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A spin-1 magnetic chain with bilinear and biquadratic exchange couplings is studied to deter-
mine its phase diagram. The character of the ground state and its degeneracy is determined from
an analysis of the low-lying levels of finite chains and from the instability of the uniform lattice

against dimerization.

Evidence for a ferromagnetic phase, two antiferromagnetic phases (with

doubled and tripled periods), and a singlet phase is found.

I. INTRODUCTION

In the description of the behavior of magnetic systems
with localized magnetic moments, the most widely used
Hamiltonian is the Heisenberg exchange Hamiltonian.
It contains bilinear couplings between the moments. If
the symmetry of the crystal is high enough and only
two-body forces are taken into account, this exchange
coupling is the most general interaction, provided the
length of the localized spin is S=4. For higher spins
more complicated couplings can appear, e.g., for S=1a
term with biquadratic exchange. In an isotropic model
the Hamiltonian would take the form

H:—sti-sj—KZ(Si~Sj)2. (1.1)
LJ LJ

In particular cases, the biquadratic exchange can be
comparable to the bilinear exchange. The competition
between the two terms can lead to unusual orderings,
e.g., to quadrupole ordering. A mean-field theory of
possible ordered phases in three-dimensional systems has
been given by Chen and Levy.! The experimental situa-
tion concerning the role of biquadratic terms has been
reviewed by Nagaev.?

In the one-dimensional case, where mean-field theory
is not applicable, interesting new features can arise.
While for §'=1 the Heisenberg model can be solved ex-
actly by the Bethe ansatz, this is not true for higher
spins. However, if the biquadratic term is taken into ac-
count, the model becomes soluble in the case S=1 for
special values of the couplings.>~® For higher-spin
values high-order polynomials of the exchange coupling
lead to soluble models. In the soluble cases the spin-
wave spectrum is identical to that of the S =1 isotropic
antiferromagnet;* the dispersion relation of the elementa-
ry excitations does not depend on S.

This may not be true in the usual Heisenberg model.
The model with purely bilinear exchange has been the
subject of extensive studies following Haldane’s conjec-
ture,” according to which the S =1 isotropic antifer-
romagnet and any integer-spin model behaves differently
than models with half-integer spin. It is only in the
latter case that the excitation spectrum is similar to that
of the S = model. For integer spins the isotropic anti-
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ferromagnet has no soft spin-wave modes, the gap is
finite, and the ground state is singlet. Numerical calcu-
lations on finite chains®~!° seem to support this conjec-
ture, although it is a priori not clear how long chains
have to be considered in order to see the asymptotic be-
havior.!! 13

Assuming that the S =1 Heisenberg antiferromagnet
(J <0,K =0) has a singlet ground state with a finite gap,
and knowing that at the exactly soluble points
K =+J,J <0 the spectrum is gapless, one can ask how
the two couplings compete to produce a massive or
massless phase. Affleck,'* using a mapping to the Wess-
Zumino model, suggested that the S =1 model with both
bilinear and biquadratic exchange is generically massive,
and has a finite gap in that range of couplings where the
mapping holds. The gap will vanish at special values of
the couplings only, namely, for K==J. Numerical
studies by Kung!® and by Oitmaa et al.'® do not com-
pletely support this claim. The results of finite-size scal-
ing studies of the model were interpreted as indicating a
finite gap for K > —J. In the region 0 <K < —J, on the
other hand, there seems to be a critical value K, such
that for K. <K < —J, the gap remains zero. The mas-
sive phase appears for K <K, only.

This conclusion was reached by analyzing the primary
gap, i.e., the gap between the ground state and the first
excited state of finite chains. Since this result is not
unambiguous, it seems worthwhile to make a more de-
tailed study of this model by considering other proper-
ties as well. In this paper I will present the results of
such a study. Together with the primary gap I have
considered the secondary gap, too. Finite-size scaling on
this quantity yields additional information about the de-
generacy of the ground state in the infinite system.

Indirectly, the spin-Peierls transition can also give in-
formation about the absence or presence of a gap in the
excitation spectrum. The uniform lattice is unstable
against spontaneous dimerization only if the excitation
spectrum is gapless and the spin-spin correlation func-
tions decay with a power law {S*(r)S*(0)) ~r ~", with
1> 1. I studied the problem of spin-Peierls transition in
the presence of biquadratic exchange to get further indi-
cation about the possible gapless regions in the coupling
space.

