of the interac-
tion potential, phases where the winding number is not uniquely defined are found. In this case,
both first- and second-order phase transitions and possibly quasicontinuous transitions are found.
Also of interest is the existence of sequences of superdegenerate points where the system has resid-
ual entropy and violates the third law of thermodynamics. At these points, we show that the
ground state consists of noninteracting solitons of zero energy.

I. INTRODUCTION

Today, many materials are known to exhibit phases
which are characterized by a commensurate or incom-
mensurate spatial modulation of a local property such as
magnetization, electric polarization, charge and mass
density, or chemical composition.! Usually, the oc-
currence of these phases is looked for in the ground state
of a given Hamiltonian or mean-field free energy. In
that respect, the two most popular theoretical models
have certainly been the Frenkel-Kontorova? model and
the axial next-nearest-neighbor (ANNNI) model.>—¢

In the Frenkel-Kontorova model, frustration results
from the competition between two periodicities: the
equilibrium length of the first-neighbor harmonic in-
teraction, and the period of the sinusoidal substrate po-
tential. On the other hand, in the ANNNI model
(within mean-field theory), frustration occurs when the
following ingredients are present simultaneously: com-
peting first- and second-neighbor harmonic interactions
and a temperature-dependent double-well potential to
which the continuous variables (representing the average
magnetization of a plane) are submitted. In that respect,
the models of Axel and Aubry’ and Janssen and Tjon®
are quite similar to the ANNNI model, since they both
contain all of these ingredients. The only differences
concern the mathematical form of the double-well poten-
tial and the “physical” significance of the continuous de-
grees of freedom (namely, they represent displacements
of atoms in the case of Axel and Aubry but they are
bond variables in the model of Janssen and Tjon).

Recently, in a short paper,” we proposed a different
mechanism for the occurrence of modulated order in
condensed matter. The model consists of particles sub-
mitted to a convex (i.e., with monotonously increasing
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first derivative) substrate potential and interacting with
their first neighbors through a nonconvex interaction po-
tential. It is easy to show that frustration leading to
periodically modulated ground states can only occur in
this model when the interparticle interaction potential is
nonconvex. Similar to the ANNNI model (and related
models) but contrary to the Frenkel-Kontorova model,
the ground state can only occur in the thermodynamic
limit with zero average lattice distortion. On the other
hand, as in the Frenkel-Kontorova model but contrary
to the ANNNI model, only first-neighbor interactions
are present and are needed to obtain modulated ground
states. In this paper we investigate the complicated
structure of the phase diagram for such a model.

The motivation for this kind of study is twofold.
Firstly, nonconvex interactions are common in solid
state physics. The oscillating (Ruderman-Kittel-
Kasuya-Yoshida) exchange interaction between localized
spins in a metal is perhaps the most famous example.
Also, it has been shown'® recently that magnetoelastic
coupling leads to an effective double-well interparticle
interaction. More generall?l, and relevant to ferroelectri-
city, Villain and Gordon'! have shown that oscillating
(and hence nonconvex) interactions can be mediated
through elastic strains and other harmonic fields. The
second reason that motivates this study is that noncon-
vex effects are presently far from well understood. This
is not surprising, since theoretical approaches to prob-
lems involving nonconvex interparticle interactions have
so far been limited to models where frustration (leading
to modulated ground states) is present, even when the in-
terparticle interactions are convex. For example, if we
replace the interaction terms of the models studied by
Aubry, Fesser, and Bishop,'? Banerjea and Taylor,'* and
Yokoi, Tang, and Chou"f by convex harmonic interac-
tions, we recover the Frenkel-Kontorova model. Hence,
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in order to focus only on nonconvex effects, we have de-
cided to study microscopic models having nonconvex in-
teractions and for which the ground state is always uni-
form (unmodulated) when these interactions are convex.
Furthermore, these chosen models are representative of
certain kinds of interactions that can occur in real solids.
In fact, they are related to certain magnetoelastic prob-
lems'® (more details will be given in a later publication)

and, as shown by Kholopov,!> may be suited to describe

phase transitions in ferroelectrics such as TIHF,.

In our opinion, the major conclusion of this study is
that nonconvex interparticle interactions alone can be
responsible for the occurrence of periodically modulated
structures when the substrate potential is convex, and
that the kind of phase transitions present strongly de-
pends on whether or not the particles experience the
nonconvex part of the interaction. Some of the interest-
ing features that we have found include both first- and
second-order phase transitions, as well as sequences of
transitions suggestive of a devil’s-staircase'®!7 behavior.
We also note the possibility of “quasicontinuous” transi-
tions (i.e., an infinite sequence of first-order transitions)
es suggested by Yokoi et al.!* for the chiral XY model.
This behavior is similar to the one found®® for the
ANNNI model close to the multiphase point.>® We
have also found sequences of “superdegenerate” points'®
in parameter space. As for the multiphase point of the
ANNNI model, the ground state is infinitely degenerate
zt these points. However, at some of these superdegen-
erate points, it is seen numerically that, contrary to the
multiphase point of the ANNNI model, only a finite
number of phases merge. A similar behavior has been
found for the chiral XY model.'*

The organization of the paper is as follows: The mod-
els and some of their important properties are presented
in Sec. II. In order to make the paper more accessible
and to clarify the notation, we present in Sec. IIT a brief
and slightly modified version (since a convex substrate
potential is used instead of a periodic potential) of the
powerful numerical algorithm proposed recently by
Griffiths and Chou'>? that we have used to find the
ground states of our models. The results, including
phase diagrams, are presented in Sec. IV. Finally, the
raain results are discussed and summarized in Sec. V.

