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Nonconvex interparticle interactions are proposed as a mechanism for the occurrence of modulated or-
der in condensed matter. This is examined by application of a recent numerical algorithm to two micro-
scopic models in which frustration is present only if the interparticle interactions are nonconvex. A
devil’s staircase is found when the particles, in the ground state, make use only of the convex part of the
interaction potential, whereas both first- and second-order transitions are found when the region of non-

convexity is felt by some of the particles.

PACS numbers: 64.60.—i, 05.70.Fh

The nature of the ground states of frustrated micro-
scopic models is relevant to the understanding of many
different physical systems exhibiting periodically modu-
lated structures.! The vast majority of theoretical stud-
ies have, so far, been limited to convex (positive curva-
ture) interparticle interactions. However, it is now
recognized that certain classes of condensed-matter sys-
tems do experience nonconvex interparticle interactions.
A well-known classical example is the oscillating
(Ruderman-Kittel-Kasuya-Yosida) exchange interaction
between localized spins in a metal. Recently,? it has
been shown that magnetoelastic coupling leads to an
effective double-well interparticle interaction. More gen-
erally, and relevant to ferroelectricity, Villain and Gor-
don® have shown that oscillating interactions can be
mediated through elastic strains and other harmonic
fields.

The effects of nonconvexity are presently far from well
understood.* This is not surprising since theoretical ap-
proaches to problems of nonconvex interparticle interac-
tions have so far been limited to models where either
competing periodicities or competing interactions (that
lead to modulated ground states) are present even when
the interparticle interactions are convex. For example, if
we replace the interaction terms of the models studied by
Aubry, Fesser, and Bishop,5 Banerjea and Taylor,6 and
Yokai, Tang, and Chou’ by convex harmonic interac-
tions, we recover the well-known Frenkel-Kontorova
model.® In this Letter, in order to focus only on non-
convex effects, we report our findings on two microscopic
models having nonconvex interactions and for which the
ground state is ‘always uniform (unmodulated) when
these interactions are convex. Furthermore, these mod-
els are representative of certain kinds of interactions that
can occur in real solids. In fact, as shown in Ref. 2, they
are related to certain magnetoelastic problems (more de-
tails will be given in a later publication). Our major
conclusion is that nonconvex interparticle interactions
alone can be responsible for the occurrence of periodical-
ly modulated structures when the substrate potential is

convex and the kind of phase transitions present strongly
depends on whether or not the particles experience the
nonconvex part of the interaction.

We consider the one-dimensional (1D) Hamiltonian

H=Y V() + Wyt —u,)l, (D

where u, is the displacement of nth particle with respect
to some reference position, here assumed to be a regular
1D lattice of equally spaced points. The external one-
particle potential has the form

Vix)=4+Kx? (K>0). )]

Physically, ¥ (u,) is the local potential experienced by
a particle in the nth cell as a result of the interaction
with a background of rigid atoms. If we restrict our-
selves to small deviations from symmetric equilibrium
positions, ¥ (u,) is written as in (2). Note that although
unbounded potentials such as (2) are useful for describ-
ing structural phase transitions,® they are not appropri-
ate for materials where particles can jump from one unit
cell to another. It is straightforward to show that for
convex ¥(x) and for W(x) having a finite lower bound,
the average lattice distortion {u,+{—u,) is zero in the
ground state and that the only ground state is the uni-
form state when W (x) is also convex. Hence, for convex
V(x), the existence of any modulated ground state is
solely due to the presence of a nonconvex Wi(x). The
two models used for the nonconvex interparticle interac-
tion are

W(x)=(x—y)2—|x—y| (modell), 3)
Wk)=—4%G—y)2++(—9)* (model2). (4)

Model 1 is typical of the T=0 double-quadratic-well
effective interparticle interaction, which arises in the 1D
magnetoelastic problem? involving n-component classical
spins, S,, coupled to nearest neighbors through an ex-
change integral which varies linearly with interparticle
spacing. The exchange energy of the bonds is propor-
tional to — |uy+; —u, — ¥| since, at T =0, the classical
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n vectors, S;, align themselves either ferromagnetically
or antiferromagnetically with their first nearest neigh-
bors, depending on the sign of the exchange integral be-
tween them. — y is the ratio of the exchange integral Jg
to its gradient —J evaluated at (uy+;—u,) =0. The
first term, (x — y)?, comes from the first-neighbor elastic
interaction. At finite temperatures, it has been found?
that the effective interaction between the u, has the form
of an analytic double-well potential if the spin-exchange
interactions are 1D. In this case model 2 serves, under
certain conditions, as an approximation to this effective,
temperature-dependent, interparticle interaction. More
generally, (4) represents the first terms of a Taylor ex-
pansion of a more general nonconvex interparticle in-
teraction as has been shown for TIHF,. '© Notice that
the particular choice of the coefficients in (2), (3), and
(4) can always be achieved by an appropriate scaling of
lengths and energies.