The results known on the bilinear-biquadratic ex-
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change model are summarized in Sec. II. The ferromag-
netic part of the phase diagram is considered in Sec. III.
Our finite-size scaling results on the primary and secon-
dary gaps for the antiferromagnetic region are given in
Sec. IV. The problem of spin-Peierls transition and its
relationship to the problem of gap is studied in Sec. V.
Finally, the results are discussed in Sec. VI and a possi-
ble phase diagram is given.

II. THE MODEL

The model with bilinear and biquadratic exchange
couplings is defined by the Hamiltonian given in Eq.
(1.1). The biquadratic exchange term can be expressed
in terms of the six tensor operators

$Q0,iQ0,i +1+9Q2,:Q2: 11 +0Q, i Cryi +1+ 2 i Qyzi 1+ P i Qox,i 41 =5:"S; 11 +2(8; S, +1)2‘§S(S +1).

This form is useful to study how in a three-dimensional
system the biquadratic exchange can lead to quadrupole
ordering.

Alternatively, using the Schrodinger exchange opera-
tor

P . . 2
P;=(8;-8;)+(S;-§;)" -1, (2.4)

which simply exchanges the spin states between sites i
and j, the Hamiltonian can be written as

H=—(J—K)3S;S;—K 3 (P, +1).

ij )

(2.5)

At J=K the SU(3) symmetric model of Sutherland?® is
recovered, while otherwise the symmetry is SU(2) only.
Another exactly soluble case is J = —K, both for anti-
ferromagnetic*> and ferromagnetic couplings.® In order
to cover easily all possible choices for the couplings, it is
convenient, following Affleck,'* to parametrize J and K
as
J=—A4cos8, K=—Asinf . (2.6)
A just sets the energy scale and will be taken as unity.
Considering nearest-neighbor interaction in a one-
dimensional chain, the Hamiltonian will have the form

H = [(cosO)(S; S, )+ (sin0)(S;-S;,)*]. (2.7

The SU(3) symmetric model of Sutherland® corre-
sponds to 0= /4. At this point the spectrum is gapless;
the soft modes appear at k =0 and +27/3. As shown
by Takhtajan* and Babujian,’ the model is soluble at

0= —1m/4, too. The spectrum is again gapless, the soft
modes being at k =0 and 7. Between these two exactly
soluble points, 6= — 1 /4 and 7 /4, lies the usual antifer-

romagnetic point 6=0, where according to Haldane’ the
excitation gap is finite. Moreover, Affleck!* predicted
that the gap is finite everywhere between 6= — /4 and
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TaB=%(SaSB+SBSa)
using the relation

S TupiTapic1=3SiSi1+(S;°8; 1),

a,f=x,y,z

(2.1)

or in terms of the quadrupole operators
0=357-2, Q,=S2-5},
2., =5,S, +S,8;
0,,=S,S, +S.S, ,

Qo =S;5,+5.S

z >

(2.2)

taking into account that

(2.3)

4

f

/4, except for these two special points. Furthermore,
according to Affleck the gap is finite for 6 < —7/4 as
well, especially at 6= — /2, where only the biquadratic
term is present.

The point 6= corresponds to the usual Heisenberg
ferromagnet. A weak biquadratic exchange will not des-
troy this order and a ferromagnetic ground state is ex-
pected for 37 /4 <6 <57 /4. The magnon spectrum and
the two-magnon bound state have been calculated by
Papanicolaou and Psaltakis!” for = <6 < 57 /4. The oth-
er half of the ferromagnetic region (37/4<6 <) was
not considered, except for the point 6 =3m/4 where the
model is again exactly soluble.® The region between
6=m/2 and 37 /4 was not studied either, although it is
known that at 6=m/2 the model describes an SU(3)
symmetric ferromagnet.'*

III. FERROMAGNETIC REGION, 7/2<60< 57 /4

In order to study the ground-state and low-lying exci-
tations of the system, I have performed calculations on
finite chains with up to N =12 sites. First of all, it is
found that the ground state of the finite system is fer-
romagnetic if 7/2<0 <57 /4. The lowest energy state
corresponds to a configuration where all spins are orient-
ed parallel to each other and the energy per site is

E,= cos@+ sinf . (3.1)

The one-spin-flip excitations above this ground state can
be obtained in the usual way leading to an excitation
spectrum

e(k)= —2(cosB)(1— cosk) . (3.2)

Note that in the range 7/2 <6 <57 /4 these excitation
energies are positive; the spectrum is gapless with a soft
mode at k =0. The two-magnon excitation energies can
be calculated by using the Bethe ansatz for the wave
function as described by Papanicolaou and Psaltakis.!”
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For any momentum k there is a two-magnon continuum
lying between the energies

€.(k)=—4(cosO)[1* cos(k /2)] .