II. PRESENTATION OF THE MODELS

We consider a classical one-dimensional (1D) chain of
atoms described by the Hamiltonian )

<]
H= 3 [V(u,)+Wlu,  ,—u,)],
n=1
where u, is the displacement of the nth particle with
respect to some reference position, here assumed to be a
regular one-dimensional (1D) lattice of equally spaced
points. The external single-particle potential has the

form
V’(.?C):%Kx2 (K>0). (2.2)

Physically, V' (u, ) is the local potential experienced by
a particle in the nth cell as a result of the interaction
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with a background of rigid atoms. If we restrict our-
selves to small deviations from symmetric equil brium
positions, ¥(u,) is written as in (2.2). Note tlat al-
though unbounded potentials such as in (2.2) are useful
for describing structural phase transitions,?! they ¢ re not
appropriate for materials where particles can jumy) from
one unit cell to another. As usual, the ground s ate of
(2.1) represents the equilibrium structure of a three-
dimensional (3D) system of identical chains with 1l the
transverse couplings favoring a parallel alignm:nt of
planes of atoms so that they need not be included in the
Hamiltonian,

As for the ANNNI model, unbounded potential; such
as (2.2) confine each particle to its cell and therefo e, the
average lattice distortion u,  ,—u,) must be zero in
the ground state,

=0. = (2.3)

1 N
-JV 2 (un+1"un)

(u, 1—u,)= lim
n+1 n N ~

—> 00

Were this not so then one would have (u, ,;—u,) =3,
and the energy E(N) of a chain of N atoms woild in-
crease dramatically with N,

N
E(N)~ 3 V(n?) .

n=1

2.4)

The fact that ¥ (x) is convex implies (see the Z.ppen-
dix) that the ground state is always uniform (1l the
u, =0) when W(x) is also a convex function. Hence, if
V(x) is convex, frustration that leads to moaulated
ground states can only occur if W(x) is nonconvex. In or-
der to discover which kinds of modulated ground states
can occur in the presence of nonconvex interactions, we
have focused our attention on two qualitatively different
forms for W(x):

2.5)
(2.6)

W(x)=(x —y)*—|x —y| (model 1),
W(x)=—4(x —y)*+1(x —y)* (model 2) .

Perhaps the most significant difference betweer these
two models is the fact that the region of nonconve tity of
Wi(x) is of finite width ([x —y | <371/2) in mcdel 2,
whereas it is limited to the nonanalytic point x =¥ in
model] 1.

Model 1 is typical of the T =0 double-quadrat c-well
effective interparticle interaction, which arises in a 1D
magnetoelastic problem!® involving n-component classi-
cal spins, §,,, coupled to their nearest neighbors tt rough
an exchange integral which varies linearly with interpar-
ticle spacing. The exchange energy of the bonds s pro-
portional to — |u,  ;—u,—y | since, at T =0, th: clas-
sical n vectors, §,, align themselves either ferrom: gneti-
cally or antiferromagnetically with their first-r earest
neighbors depending on the sign of the exchange ir tegral
between them. —7y is the ratio of the exchange in .egral,
Jo, to its gradient, —J,, evaluated at Uy p1—u,=C. The
first term (x —y)? comes from the first-neighbor :lastic
interaction. At finite temperatures, it has been found!©
that the effective interaction between the u, hus the
form of an analytic double-well potential if the spin-
exchange interactions are 1D (more details conc :rning
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magnetoelastic problems will be given in a later publica-
tion). In this case, model 2 serves, under certain condi-
tions, as an approximation to this effective,
temperature-dependent, interparticle interaction. More
generally, (2.6) represents the first terms of a Taylor ex-
pansion of a more general nonconvex interparticle in-
teraction as has been proposed for TIHF,.!?

It should be noted that the particular choice of the
coefficients used in (2.2), (2.5), and (2.6) can always be
achieved by means of an appropriate scaling of lengths
and energies. Moreover, since the average lattice distor-
tion is zero in the ground state, one could add to (2.1)
the linear symmetry-breaking term (u, ,,—u,) without
changing the ground state. However, the action of a
pressure (or a tension) can be simulated, to first order, by
changing the parameter y (keeping K constant). For
model 2, cubic terms can also be scaled away. If the
term 1C(x —y)? is added to (2.6), then it can be elim-
inated by transforming the Hamiltonian according to

C
’}’+3

K1

&'§

where £2=1+41C2
Since the Hamiltonian has the following symmetry,

H(Y’{un})z-H(—Y’{_un})’ 2.7)

it is sufficient to consider the part ¥ >0 of the phase dia-
gram. Moreover, Yokoi et al.'* have shown that, for
Hamiltonians of the type given by (2.1) having
V(—x)=V(x), a nondegenerate ground state of even
period Q must have the following structure (over one
period):

(K,y)—

{un}={—uQ,—UQ_1, . ...,

—Ugs+ 15802410 ¢ - - :uQ_qu} ’ (2.8)

with all u, 540, whereas a nondegenerate ground state of
odd period Q must have the form
{u" } ={—UQ,;uQ_1, cee

s UQ+1)/25 - - - s Ug_1lg) s

(2.9)

with all u,70 except for ug1),=0. By a nondegen-
erate ground state we mean a ground state from which
all the other ground states can be obtained through a
lattice translation'* (i.e., a ground state with trivial de-
generacy). In Sec. IV, we shall see that there exist some
points in the phase diagram where the ground state is
(infinitely) degenerate.

In order to identify the phases, it is convenient to
define a label. Perhaps the most widely used label is the
winding number’? defined by the value of {u, , ~u,)
in the ground state. Since this quantity is always zero in
our case, we need another definition. The definition for
the winding number that we have found convenient for
our problem is

(2.10)

Mo

o= S(u, _—u,),

1

1
Q.

]

FIG. 1. Examples of ground states and their winding num-
ber w. The X denote points of reflection symmetry.

where Q is the period of the state (we restrict ourselves
to states of finite periodicity), ug=ugp and O(x)=+41 (f
x >0) and O(x)=0 (if x <0). Note that the numerator
and denominator are two separate integers so that, in
this way, we can distinguish between the state w=1
(which has Q =) and the state =2 (which has Q =4).
This is illustrated in Fig. 1.

III. THE ALGORITHM OF GRIFFITHS AND CHOU

The traditional approach? to finding the ground state
involves a search for the lowest-energy configuration
satisfying

oH
ou,

=0 . (3.1)

For the Hamiltonian (2.1), (3.1) leads to the following
two dimensional (2D) map:

Wiu,  —uy)=W'u,—u, _)+V'(u,), (3.2)

where W'(x) and V'(x) denote the first derivatives of
W(x) and V(x), respectively. However, the fact that
(3.2) also holds for metastable and unstable states means
that the mapping problem is, in some sense, more com-
plex than the original ground-state problem, as Aubry?
has emphasized. Moreover, an additional and substan-
tial difficulty arises when W (x) is nonconvex, since then
the 2D map (3.2) becomes multivalued.