The vast majority of methods used to find the ground
states are based upon searches among all extremal solu-
tions satisfying 0H/0u,=0. It becomes extremely
difficult to proceed by this method when nonconvex in-
teractions are present since then the resulting two-
dimensional map is not single valued. Recently, major
progress was made in the theory of modulated structures.
An algorithm valid for nonconvex interparticle interac-
tions, that focuses directly on the ground state, was pro-
posed by Griffiths and Chou.!!? The ground state of
(1) is obtained, in the thermodynamic limit N— oo, by
solution of the nonlinear eigenvalue equation

A+R@ ) =Vw") =min, W' —~u)+RwW)]. (5)
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FIG. 1. (a) The effective potential R(x«) and (b) the associ-
ated map (full line) M (u,) =u,~, of model 2 for K =0.5 and

y=0.33. Also shown in (b) are the discontinuities (dotted
lines), the line #,—1 =un, and the limit cycle of period 3.

The solution R(u) is called an effective potential and A
is the average energy per particle in the ground state. It
has been shown!? that a continuous solution, R(u), al-
ways exists and that the corresponding A is unique. The

mapping
u=M@"), (6)

obtained by a search for the u which, for a given u ' min-
imizes the right-hand side of (5), is used to generate the
ground-state configuration. To solve (5), we use a grid
of two hundred (or more) equally spaced points in an in-
terval around u ==0 and apply the right-hand side of (5)
to functions defined on these points.!"!2 The sequence of
iterations R ™ is stopped when R@*" and R™ differ
only by the constant A within a chosen precision. 12

Figure 1(a) is an example of the effective potential,
R(u), obtained for model 2. The first derivative of R is
discontinuous at the same points where the mapping M,
shown in Fig. 1(b), is discontinuous. Also shown in Fig.
1(b) is the limit cycle (of period 3) of the map M. We
identify the phases by their m-point limit cycle defining
the “winding number,” , as the number of points of the
cycle having w4, —u, =0 divided by the period m of
the cycle

1 zm) ( ) @)
= (‘ — - N
@ "=10 Un—1— Uy

where uo=1u,, and 6(x) =-+1 for x =0 and 0 for x <O0.

The phase diagrams obtained with this numerical al-
gorithm for models 1 and 2 are shown respectively in
Figs. 2 and 3. Since ¥ (—x)=V(x) the phase o=p/r,
for y>0, becomes the phase w=(r—p)/r when
y— —y. At K— 0+ the phase w=p/r is located at
y=Qp—r)/Qr) and y=Qp —r)/r for models 1 and 2,
respectively. These phase diagrams are qualitatively
different. In particular, the ground state is always uni-
form for K > 4 in model 2, whereas no such critical value
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FIG. 2. The phase diagram for model 1. The numbers are

values of the winding number w. The unlabeled regions con-
tain additional commensurate phases. a=(1+K/4)"! and
7' =vla.
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FIG. 3. The phase diagram for model 2. The numbers are
values of the winding number w. The unlabeled regions con-
tain additional commensurate phases. The dashed lines are
separation lines defined in the text. Inset: TCP indicates a tri-
critical point and the other points are triple points.

of K exists in model 1.

Following the notation of Ref. 7, a phase is called
“nonconvex” if at least one pair of atoms uses the non-
convex part of W{x); otherwise it is called “convex.” A
separation line, indicated by a dashed line in Fig. 3,
separates the nonconvex region from the convex region
of the same phase. It is crucial to note that only convex
phases are present in model 1 since W(x) is then non-
convex only at the nonanalytic point x =0, whereas in
model 2 large portions of the phase diagram are filled
with nonconvex phases which are located above (to the
left of, for the 1/1 phase ) the separation lines. Although
there is no phase transition when these separation lines
are crossed, the type of transition between any two given
phases strongly depends on whether or not these phases
are Convex.