(3.3)

In fact the excitations in the continuum can be charac-
terized by two momenta k,; and k,, as usual, and the en-
ergy is just the sum of two free-magnon energies,

€lky,ky)=—4(cosO)[1—L(cosk,+ cosk,)], (3.4)
or using the notation

ky=1k+q, k,=1k—q, (3.5)
we get

e(k,q)=—4(cos@)[1—(costk)(cosq)] . (3.6)

In addition to this continuum there can be one or two
bound states outside the continuum. Papanicolaou and
Psaltakis!” analyzed the region m<6 <57 /4 only and
found a bound state below the continuum. This bound
state is present also for 37 /4 < 6 <7 and merges into the
continuum at 0=237 /4, as shown in Fig. 1. For smaller
values of 0 an extra two-magnon state is found above the
continuum, separated from it by a finite gap. This gap
vanishes first at k =7 for 6=37/4. As 6 increases this
extra state merges gradually into the continuum, disap-
pearing finally at k =0 at 6=0.8857. The development
of the two-magnon spectrum between 7/2<60<m is
shown in Fig. 1.

1

(6] 1 1 !
o w2 o’ 0 m2 kW

FIG. 1. Two-magnon spectrum for 8=57/8, 67/8, 7m/8,
and 87 /8 showing the development of the two extra states
above and below the continuum (hatched region).
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IV. ANTIFERROMAGNETIC REGION, —37/4<0<7m/2

Outside the ferromagnetic region the ground state of a
finite chain with an even number of sites is a spin singlet,
S%=0. The first excited state is in the subspace S7=1.
The gap between these two states was analyzed by
Kung!® in the region —7/4<6<0 and by Oitmaa
et al.'® for —7/2<6<0. In both cases chains up to
N =12 sites were considered and a periodic boundary
condition was used.

Oitmaa et al.'® infer from the finite-chain calculations
that the singlet-triplet gap is finite for —7/2<86
< —m/4. For 8> —1 /4 finite-size scaling seems to indi-
cate an extended gapless phase; the boundaries of this
phase could not be determined, however.

In order to have a better picture of the ground state I
have extended these calculations to the whole antiferro-
magnetic (or singlet) region, —37/4 <0 <m/2, in two
respects. I have calculated not only the singlet-triplet
gap, but also the gap between the S7=0 ground state
and the lowest ST =2 excited state. Furthermore, I have
considered also chains with an odd number of sites, us-
ing both periodic and antiperiodic boundary conditions.
The longest chain had N =12 sites.

Considering first chains with an even number of sites
and using a periodic boundary condition I have deter-
mined the lowest-lying states in the sectors S7=0, 1,
and 2. The scaled gaps NAE for the singlet-triplet AE,;
and singlet-quintet AE,, gaps are shown in Figs. 2 and
3, respectively.

The first gap AE,, has a maximum at 6= —m/2, and
there the scaled gap increases with the chain length.
This lead Oitmaa et al.'® to the conclusion that at this
point, and in fact in the whole range —7/2<0 < —7m/4,
the gap scales to a finite value. Close to 8= — 37 /4 and
for 6 > —m /4 there seems to be a region where the gap
scales to zero as 1/N. To have a better estimate of the
extent of these critical regions, I considered the secon-
dary gap in the same region of 6. Contrary to the pri-
mary gap, the secondary gap has a maximum close to
0= —m/4. This difference in the behavior comes from
the difference in the symmetries of the three levels con-
sidered. The S7=0 ground state is translationally in-
variant; its wave vector is k =0 for —37/4<6<0. This
is true also for the lowest S7 =2 state. In the S7=1
subspace a translationally invariant k =0 state is the
lowest one for —3w7/4<60< —w/2. For —7w/2<6<0,
however, the lowest-lying state is a k = state. The lev-
el crossing at 6= —m /2 between these k=0 and k=7
states leads to the break in AE,.