Recently, Griffiths and Chou!®?° have presented an al-
gorithm that, in contrast to the traditional methods,
focuses directly on the ground state and is valid for non-
convex interactions. This method is quite elegant and
powerful and can be summarized as follows. Imagine
that a system described by (2.1) is in its ground state. If
we displace an atom from its equilibrium position, then
the surrounding atoms will change their positions in or-
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der to minimize the total energy. This local deformation
will, in general, cost some energy and therefore, we can
define a function, called the effective potential, which will
describe this energy cost as a function of the atomic po-
sition. At site n, the effective potential R (), due to
the presence of the atoms i <n, can be formally written

as -

(3.3)

R(u )—"mln E [W(ui"f—ui—l)_}-V(u[)_)\']

B Vicn

where A is the (unknown) ground-state energy per parti-
cle and where the minimum must be taken over all
atomic positions u#; with i <n. We can rewrite this equa-
iion by expressing the right-hand side (rhs) in terms of
R(u,_;) and in this manner, we obtain the following
nonlinear eigenvalue equation:

R (u,)=V(u, )+m1n {(W(u,—u, _)+Ru,_1)} .

Uy 1 R S,

(3.4)

The rhs of (3.4) defines a nonlinear functional operator
K and (3.4) can be written simply as

A+R(u)=HR(u) .

‘We can also write the effective potential S(u,) due to
the presence of the atoms with i > n,

Su,)=min | 3 [Wlu; o —u;)+V(u;)—A] (3.6)
i>n 5y
and the associated eigenvalue equation is
WS () =V () +min {S(u, )+ W, 1 —u,)} -
un+1 £
(3.7

Hence the total effective potential F(u), due to all the
neighboring atoms, is given by

F(u)=R(u)+S(u)—V(u),

where ¥ (u) is subtracted in order to avoid being count-
ed twice. When V(—u)=V(u), comparison of (3.4) and
(3.7) yields

(3.8)

(3.9)

and hence, in this case, all the information is contained
in R (u). Griffiths and Chou have showh that a.continu-
ous solution of (3.4) for R (u) always exists [provided
that ¥ (x) and W(x) are continuous and are bounded
jrom below] and the corresponding A is unique (the
ground-state energy must be unique).

For a given value of u,, the value of u,_; that mini-

mizes the rhs of (3.4) defines the 1D map
u, _1=plu,). (3.10)

Similarly, for a given u,, the value of u,_; that mini-

mizes the rhs of (3.7) defines the 1D map
oty =0lu,) . (3.11)

Physically we expect that, after some initial transient be-

(3.5
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havior, the orbits of p and o will tend to an attr: ictor?
which represents the ground state.’® Hence, to generate
the ground state, we only need to iterate p or ¢ o:1ce we
have obtained R (u) or S (u).

Unfortunately, we are usually unable to find an .inalyt-
ic solution to (3.4) and we need to rely on nuraierical
solutions. One way to proceed is to discretize tl.e unit

- cell. We replace the continuous set of possible itomic

positions by a discrete set of G points uniformly spaced
on an interval D chosen sufficiently large so ttat the
atoms are never located too near the boundaries:
u=—(D/2)+i(D/G) with i=1,2,...,G. If I.0y)
denotes the trial function [R(u)=V(u) is a good
choice], then the sequence of iterations sugges ed by
Griffiths and Chou,

RYHD(u)=HR N u)+RV(w)]—C; , (3.12)
generally converges. The constant C; is chosen ir order
that the minimum value of RY *1() be zero. This se-
quence is iterated until

~max | HRu)— AP —R(u)| <emax |RY (u)|

L u u

2

v (3.13)
where the approximate ground-state energy is give1 by
x<f>= min {#R Du)} , (3.14)

and the ﬁnal RYNu) is the approxmlate effective poten-
tial. We have chosen €=10"%-10"1 for ¢ =200
—3200 pomts Typically, we need about 30 ite ations
when €=107% and 60 iterations when e=10"1°. F.owev-
er, convergence is slower near a phase transition hound-
ary.

The major inconvenience with the discretizaticn pro-
cedure is certainly that we cannot find any groun 1 state
with a period Q greater than the number of poinis G of
the grid. Hence, we cannot distinguish commer surate
states of period Q~G from truly incommensi rate’?
states, since the attractors of p and o are the: only
periodic cycles.?

The amount of central-processmg-unlt (CPU) timne in-

- creases as G? and becomes excessive if, for each viilue of

u,, a systematic search among all the possible values
u, _; is done to solve (3.4). For this reason, we (an, at
each iteration, determine an interval Au, (for ea:h u,)
based on the results obtained from the previous itera-
tion, among which the search is restrained. We cin also
proceed by stages: a solution obtained rapidly for
G =25 can then be used to generate R ©(y) for 5 =50
and so on. With these tricks, it takes about 3 s of CPU
time (on an IBM 4381) to find R (1) with G =200 and
€=107% This precision is sufficient to obtain tke gen-
eral aspects of a phase diagram. Finer details can be ex-
amined with larger grids of points and finer € [i takes
about 5 min of CPU on an IBM 4381 to obtain R u) for
G =3200 and e=10"19],

Under certain circumstances, (3.4) may have many,
qualitatively different (i.e., they do not differ onl7 by a
constant) solutions R;(u). Suppose, for instanc:, that

two phases (4 and B) are separated by a first-orde : tran-



1902

sition line. If R ,(u) and Rg(u) denote, respectively, the
effective potentials of phases 4 and B, then any com-
bination of the form

R (u)=min {R(u)+C;} , (3.15)
H

with i = A, B, and C; a constant, will also be a solution
along the transition line.!*? Due to the discretization
procedure, R , and Ry can only be determined to within
a certain precision” (~G ~?). Hence, there will exist
around the transition line a region of finite width where
the numerical solution of (3.4) will be of the form (3.15)
rather than that of a single R;. One consequence of this
is that in this region the mapping p has two different
periodic cycles corresponding to the two phases 4 and
B. This property turns out to be very useful in distin-
guishing first-order transition lines from cases where
there may exist more phases between a given pair. Al-
though this test is not absolutely rigorous, we have never
been able to find other phases, upon increasing G, be-
tween two phases when we had previously observed two
periodic cycles simultaneously.

IV. RESULTS

A. Effective potentials

An example of an effective potential, R (u), and its as-
sociated map, p, is shown in Fig. 2 for model 2, for a
particular choice of K and y. Note that the first deriva-
tive of R is discontinuous at the same points where the
mapping p is discontinuous. Also shown is the periodic
cycle for the w=2% phase. Note that the local minima
are not localized at the same values of u as for the
periodic cycle.

It is more interesting to examine the behavior of the
total effective potential F(u). It is clear from Figs. 3, 4,
and 5 that F(u) generally has many absolute minima of
equal energy. These absolute minima are localized at
the possible atomic positions of the ground state. Also
visible in Figs. 4 and 5 are secondary minima, higher in
energy, located at metastable atomic positions. Starting
from one of these secondary minima, the iteration of p
will lead us to other secondary minima and ultimately to
the ground-state periodic cycle. This sequence of atomic
positions represents the left-hand part of an elementary
defect which we shall call a soliton. The right-hand part
of the soliton can be generated by iterating o starting
from the same secondary minimum. The soliton
creation energy can be obtained by calculating the
difference between F(u) evaluated at the atomic posi-
tions of the defect and F(u) evaluated at the atomic po-
sitions of the ground state. However, because of discret-
ization, the result obtained in this manner may not be
very precise.