We have found clear indications which strongly sug-
gest that model 1 exhibits a complete devil’s staircase'?
even though a rigorous proof is presently not possible
with this numerical algorithm. First, it is simple to show
that all the extremal configurations are structurally
stable. This means that each individual bond can only
distort itseif discontinuously and therefore hysteresis
effects should be present. Second, a phase with winding
number w=(p+g)/(r+s) is always found [if we use a
sufficiently fine grid of points to solve (5)] between
phases p/r and g/s. Hence, if there is an infinite number
of phases between any two given phases, the sequence of
transitions should be continuous although irreversible.
This is consistent with Aubry’s picture!# of a complete
devil’s staircase.
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The discontinuous bond distortions are accompanied,
in the corresponding magnetoelastic problem, by an in-
version of the exchange integral. Indeed, the fraction of
antiferromagnetic bonds w, (for positive J1) in a cycle of
period m,

0y=L 3 00—y — g+ ), ®)

n=1

is equal to w everywhere in the phase diagram (except in
the uniform phase where w=1/1, whereas w,=1/1 for
y>0 and w,=0/1 for y <0 as shown in Fig. 2). As in-
dicated above, model 1 is representative of the magne-
toelastic problem for any n-component classical spin
model. With this in mind, it is instructive to recall the
recent results of Ishimural!® for an effective Ising spin
Hamiltonian where the elastic variables have been in-
tegrated out. Using the method of Bak and Bruinsma, '®
Ishimura has obtained a phase diagram, strikingly simi-
lar to our own, and has predicted a complete devil’s-
staircase behavior for any finite value of K. On the basis
of the above observations, this result should be valid for
all n-vector models. As K— oo, the first-neighbor elastic
interactions becomes negligible and we recover the mag-
netoelastic model of De Simone, Stratt, and Tobochnik !
which is identical to the axial next-nearest-neighbor Is-
ing (ANNNI) model. Hence, the two multiphase points
of Fig. 2 are those of the ANNNI model at T =0.

The same numerical evidence that strongly supports
the existence of a devil’s staircase in model 1 is also
present in model 2 for transitions between convex phases.
For example, between the 3/5 phase (which is convex
everywhere) and the convex 2/3 phase, we were always
able to find (with a sufficiently fine grid of points) an in-
tervening phase between any two given phases, all of
which are convex. Furthermore, in this model, convex
phases are structurally stable and therefore hysteresis
effects should be present. Hence, in this region of the
phase diagram, our results are consistent with a complete
devil’s-staircase behavior. Although it is impossible to
distinguish high-order commensurate states from truly
incommensurate states when one uses this numerical al-
gorithm, we do not believe that there exist incommensu-
rate ground states in this model because, in order that
hysteresis effects be absent, it is necessary (since V is
convex) that some of the particles experience the non-
convex part of W. On the other hand, between noncon-
vex phases we have observed two different kinds of be-
havior. First, we have found second-order phase transi-
tions between the nonconvex 1/1 and 1/2 phases where
the uniform state is unstable against dimerization along
the parabola K+4(3y*~1)=0 and between the phase
1/2 and the (everywhere nonconvex) 2/4 phase'® at the
left of the tricritical point (TCP) (the transition is first
order at the right of TCP). Second, first-order transi-
tions and triple points have been found in several places
in the phase diagram. Examples of triple points are
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shown in the inset in Fig. 3 and it is straightforward to
show analytically that the transitions between the phases
1/2 and 2/3, 1/2 and 3/4, 2/4 and 2/3, and 2/3 and 3/4
are all first order.

It is obvious that the phase diagram of model 2 is
much more complex than that of model 1. In a later
publication we shall show, by different methods, that
several features similar to the ones found by Yokoi,
Tang, and Chou? for the chiral XY model are present in
this model. These are superdegenerate points'® (where
the entropy is infinite) and possibly infinite sequences of
first-order transitions between convex and nonconvex
phases.

It is clear that nonconvex interparticle potentials alone
can lead to frustration and be responsible for the pres-
ence of modulated phases. The nature of the transition
between any two given phases strongly depends on
whether or not these phases are convex. It is also clear
that the phase diagrams obtained for a convex ¥ (x) and
nonconvex W(x) are qualitatively different from those
obtained, for example, by Axel and Aubry? for noncon-
vex V(x) and convex interparticle interactions.
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