A finite-size scaling analysis of the secondary gap
could indicate a finite gap in the whole —37/4<6<0
range, since the scaled gap increases with the system
size. This apparent increase of the scaled gap can, how-
ever, be just a finite-size effect, showing that the correc-
tions to the 1/N scaling of the gap are important at the
available chain lengths. As seen in Fig. 3, for finite sys-
tems AE(, has a maximum very close to 6= —m/4. On
the other hand, it is known from the exact solution of
the model that at 6= — 7 /4 the secondary gap vanishes
in the infinite chain. Unless there is a dramatic change
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FIG. 2. Scaled gap between the lowest-lying levels of the
S7=0 and S} =1 sectors for different chain lengths N.

in the behavior of the secondary gap for a very long
chain, the numerical results indicate that the gap will
vanish in an extended region around 6= —w/4. It is
tempting to conclude that in the whole range
—37/4<0 < —m/4, including the point 6= —7/2, the
system is gapless. This conclusion will be further sup-
ported as other quantities are calculated.

On the other side of the 6= —m/4 point, the con-
clusion is less clear. The analysis of the secondary gap
does not help to determine the extent of the region
where the gap scales to zero as 1/N, and beyond which
it remains finite. In this region our results coincide with
those of Kung!® and of Oitmaa et al.'®

In the range 0 <8 < /2, which has not been studied
before, new features appear. The primary and secondary
gaps have one or two break points. This is due to the
fact that the lowest-lying states in the S7=0, 1, or 2 sec-
tors are not necessarily translationally invariant. The
wave vector of these states is either k =0 or 2wn /N
with an integer n such that k is close to 27 /3. This is
not surprising since we know that at 6=m/4 the soft
modes are at k=0 and k=127/3. As a consequence,
the ground state of the infinite system is periodic under
translation with three lattice constants. Finite-size cal-
culations should respect this periodicity. I have there-
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FIG. 3. Scaled gap between the lowest-lying levels of the
S7=0 and S7 =2 sectors for different chain lengths N.

8645

6-
NAEy
4+
2L
OH 0 ﬁ I
4 4 2

&) (rc:d)

FIG. 4. Scaled primary gap for chains with an odd number
of sites, using a periodic boundary condition.

fore done the calculations for chains with an odd num-
ber of sites, too, to include N =3 and 9. The scaled pri-
mary gap for finite odd chains using a periodic boundary
condition is shown in Fig. 4. One characteristic feature
is that the gap is identically zero for —3w/4<86
< —m/4, confirming our earlier conclusion about this
region. The gap becomes finite in the interval
(—m/4,0). It cannot be excluded that as N— « the
gap becomes finite in this whole interval. The gap has a
maximum between 0<6<7/4 and vanishes again at
6=m/2. When considering in this range chains with
N =3n sites (N =3 and 9 from Fig. 4 and N =6 from
Fig. 2), it is found that for 8 > 7 /4 in good approxima-
tion the gap scales to zero as 1/N. This indicates that
the gapless, tripled-period phase obtained for 0= /4 is
stable in the whole range m/4 <6 <7 /2. In this interval
of O the soft modes are at k=0 and *27/3. Below
6=m/4 the gap both at k=0 and k ==+27/3 becomes
finite. The spectrum changes in such a way that when at
a 0, in the interval (—m/4,0) the gap vanishes again,
the soft modes are at k =0 and 7.
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FIG. 5. Scaled primary gap for chains with an odd number
of sites, using a modified boundary condition.
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Odd chains (N =3 and 9) are useful for studying the
period tripling near 6=m/4. Their use with a periodic
boundary condition is less clear for 8 <0, where period
doubling is expected. It is probably more reasonable to
use an antiperiodic boundary condition. In Fig. 5, I

J

(cosO)( —SFST —S4S% +S5S%) +(sin6)( —SFST —S¥SY +S5557)% .

As seen in Fig. 5, the primary gap vanishes identically
at 6=—m/2. Between 0= —1m/2 and 6=0 the gap in-
creases monotonously. Knowing that at 6= —7/4 the
gap has to vanish, we find again that the gap will vanish
everywhere between 6= —7/2 and 6= —m/4. Below
6= —m /2 the ground state of finite chains is not in the
S7=0 subspace; the lowest S7 =1 state lies lower. How-
ever, the energy difference scales to zero as 1/N, indicat-
ing that here as well the gap vanishes.