The typical behavior of F(u) near a second-order
transition line is illustrated in Fig. 3. The transition in-
volves a uniform (w=1/1) and a dimerized (w=1/2)
phase for model 2. As the transition line is crossed, the
single minimum of F(u) in the uniform phase (curve 1)
loses its stability (curve 2) with respect to the two mini-
ma of the dimerized phase (curve 3). Note that, because
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FIG. 2. (a) Effective potential R (x) and (b) the associated
map (solid line) u,_,=plu,) of model 2 for K =0.5 and
y=0.33. Also shown in (b) are the discontinuities (dotted
lines), the line 4, _,;=u,, and the cycle of period 3.

of the absence of any secondary minimum, only the
ground state is stable.

A different behavior of F(u) is observed near a first-
order transition line [Figs. 4(a)—4(d)]. The transition in-
volves a dimerized and a trimerized (w=2/3) phase,
again for model 2. Deep in the dimerized phase [Fig.
4(a)], the two absolute minima and also a secondary
minimum at u =0 are clearly visible. If v is changed
such that the w=2 phase is approached [Fig. 4(b)], then

0.07 T

R LR IR

1]

1

0.06

005

P I N AU

0.04

PR |

TTT T T T T T T

PEPEIE NSRS UE BUEE N AN B U ST AN A S SO S I O 00 0

-02 -0l 0.0 0.1 02 0.3
u

0.03

FIG. 3. Effective potential F(u) in the vicinity of a second-
order phase transition (model 2). K =3 and y=0.31, 0.28868,
and 0.27 for curves 1, 2, and 3, respectively.
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FIG. 4. Effective potential F(u) in the vicinity of a first-order phase transition (model 2). (a) K =1.8 and y =0.25, (b) 0.23875, (c)

€.2879, and (d) 0.2877.

three secondary minima, suggesting the proximity to the
trimerized phase, appear. If y is changed a little bit
more [Fig. 4(c)], then we move into the trimerized phase
where the three secondary minima of Fig. 4(b) become
the absolute minima. Clearly, the competition between
the 1/2 and 2/3 phases is reflected in the competition
between the two minima of the 1/2 phase and the three
minima of the 2/3 phase. The algorithm converges
slowly when intermediate values of ¥ [values of ¥ be-
tween those of Figs. 4(b) and 4(c)] are used. For other
intermediate values of y (such as y =0.2876), the se-
condary and absolute minima are interchanged. In this
range of ¥ values, the map p has two periodic cycles:
one cycle of period three located at the absolute minima
of Fig. 4(c) and another cycle of period two located at
the absolute minima of Fig. 4(b). The iteration of p then
leads us to one of these two attractors depending on the
starting position.

In model 1, F(u) behaves differently than in the two
previous examples. Deep in the dimerized phase [Fig.
5(a)], only one secondary minimum is visible but two
more secondary minima appear [Fig. 5(b)] when ¥ is
changed slightly, suggesting the proximity of a trimer-

ized phase. Note, however, that two other seccndary
minima, suggesting the proximity of a period-5 phase,
appear [Fig. 5(c)] if ¥ is changed a bit more. As v is
varied further [Fig. 5(d)], other secondary mininia ap-
pear, suggesting phases of even higher period cities.
Indeed, if ¥=0.0895 we find a phase with w=6/11.
Nowhere in model 1 have we been able to find simul-
taneously two different periodic cycles and it a)pears
that F(u) possess an infinity of minima, infinitely « losely
spaced, between the dimerized and trimerized I hases.
Of course, this statement cannot be numerically v :rified
with absolute certainty. It is clear, however, that it is
not a second-order transition where a phase loses i:s sta-
bility at the expense of another phase and also th:t it is
probably not a first-order transition since simultz neous
cycles have not been observed. In fact we believe * hat it
is a compromise between a first-order and second order
transition: a devil’s staircase.!®7

B. Phase diagram for model 1

Figure 6 presents the phase diagram for mode 1 ob-
tained by solving (3.4) with G =200 points. Only phases



1904 MARIO MARCHAND, KEVIN HOOD, AND ALAIN CAILLE 37

0.25 [HrrrPrA A PP TRTPRRTTrr
F i (a)
020+ .

015 §

0.10 | §

L

0.05 saxalasaslesaadassslaaealasasdonnebanes
~-100 -0.50 0.00 0.50 [Xelo]
u

0.22 prrT P T T
For (c)
0.20 ¢+ N

0.10 sasedsaealoesafanealoesalosneloonelsses

-00 -050 0.00 050 .00
. u

| 0.225 prevrprrrrprre TR

Fot (b)
0.200F

T
12

T
P RESTRTary

0175 |

0.150 F ]

0.125 |

0.100}

4

0075. ISTIFTTTA SRS INTTS RNENE FUTTY ANNTS FUTT

-L.00 -050 .00 050 1.OO
u

0. 22 prrr P TP T
F ot (d)
0.20

0.18 I -
0.16 b
044 + -

0.12 -

0 ssssboveslosnabaseadovaelorsnloasalocss

10
-1.00 -050 0.00 0.50 1.OO
u

FIG. 5. Effective potential F(u) in the 1/2 phase of model 1 near its phase boundary . (a) K =2 and v'=0.06, (b) 0.08, (c) 0.088,

and (d) 0.0894.

with a period Q <5 are shown. We have used the pa-
rameters

a=(1+K/4)"1. (4.1a)

v=y/a. (4.1b)

Note that, because of the symmetry properties of the
1.0

a
08
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0.4

0.2

00 :
-06 -04 -02 00 02 04 o6
' )4
FIG. 6. Phase diagram for model 1. The numbers are
values of the winding number w. The unlabeled regions con-
tain additional commensurate phases.

model, namely that V(x)=V(—x), the P/Q phase be-
comes the (@ —P)/Q phase when y — —y. At K —0+,
the P/Q phase tends towards y=(2P —Q)/2Q. This
last result can be obtained by searching for the value of
vy that minimizes the Hamiltonian when K =0 and
o=P/Q.

