APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 35, 925–932 (1987)

[Issue 3 – 15 January 1987 ]

Previous article | Next article | Issue 3 contents ]

Add to article collection View Page Images or PDF (1309 kB)


Electronic and magnetic properties of the fcc Fe(001) thin films: Fe/Cu(001) and Cu/Fe/Cu(001)

C. L. Fu
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60201
A. J. Freeman
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60201 and Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
Received 12 May 1986

All-electron total-energy local-spin-density studies of the electronic and magnetic properties of fcc Fe(001) as overlayers or sandwiches with Cu(001) were undertaken in order to understand the following: (1) the surface (interface) magnetism of fcc Fe(001), (2) the effect of nonmagnetic Cu on the magnetization of Fe and (3) the effect of the reduced coordination number on the magnetic coupling of Fe layers near the surface and interface. From our systematic studies of (i) one and two layers of Fe on Cu(001) and (ii) one and five layers of Fe sandwiched by Cu, it is concluded that the Fe magnetic moment is enhanced on the surface (to 2.85muB) and the surface (interface) Fe layer is predicted to couple ferromagnetically to the subsurface (subinterface) Fe layer (in contrast to the antiferromagnetic behavior in the bulk fcc Fe). The effect of the nonmagnetic Cu overlayers decreases slightly (by 0.25µB) the magnetic moments of Fe at the Fe/Cu interface from those of the free-standing surfaces, indicating the persistence of the two-dimensional magnetization at the interface. Magnetic hyperfine fields are compared among various magnetic states; the interface Fe atoms are found to experience a larger hyperfine field than the inner layers for the magnetic ground state due to the retention of antiferromagnetic coupling between Fe layers away from the interface. Electronic charge-density, work-function, and single-particle spectra are presented and discussed. The calculated energy dispersions agree well with a recent photoemission measurement by Onellian et al.

©1987 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v35/p925
DOI: 10.1103/PhysRevB.35.925
PACS: 73.20.-r, 73.40.-c, 73.60.Aq, 75.30.-m


Add to article collection View Page Images or PDF (1309 kB)

Previous article | Next article | Issue 3 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. For example, see G. A. Prinz, Phys. Rev. Lett. 54, 1051 (1985).
  2. J. B. Newkirk, Trans. AIME 209, 1214 (1959).
  3. W. A. Jesser and J. W. Matthews, Philos. Mag. 15, 1097 (1967); and, 17, 595 (1968).
  4. S. C. Abrahams, L. Guttman and J. S. Kasper, Phys. Rev. 127, 2052 (1962).
  5. G. J. Johanson, M. B. McGirr and D. A. Wheeler, Phys. Rev. B 1, 3208 (1970).
  6. U. Gonser, C. J. Meechan, A. H. Muiv and H. Wiedersick, J. Appl. Phys. 34, 2373 (1963).
  7. B. Window, Philos. Mag. 26, 681 (1972) [dot INSPEC].
  8. C. Berghout, Z. Metallk. 52, 179 (1961).
  9. J. G. Wright, Philos. Mag. 24, 217 (1971) [dot INSPEC].
  10. W. Kümmerle and U. Gradmann, Solid State Commun. 24, 33 (1977) [dot INSPEC].
  11. W. Keune, R. Halbaner, U. Gonser, J. Lauer and D. L. Wil- liamson, J. Appl. Phys. 48, 2976 (1977) [dot SPIN][dot INSPEC].
  12. R. Halbauer and U. Gonser, J. Magn. Magn. Mater. 35, 55 (1983) [dot INSPEC].
  13. C. Rau, in Trends in Physics, edited by J. Janta and J. Pantoflicek (Union of Czechoslovakia Mathematicians and Physicists, Prague, 1984), Vol. 2, p. 422.
  14. U. Gradmann and H. O. Isbert, J. Magn. Magn. Mater. 15 - 18, 1109 (1980).
  15. C. S. Wang, B. M. Klein and H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985).
  16. L. E. Klebanoff, S. W. Robey, G. Liu and D. A. Shirley, Phys. Rev. B 30, 1048 (1984).
  17. C. L. Fu and A. J. Freeman, Phys. Rev. B 33, 1755 (1986).
  18. D. Weller, S. F. Alvarado, W. Gudat, K. Schröder and M. Campagna, Phys. Rev. Lett. 54, 1555 (1985).
  19. C. L. Fu, A. J. Freeman, E. Wimmer and M. Weinert, Phys. Rev. Lett. 54, 2261 (1985).
  20. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
  21. E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B 24, 864 (1981), and references therein.
  22. M. Weinert, E. Wimmer and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).
  23. O. Haase, Z. Naturf. A 14, 920 (1959).
  24. M. Onellion, M. A. Thompson, J. L. Erskine, C. B. Duke, and A. Paton (unpublished).
  25. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977) [dot INSPEC].
  26. A. J. Freeman and R. E. Watson, in Magnetism, edited by G. T. Rado and H. Suhl (Academic, New York, 1965), Vol. IIA, p. 167.
  27. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972) [dot INSPEC].
  28. C. L. Fu, A. J. Freeman and T. Oguchi, Phys. Rev. Lett. 54, 2700 (1985).
  29. S. Ohnishi, A. J. Freeman and M. Weinert, Phys. Rev. B 28, 6741 (1983).
  30. C. L. Fu and A. J. Freeman (unpublished).
  31. M. F. Onellion, C. L. Fu, M. A. Thompson, I. L. Erskine and A. J. Freeman, Phys. Rev. B 33, 8833 (1986).


Add to article collection View Page Images or PDF (1309 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 3 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]