V. SPIN-PEIERLS TRANSITION

It is well known that the spin-1 isotropic Heisenberg
antiferromagnet is unstable against lattice distortions.!®
In a uniform lattice the excitation spectrum is gapless;
the quantum zero-point fluctuations are important. On
the other hand, in a dimerized lattice a gap opens in the
excitation spectrum, the fluctuations become less impor-
tant, and the ground-state energy is lowered. If this en-
ergy lowering is larger than the increase in the elastic
energy, a spontaneous deformation takes place.

Suppose that in the distorted lattice the spins are at
the positions

r,=ia[1+(—1)8], (5.1)
where a is the original lattice constant and 6 is the di-
merization. The lowering of the ground-state energy is
proportional to 8% and the gap to 8. According to
Cross and Fisher,'" v~2 for the S =1 isotropic antifer-
romagnet. Therefore, for small & the energy gain is al-
ways larger than the elastic energy of the deformed lat-
tice,

E =NK&?, (5.2)

elastic

for any value of the elastic constant K. The minimum of
the total energy is at a finite value of §; the lattice is
necessarily dimerized.

In the anisotropic S =3 Heisenberg model the lattice
distortion will necessarily occur in the planar phase
where the excitation spectrum is gapless and the correla-
tion function

(SX(r)S*0) Y =~r~"

decays with an exponent 7> 1, i.e.,, for J, <0. In the
case of Ising-type anisotropy, where the gap is finite, the
lattice distortion will appear only if K is smaller than a
critical K.. This is also the case in the planar region for
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show the results obtained with a modified boundary con-
dition. At the boundary the sign of the couplings are
changed for the x and y components of the spin, but not
for the z components, i.e., the two end spins are coupled
as

—

J,>0. Although the excitation spectrum is gapless, the
magnetic energy gain due to the dimerization is not
sufficient to overcome the elastic energy if K is large. In
the ground state the chain remains undistorted.

The spin-Peierls transition seems to be related to the
absence of a gap in the excitation spectrum. A gapless
spectrum is a necessary but not sufficient condition for
the lattice instability. For this reason I have studied the
possibility of lattice distortion in the model with bilinear
and biquadratic exchange interactions. For simplicity
the effect of deformation on the two couplings is as-
sumed to be identical, i.e., I have considered the Hamil-
tonian

H= {(cosO)[1+(—1)8](S; S, )

+(sinf)[ 1 +(—1)81(S;-S; . 1)*} . (5.3)

The total energy will of course contain the elastic part,
too, given in Eq. (5.2).

There are two ways to study the spin-Peierls transition
from numerical calculations on finite systems. The first
is to consider the magnetic part of the Hamiltonian, Eq.
(5.3), and to analyze the 8 dependence of the ground-
state energy and of the gap.?°~%2 I show in Fig. 6 the &
dependence of the ground-state energy for 6= —m/2.

0

AEo(é)

-05

-15 1 1
0] 05 5 1

FIG. 6. Lowering of the ground-state energy as a function
of the dimerization 6 for different chain lengths N for
6= —1m/2. The dashed lines show the parabolic fit to the small
8 region.
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FIG. 7. Primary gap of the dimerized model for 6= — /2.
The dashed curve is 48" with v=0.55.

For small § the energy lowering is proportional to 8.
As the chain length increases, this parabolic behavior is
valid in a very narrow range, ultimately shrinking to
zero as N— . Beyond the parabolic part, AE ~8&%
with v~0.5 at 0= —7/2. At 6= —17 /4 similar behav-
ior is found with v~0.7.

The primary gaps as a function of § are shown in
Figs. 7 and 8 for 0= —/2 and — /4, respectively. As
the chain length increases, the gap approaches a curve
that can be described as 48" with v=0.55+0.02 for
0=—7/2 and v=0.70%£0.02 for 6= —w/4. These
values are in good agreement with the v determined
from the lowering of the ground-state energy, where the
error in the determination of v is much larger. Since for
both cases v <1, a spin-Peierls transition should take

place. Furthermore, the existence of the spin-Peierls
transition implies that even at 6= — 7 /2 the spectrum is
gapless.