If we recall that —v is the ratio of the exchange in-
tegral, J,, to its gradient, —J,;, evaluated at
u, 1 —u, =0, then the fraction, @, of antiferromagnetic
bonds, for a phase of period @, is

1 £
- 2 e(u,,_l—u,,-i-'y) .

= 4.2)
Y Q n=1

(2]

‘We find that @, =w everywhere in the phase diagram ex-

cept in the uniform phase, where w=1/1, whereas
w,=1/1 for y >0 and w,=0/1 for y <0, as shown in
Fig. 6. This result suggests that each individual bond
can only distort discontinuously through an inversion of
its exchange integral.

In addition, Ishimura® has solved the same T =0
magnetoelastic problem (for the Ising case only) with the
effective spin Hamiltonian obtained by a canonical trans-
formation. Using the method of Bak and Bruinsma,*
Ishimura has obtained a devil’s staircase for @, ().
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Note the similarity of Fig. 6 with Ishimura’s phase dia-
gram. Since the effective lattice Hamiltonian (i.e., model
1) is the same for all n-vector models, Ishimura’s results
should be valid for any n-vector model.

We find that our results are consistent with a devil’s-
staircase behavior. Indeed, we have always been able to
fnd a phase (P+Q)/(R +S) between any two given
phases P/Q and R /S if a sufficiently fine grid of points
is used to solve (3.4) (we have used grids up to G =3200
points). Also, we have never been able to find simultane-
ously two periodic cycles as in the case of first-order
transitions. Moreover, it is easy to show that_any
configuration {u;} satisfying (3.1) is linearly stable
cgainst small perturbations. Indeed, if {u;-€;} denotes
@ state slightly perturbed from {u;}, then the linearized
equations of motion )

d? , |
—-m?ei=V (u)e; + Wy oy —u; )€ —€; 1)

+W”(uj_uj—1)(€j_€j—l) ’ o (4.3)
with V=K, W' =2, and m the atomic mass, are those
of a harmonic chain in which each particle is confined to
@ parabolic potential. Since all the frequencies of (4.3)
are strictly positive, all configurations satisfying (3.1) are
stable, and therefore any phase transition of model 1
should be accompanied by hysteresis effects. These re-
sults are all consistent with a complete devil’s-staircase
ehavior (recalling Aubry’s definition'’ of a devil’s stair-
vase) and therefore incommensurate ground states
should occur in this ;nodel only with zero measure in pa-
rameter space.

Finally, it is worth mentioning that as ¢ —0, K —
and the first-neighbor elastic interactions become negligi-
ble relative to the curvature of the external potential, so
-hat we recover the magnetoelastic model of De Simone,
Stratt, and Tobochnick,”” which is identical to the
ANNNI model. Thus the two multiphase points of Fig.
)5 are those of the ANNNI model at T =0.

C. Phase diagram for model 2

The phase diagram for model 2 is shown in Fig. 7. As
nentioned in Sec. II, the phase P/Q for y >0 becomes
+he phase (Q —P)/Q when y— —y. At K—0+, the
.P/Q phase tends towards y =(2P —Q)/Q. Note that, in
sontrast with model 1, there exists a critical value of
K(K =4) above which the ground state is always uni-
‘orm.

For the following analysis it is desirable to introduce

‘he notation of Ref. 14. A phase is called “nonconvex”
f at least one pair of atoms uses the nonconvex part of
W (x); otherwise it is called “convex.” Some phases (the
3/5 phase, for example) are “convex” everywhere, others
‘the 2/4 phase, for example) are “nonconvex” every-
where. Most of the phases, however, are both “convex”
ind “nonconvex” in different regions of the phase dia-
zram. A separation line, indicated by a dashed line in
Fig. 7, separates the “nonconvex” region from the “con-
vex” region of the same phase. Note that only “convex”
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FIG. 7. Phase diagram for model 2. The numb:rs are
values of the winding number w. The unlabeled regios con-
tain additional commensurate phases. The dashed liies are
separation lines defined in the text. Inset: TCP indicats a tri-
critical point and the other points are triple points.

phases are present in model 1, since atoms are ilways
unstable at the single nonconvex point, x =y, of W(x).
In model 2, however, large portions of the phaie dia-
gram are filled with “nonconvex” phases which ire lo-
cated above (to the left of, for the 1/1 phase) the ‘epara-
tion lines.

Although there is no phase transition when these sep-

* aration lines are crossed, we expect (and find) tt at the

type of transition between any two given phases sirongly
depends on the convexity of the phases on either side of
the transition line. Indeed, Yokoi et al.!* have shown
recently that the interaction between solitons of ¢ given
commensurate phase is generally repulsive for “convex”
phases but oscillatory for “nonconvex” phases. In addi-
tion, it is now well known"%71! that the transitio:1 must
be continuous (i.e., a devil’s staircase) when the soliton
interaction is always repulsive and that it occurs when
the soliton creation energy vanishes. The solitors then
condense with zero density at the transition line. If,
however, there is a distance for which the interact on be-
tween solitons is attractive, then the transition m ust be
discontinuous!! (i.e., of first order) and must take place
before the soliton creation energy vanishes. In this case,
solitons condense with a finite density.

The same numerical evidence that supports tie ex-

istence of a devil’s staircase in model 1 is also pre ent in
model 2 for transitions between “convex’ phase:. For

example, between the 3/5 phase (which is “ccnvex”
everywhere) and the “convex” 2/3 phase, we are 1ilways
able to find (with a sufficiently fine grid of points) an in-
tervening phase (P +Q)/(R +S) between any twc given
phases P/Q and R /S, all of which are “convex.’ Fur-
thermore, as can be seen directly from (4.3), “ccnvex”
phases are structurally stable and, therefore, hysteresis
effects should be present. Hence, in this region of the
phase diagram, our results are consistent with . com-
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plete devil’s-staircase behavior. Although it is impossi-
ble to distinguish high-order commensurate states from
truly incommensurate states when using this numerical
algorithm, we believe that incommensurate ground states
can only occur in this model with zero measure in pa-
rameter space because, in order that hysteresis effects be
absent, it is necessary (since V' is convex) that some of

the particles experience the nonconvex part of W. On’

the other hand, between “nonconvex” phases we have
observed two different kinds of behavior. Firstly, we
have found second-order phase transitions between the
“nonconvex” 1/1 and 1/2 phases where the uniform
state is unstable against dimerization along the parabola
K +4(3y2—1)=0 and between the phase 1/2 and the
(everywhere “nonconvex”) 2/4 phase to the left of the
tricritical point (TCP) (the transition is first order to the
right of the TCP). Secondly, first-order transitions and
triple points have been found in several places in the
phase diagram. Examples of triple points are shown in
the inset of Fig. 7. It is straightforward to show, by
finding the state that has the lowest energy among states
of period lower than 5, that the transitions between the
phases 1/2 and 2/3, 1/2 and 3/4, 2/4 and 2/3, and 2/3
and 3/4 are all first order.

The presence of the “nonconvex” 2/4 phase is another
feature of model 2 that differs from model 1. Other
“nonconvex” phases where the numerator and the
denominator have a common divisor are also found in
this model. For example, note the presence of the 4/6
phase in a narrow region of Fig. 8. This phase springs
from the point SDU, where the 5/6 phase disappears.
The position of the atoms in the 4/5, 5/6, and 4/6
phases near the point SDU, is illustrated in Fig. 9. The
amplitudes of atomic displacements u,, u,, and € are all,
by convention, positive and €¢—0. The amplitudes u,
and u, are the same for these three phases. Note that
the 4/6 and 5/6 phases are identical when €=0. In this
case, we can consider the group of atoms
{—uy,—uy,u,u,} as a soliton of the uniform phase.
These solitons are noninteracting, since they are separat-
ed by a sufficiently large number of atoms (two for a
Hamiltonian where the range of interaction is limited to
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FIG. 8. Phase diagram of model 2 around the point SDU,.
T denotes a triple point.
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FIG. 9. Structure of the ground states near the point SDU,.
NC and C denote nonconvex and convex bonds, respectively.

first neighbors) at positions corresponding to the uni-
form phase. Hence, we have infinite degeneracy when
€=0 since, starting from this state of period 6, we can
build an infinite number of other states of the same ener-
gy by separating these solitons by an arbitrary number
(larger than two) of atoms located at 4 =0. If this state
is the ground state at SDU,, then SDU, would be a su-
perdegenerate point where the ground state is infinitely
degenerate and where the third law of thermodynamics
is violated.

-

D. Superdegenerate points

By using only the numerical algorithm of Griffiths and
Chou we are unable to definitely verify that SDU, is a
superdegenerate point. Therefore, we take a different
approach which involves finding the locus of points
(K,v) where the 2D map (3.2) gives a phase of period 6
with two consecutive atoms located at u =0. We then
obtain the following three equations:

dluy+v)=¢ly), (4.4a)
$luy—uy+v)—Kuy=¢(y) , (4.4b)
¢y —2u)—Ku,=dlu;—u,+y), (4.4c)

where the amplitudes «, and u, are defined in Fig. 9 and
the function ¢(x) is obtained from W":

(4.5)

Note that we have used ¢(—x)=—¢(x). Equation
(4.4a) is obtained from (3.2) when u,_,=u,=0 and
u,.1=—1u,. It is important to note that in this case
u, .1=0 is also a solution of (3.2). In addition, a solu-
tion of (4.4a) with u, >0 exists only if y <1/V'3 (i.e., to
the left of the separation line of the uniform phase).
Equation (4.4b), obtained from (3.2) when u,_,;=0,
U,=—u,, and u,, ,=-—u;, has a solution only if
uy>2u, Or u; <u,; however, this last possibility has to
be rejected since this bond is convex. Equation (4.4c) is

dlx)=x3—x .



obtained from (3.2) when u, _;=—u,, u,=—u, and
u, . =u;. The three remaining equations that can be
obtained from (3.2) are identical to (4.4).

The solution of (4.4) defines a line K(y ), which is plot-
ted in Fig. 10(a) and along which the solitons are nonin-
teracting. The point on this line [Fig. 10(b)] where the
phase of period 6 (with two consecutive atoms at u =0)
has the same energy as the uniform phase, is the point
where the phases 4/5, 5/6, 4/6, 1/1, and infinitely many
other phases have the same energy. We conclude that
this point will be a superdegenerate point if at this point
the algorithm of Griffiths and Chou gives the phase 1/1
or the phase 4/5 [with the atomic positions consistent
with those obtained from (4.4)]. However, if the algo-
i J
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dluy+v)=¢ly),

Mlups _—up +7)—Kupyy=dlup +7),

Plupr _o—tpr_1+v)—Kup _1=¢(uy 1 —up +7),
Pluy _3—up_o+7v)—Kupy _o=¢(up_y—up_1+7v),
$luy—uy+v)—Kuy=¢luy—uz+v),

My —2u;)—Ku;=d(u; —~uy+7v),

where the u; are the amplitudes of the atomic displace-
ments and M=(Q —2)/2. By definition, the point
$DU,, is the point on the line K (y) where the phase of
period Q, with two consecutive atoms at u =0, has the
same energy as the uniform phase. Equations (4.4) are
12gs. (4.6) when M =2. The first equation of (4.6) indi-
cates that all the points SDU,, are located to the left of
the separation line of the uniform phase (ie., for

» <1V'3). The coordinates (K,y) of the points SDU;,
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FIG. 10. (a) Curve K(y) obtained by solving (4.4), and (b)
the energy E (y) of this phase of period 6 minus the energy of
the uniform phase [on the line K (y)].
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rithm finds another phase P/Q, then the grouni state
will be this nondegenerate state P/Q at this poirt. We
have obtained the 1/1 phase and hence we conclu ie that
SDU, is a superdegenerate point. However, in contrast
with the multiphase points of model 1, there aie only
four phases springing from this point. Indeec, only
first-order transitions are observed between the phases
shown in Fig. 8.

We can use this technique to see if other supeidegen-
erate points exist along the boundary of the 1/1 phase.
Generally, the line K (y), along which the ptase of
period Q (Q is an even number) has two ,cons:cutive
atoms at u =0, is obtained by solving the followi g sys-
tem of equations [obtained from (3.2)]:

\

M —1 equations (4.6)

|

(for M =1, 2, 3, 4, and 5) and the amplitudes ¢;, ob-
tained by solving (4.6), are listed in Table I. Noe that
SDU, is the only such point which does not occiir as a
superdegenerate point in the phase diagram, since the al-
gorithm of Griffiths and Chou gives the 1/2 plase at
that point. Indeed, as already mentioned in Sec IV C,
only triple points are found between the phases 2/4, 3/4,
2/3, and 1/1 (see inset of Fig. 7) when a sysiematic
search for the states of lowest energy among stites of
period lower than 5 is made. However, this metl.od be-
comes extremely cumbersome when we increzse the
maximum periodicity over which the ground state is
searched. This is why we use the Griffiths and C10u al-
gorithm as the final test to see whether or not an SDU,,
point is in fact a superdegenerate point.