For the analysis of the extent of the region where the
spin-Peierls transition will take place I used another
method proposed earlier?® in the study of spin-Peierls
transition for S > 1 Heisenberg chains. When the elastic
energy, Eq. (5.2), is taken into account, for a finite sys-
tem there always exists a critical value, K, of the elastic
constant, such that for K > K, the ground state is uni-

6»
o]
AE01
4
2
O/ s 1
(] 05 5 1

FIG. 8. Primary gap of the dimerized model for 6= —m /4.
The dashed curve is 48" with v=0.7.
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FIG. 9. The critical elastic constant K. separating the uni-
form and dimerized phases for finite chains. The dashed
curves show the region where the transition is discontinuous.
The inset shows the critical values of 0 vs 1/N, where the tran-
sition becomes discontinuous.

form and the minimum of the total energy is at §=0,
while for K <K, the minimum is at a finite § and the
system is dimerized. If K. diverges as N — «, a spon-
taneous deformation of the lattice is always favorable
and a spin-Peierls transition takes place. Figure 9 shows
the value of K, determined for different chain lengths.
Close to 6= —3m/4 and to 6=0 the dimerization ap-
pears at K, discontinuously as K is varied; otherwise the
transition is continuous. The critical value of 6 beyond
which the dimerization transition is discontinuous de-
creases as the chain length increases, as shown in the in-
set of Fig. 9. As N— «, 6, may approach 6= —1/4,
although at this point K. will have to diverge. In the
neighborhood of 6= —m/2 K, increases linearly with
the chain length and diverges as N — «. Therefore K,
will diverge for —7/2<0 < —mw/4, and the infinite
chain is always dimerized, indicating a gapless spectrum
in agreement with the other approach.

It is interesting to note that there is a special value
6=0.10247, which is the solution of the equation
cosf8=3 sinf, where K, =0 for any chain length; i.e., the
chain will never be dimerized. This may be related to
the fact that for larger 6 values the ground state has a
tripled period. Instead of forming dimers the chains
may prefer to form trimers.

VI. DISCUSSION

In the present paper the possible ground states of a
spin-1 magnetic chain with bilinear and biquadratic ex-
change couplings have been considered. Using the pa-
rametrization (2.6) for the couplings, it was expected'*
that the ferromagnetic phase is stable for 3w/4<60
<5m/4. 1 have shown that the ground state is fer-
romagnetic in a wider range, namely for 7/2 <60 < 57 /4,
and I have determined the spin-wave spectrum as well as
the two-spin deviation states. In addition to the two-
magnon continuum, there are two extra states, one
below the continuum for 37 /4 <6 <57 /4 and one above
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it for m/2 <60 <0.8857.

Outside the ferromagnetic regime the ground state is
an S7=0 state. I have used finite chain calculations up
to N =12 sites to study the possible degeneracies in the
infinite system. Extending the earlier finite-size scaling
analysis of Kung15 and Oitmaa er al.,'® I have calculat-
ed not only the primary, but also the secondary gap in
the —37/4<6<m/2 region. Near 0=m/4, where a
tripled-period ground state is expected, further informa-
tion can be obtained from the results on chains with an
odd number of sites. Furthermore, since the existence of
a spin-Peierls transition is closely related to the absence
of a gap in the excitation spectrum, I have also studied
the possibility of spin-Peierls distortion.

All these considerations lead us to the conclusion that
in the range —37/4<6 <w/2 the phase diagram con-
sists of three different phases. For —3w7/4<6<0,,
where —7/4<6,.<0, the ground state has the same
character as at the exactly soluble point 6= — /4, i.e.,
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the excitation spectrum is gapless; the soft modes are at
k=0 and w. On the other hand, in the region
7/4<0<m/2 the ground state has the same character
as at the other exactly soluble point, 6 =7 /4. The exci-
tation spectrum is again gapless; the soft modes are,
however, at k =0 and +27 /3. While in the first case the
ground state is periodic under translation by 2a, here it
is periodic under translation by 3a. Between these two
phases with different symmetries there is a region, where
the ground state is a nondegenerate singlet, and the
spectrum has a finite gap. The present calculation can-
not give a precise location for 8, and therefore is not de-
cisive in the controversy around Haldane’s claim’ of a
massive spectrum at 6=0. It seems to be, however, in
contradiction to Affleck’s claim!* of massive behavior
around 0= —m /2. I believe that the results presented
above give strong evidence that mappings to continuum
field-theory models have to be performed with extreme
care.

*Permanent address:
Budapest, Hungary.
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