From the above investigation, we propose Fig. .1 as a
schematic representation of the phase diagram alcng the

- - uniform phase boundary. We have been able to confirm,

by observing simultaneously two periodic cycles, tiat the
transitions around SDU, and SDU; are all first order
and we believe that it is also the case for the trar sitions
around the other SDU,, points, since all the phases are
“nonconvex” in these regions. It seems that the 3DU,,
points are all superdegenerate points and accumu ate on
the point SDU_ located on the line y =1V3. If this is
the case, then all the phases (Q —1)/Q should ccaverge
in this region near SDU . A similar behavior was found
by Yokoi et al.'* for the chiral XY model.

We think that superdegenerate points are foind in
many regions of the phase diagram. Figure 12 s1ows a
small portion of the phase diagram near the dirierized
phase. The 4/7 phase seems to disappear at th: point
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TABLE I. Location of the points SDU,. The uncertainty is one in the last digit. In the column
labeled SD we have indicated whether or not the quntisgg&ig a superdegenerate point.

Point Coordinate X Coordinate y _Amplitudes SD
SDU, 1, 714285714 0, 428571429 u,=0, 285714286 no
SDU, 1, 248262049 0, 518876524 u,=0, 446409274 yes
u,=0, 115035854
SDU;, 1, 051996 809 0, 562914104 u, =0, 506487626 yes
u,=0, 171454697
u3=0, 028 752994
SDU, 0, 995923 167 0, 576203 682 u,=0, 523851301 yes
u,=0, 189118264
u;=0, 039391936
u,=0, 002292416
SDU; 0, 991174197 0, 577 344 696 u,=0, 525328629 yes

u, =0, 190649 177
u3=0, 040347348
14 =0, 002 540394
us=0, 000011 146

SDD,. The positions of the atoms in the 4/7 phase,
slightly over and slightly under the point SDD, are
presented in Fig. 13. The amplitude, a, of the dimerized
phase is simply found by searching for the value of a
that minimizes H when u, =(—1)"a:

a=i4—K 129172 4.7)
From Fig. 13, we see that the sequence {u;,0,—u,}
forms a soliton of the dimerized phase when e€=0.
These solitons are noninteracting, since they are separat-
ed by a sufficiently large number of atoms (four) in the
dimerized phase. The line K(y), on which the 4/7
phase has four consecutive atoms in the dimerized
phase, is obtained by solving the system of equations
[obtained from (3.2)]

dlu,+a—y)=¢2a—y), (4.8a)

—u;—y)—Ku,=¢(u,+a—y). (4.8b)

FIG. 11. Structure of the phase diagram of model 2
(schematic) near the 1/1 phase boundary.

We define the point SDD, as the point on the line K (y)
where the energy of this 4/7 phase is the same as the en-
ergy of the 1/2 phase. At this point, the phases 1/2,
4/7, 3/5, and also infinitely many other states (obtained
by separating the solitons by an arbitrary number,
greater than four, of atoms) have the same energy. We
will conclude that this point is a superdegenerate point if
the Griffiths and Chou algorithm gives, at this point, the
1/2 phase or the 3/5 phase [with the atomic positions in
accordance with those obtained from (4.7) and (4.8)].
We have obtained the 3/5 phase with the correct atomic
positions and we conclude that SDD, is in fact a super-
degenerate point.

We have found other SDD,, points between the
phases 1/2, (M +2)/(2M +3), and (M +3)/(2M +5),
where M is an odd integer (M =1,3,5,...,). The
phase (M +3)/(2M +5), formed by a regular array of
noninteracting solitons of the dimerized phase, exists on
the line K (y) obtained by solving the system of equa-
tions [from (3.2)] .
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FIG. 12. Phase diagram of model 2 near the point SDD,.



oluy+a—y)=¢(2a —v),
¢l—u,—u;—y)—Ku,=¢(u,+a —y),
Mus+u,—y)+Kuy=¢(—u,—u;—v),

¢(uM+uM_1—‘y)+KuM_1=¢( —Up 11—
S —up—y)—Kupe=dup +up_—7) -

Upy—2—7) >

The general structure of the phase (M +3)/(2M +45) on
the line K(y) and the definition of the amplitudes u;
used to write (4.9) are found in Fig. 14. The point
$DD,, is defined as the point on K () where the energy
of the phase (M +3)/(2M +5) is identical to that of the
1 /2 phase. Note that the first equation of (4.9) indicates
that all the SDD,, points are located above the separa-
tion line of the 1/2 phase (i.e., for 2a —y < 1/V'3). The
coordinates (K, ) of the SDD,, points (for M =1, 3, 5,
and 7) and the amplitudes are listed in Table II. Using
the criteria mentioned above, we have found that they
are all superdegenerate points.

From these results, we propose Fig. 15 as a schematic
representation of the phase diagram along the boundary
of the dimerized phase. However, in contrast to the be-
havior found near the boundary of the uniform phase,
the phase transitions surrounding the SDD,, points are
necessarily of first order, since we have not been able to
observe simultaneously two periodic cycles between any
of these phases. Hence, other phases may exist between
the (M +2)/(2M +3) and (M +3)/(2M +35) phases.
However, we have not been able to find them. In addi-
tion, it is important to mention that, while the
(M +3)/(2M +5) phases are “nonconvex” around the
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FIG. 13. Structure of the ground states near the point
$SDD,. (T) denotes the superior part of the 4/7 phase and (B)
the inferior part of the 4/7 phase relative to the location of the
point SDD,.
respectively.
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NC and C denote nonconvex and convex bonds, .
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M —1 equations (4.9)
{

SDDM points, the (M +2)/(2M +3) phases are “con-

vex” everywhere. Following Yokoi et al.! and Villain
and Gordon,!! this suggests a continuous transition
when leaving the (M +2)/(2M +3) phases but a liscon-
tinuous transition when leaving the (M +3)/(2M +5)
phases and hence, quasicontinuous transitions.'*

E. Quasicontinuous transitions

The region of the phase diagram where the possibility
of a quasicontinuous transition is most appa‘ent is
shown in Fig. 16. In this region, the 2/3 phase i, “con-
'vex”, whereas the 1/2 and the 4/7 phases are “noncon-
vex.” Also visible in Fig. 16 is the “nonconvex’ 6/10
phas¢ separated from the 4 /7 phase by a first-order tran-
sition. In between the 6/10 and the 2/3 phases, v e have
also found the “nonconvex” 8/13 phase separatel from
the 6/10 phase by a first-order transition. It seems
reasonable that this process continues to infinity. [n that
case, the resulting phase diagram would be as shown in
Fig. 17, every transition being of first order exc:pt for
the last devil’s-staircase step® located on the boun lary of
the 2/3 phase. This seems to be an elegant comy romise
for transitions between ‘“convex” and “noncoinvex”
phases following from the fact that we expec L4 5
discontinuous transition when leaving a ‘“noncinvex”
phase but a continuous transition when leavmg ¢ “con-
vex’ phase

. V. CONCLUSION

In this paper we have presented a detailed (bit cer-
tainly not complete) analysis of 1D models where frus-
tration results from the presence of nonconvex in:erpar-
ticle interactions. The resulting phase diagrams ti rn out
to be qualitatively different depending on whether or not
the particles in the ground state experience the n>ncon-
vex part of the interaction. When the particles :xperi-

- M#3
2M+5

\/\/\/\/ AVAVAVAS AVAVAVAVAL

a -a Ux -Uz UM o] “Upy U, -u; a

FIG. 14. Structure of the grouna state of period 2Af 45 at-
the point SDD,,;. The only nonconvex bond is identified by
NC. '
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TABLE II. Location of the points SDD,. The uncertainty is one in the last digit. In the column
labeled SD we have indicated whether or not the point SDD,, is a superdegenerate point.

Point Coordinate K Coordinate y Amplitudes SD
SDD, 1, 318992878 0, 227251518 uy=0, 528268 172 yes
SDD;, 1, 118885289 0, 203000781 u,=0, 402018510 yes
u, =0, 360730956
u3;=0, 576200170
SDDs 1, 097792958 0, 200515065 u,=0, 389069 189 yes
u,=0, 388598313
u;=0, 406457753
u,=0, 360550609
us=0, 581187 194
SDD, 1, 097 546 560 0, 200486074 u,=0, 388918 188 yes

u,=0, 388918134
u3=0, 389102495
‘u,==0, 388625680
us =0, 406 507 745
ug =0, 360551082

u7=0, 581234050

ence only the convex part of the interaction potential, as
for model 1, only phases where the winding number is
" uniquely defined (i.e., when the numerator and denomi-
nator do not have a common divisor) are found, and the
transitions among these phases are suggestive of a com-
plete devil’s-staircase behavior. When some of the parti-
cles in the ground state experience the nonconvex part of
the interaction potential, phases where the winding num-
ber is not uniquely defined (the 2/4 phase, for example)
are found in the phase diagram. In this case, both first-
and second-order phase transitions and possibly
quasicontinuous transitions are found. “Also of interest is
the existence of sequences of superdegenerate points
where the system has residual entropy and violates the

FIG. 15. Structure of the phase diagram of model 2
(schematic) near the boundary of the 1/2 phase.

third law of thermodynamics. At these points, we have
shown that the ground state consists of noninteracting
solitons of zero energy.

Finally, it is worth mentioning that the phase diagram
of model 2 is quite similar to that obtained by Yokoi
et al. for the chiral XY model in a magnetic field.
However, important differences occur at low fields,
where their phase diagram becomes very similar to that
of the Frenkel-Kontorova model. Indeed, the width of
the main commensurate phases for small X are substan-
tially larger for model 2 than for the chiral XY model at
low fields. This fact supports our conjecture that, in
contrast to the XY model, incommensurate ground states
can occur in model 2 only with zero measure in parame-
ter space. Also of importance is the fact that the phase
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FIG. 16. Phase diagram of model 2 near the 4/7 and 2/3
phases.
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FIG. 17. Probable structure of the phase diagram of model
2 (schematic) in between the 4/7 and 2/3 phases. The T;’s
venote triple points that accumulate at point 4.

diagram of Ref. 14 reveals the existence of a superdegen-
¢rate point at the crossings of the 2/4, 3/4, 2/3, 172,
and 1/1 phases, whereas only triple points are found for
model 2 in this region. In a later publication (on magne-
soelastic problems) we will show that this superdegen-
erate point can “split” into triple points exactly when
the 1/2 phase boundary meets the superdegenerate point
and that the situation encountered in the XY model cor-
responds to a marginal case.

ACKNOWLEDGMENTS

We are grateful to Professor R. B. Griffiths for useful

discussions. This work was supported by the Natural
Sciences and Engineering Research Council of Canada
and the Fonds pour la Formation de Chercheurs 4 'Aide
3 1a Recherche du Québec. One of us (K.H.) wishes to
acknowledge support from the Natural Sciences and En-
gineering Research Council.

APPENDIX

We now proceed to show that there is only one (un-
modulated) ground state when both W(x) and V(x) are
convex (for any y). To demonstrate this, we need to
prove that the energy E . 4(N) of a sequence of N atoms
in any modulated state of period N (with N an arbitrary
integer) is always larger than the enregy E,;(N) of these
same N atoms in the uniform state (all u, =0) when both
V(x) and W (x) are convex. We have

N
Emoa(N)= 3, [V (u,)+ Wy 1 —u,)]

n=1

with (uN+1=u1) 5 (A].)

Ky NONCONVEX INTERACTIONS: A MECHANISM FOR THE . ..

RUE

‘ N
En(N)= 3 [V(0)+wW(0)].

n=1

(A2)

Recall that by definition of ¥(x) and u,, the milimum

‘of ¥V(x) is at x-=0. Hence, for at least one nonzeio u,,

N
S V(u,)>NV(0).

n=1

(A3)

Moreover, since ¥ (x) is convex (and therefore unjound-
ed), the average lattice spacing {u, ,;—u,) has to be
zero in the ground state. Hence, among states cf finite
period N, we need only consider those that satify the
constraint
N
6NE 2 Uy =0 (Un Eun+l_un:’ s (A4)
n=1

since a state of period N with nonzero 8y has an energy
that increases as .

M

> Vi(idy),

j=1
where M is the number of segments of N atoms This
rate of increase, as a function of M, is extremely large
when V(x) is convex but not when V(x) is nonconvex
and bounded as in the Frenkel-Kontorova model. In or-
der to show that E_ 4(N)> E;(N) for 8,,=0, vie only
need to prove that

N
S [W(w,)—W(0)]>0 for 8y=0. (AS5)

n=1

Recall that a convex function f(x) has, by defin tion, a
first derivative that increases monotonously at every x.
Construct the following positive convex function (7 (v, ):

G, )=Wl(v,)—[W(0)—v, W'(0)],

~ where W’'(0) denotes the first derivative of W '(x) at

x =0. Then when 8y =0, (AS5) can be written as

N
G(v,)>0, (A6)
=1

”n

which is always satisfied for at least one nonz:ro v,,
since G (x) is positive. This completes the proof.
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