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Mills’s model of a surface spin-flop transition

Robert H. Barron

Stockton State College, Pomona, New Jersey 08240

Paul Mazur
Rutgers University, Camden, New Jersey 08102 ‘
(Received 17 February 1987; revised manuscript received 27 May 1987)

The coupled equations which result from Mills’s model of a surface spin-flop (SSF) transition
in an antiferromagnet in a uniform external magnetic field are solved exactly on a computer. The
results are compared with Keffer's approximate analytical result. Also, an example of an SSF
state is presented for the case when the magnetic field is confined to several layers of the crystal

at the surface.

I. INTRODUCTION

Sometime ago Mills! analyzed a model of a semi-
infinite antiferromagnet on which is imposed a uniform
magnetic field. He searched for static spin structures in
which the energy was a minimum. For small external
magnetic fields, the lowest-energy state is the normal
aligned antiferromagnetic (AF) state. Mills has demon-
strated that as the magnetic field is increased the
minimum-energy structure becomes one in which the
spins near the surface turn through a larger angle than the
spins deeper down inside the crystal. This state is called
the surface spin-flop (SSF) state. The angle at which the
spin turns goes to zero as its distance from the surface in-
creases. But the angle between neighboring spins on adja-
cent layers remains very close to z throughout the crystal.
As the magnetic field is further increased the SSF state
- changes abruptly to what is called the bulk spin-flop (SF)
state. The SSF-SF transition is first order since the ener-
gy of the state also changes abruptly. After Mills’s work

Keffer? analyzed the same model more accurately and ob-
tained a more reasonable scenario for what was happening
to the minimum-energy structure as the magnetic field
was increased. Mills later suggested to one of the present
authors that it would be of interest to see if a ferromag-
netic crystal joined to an antiferromagnetic crystal could -
cause the spins to turn and thereby produce a new
minimum-energy static spin structure analagous to the
SSF state. The mathematical analysis became somewhat
unwieldy and it was decided to study the problem with the
aid of a high-speed computer. The effect of a ferromagnet
on the antiferromagnet was simulated by restricting the
external magnetic field to only the first few layers of the
antiferromagnet near the surface.

II. DISCUSSION OF THE NUMERICAL
ANALYSIS AND RESULTS

Following Mills and Keffer, we start with their general
expression for the energy of the spin structure which is

E=—1H,Y, (cos2a21+coszﬁz;+1)+HZ (cosay; +cosBa+1)

1=0 =0

+ L Hg i [cos(aar — Bay +1) + (1 — 87 9)cos(aar — Brr—1)] .

=0

The subscripts on ¢ and 8 number the layers and ay; and
Bo; are the angles between the spins and the positive z
axis. If the applied field H is greater than zero it points in
the negative z direction. All spins on the same layer make
the same angle with respect to the z axis. H4 and Hy are
the effective anisotropy and exchange fields, respectively,
in the molecular-field approximation. Following Mills we
minimize (1) with respect to ay and B+ to obtain, for
=0,

sinCeg 42— Bor+1) +sinlay — Bor+1)

=2&sinBy+1=¢sin(2By+1) , (2)

sin(ay — Bor+1) + (1 — 8; 0)sin(az — Ba-1)
= —2¢&sinay +EsinQRay) . (3)
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Here é=H/Hg and {=H 4/HE.

In the numerical analysis it is not necessary to assume
that {<£<K1 as Keffer and Mills did. Equations (2) and
(3) apply to the infinite lattice when the Kronecker & is
dropped from (3). In this case a=ay = — By +; for all /
is a'solution to the equations with « given by

cosq = — & .
2—-¢

This solution gives a spin structure called the SF state.
When & and { satisfy Mills’s criterion, a is close to 3 7.
In the numerical analysis, of course, we dealt with a lat-
tice containing V layers rather than with a semi-infinite
lattice. We assumed that ¢ was constant on the first # lay-
ers and zero on the rest of the layers and then searched for
a minimum-energy structure. This was done and as a by-
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- product we solved Mills’s equations exactly on the computer to compare with Keffer’s analytical result. We have plotted
a number of interesting graphs for comparison. Our procedure was to arrange Egs. (2) and (3) in the following sequence

starting with the first layer:

sin(ap— B1)
sin{a; — B1) +sin(ag— 1)

sin(aZN—,BZN+1)+sin(a2N—,82N_1) = —2§sinam+§sin(2am) f
sin(aay — Bon +1) +&sin(QBon+1)  =2&sin(Bon+1) -

The computer calculation consisted of choosing ag arbi-
trarily on the surface layer. The subsequent equations
then determine B;, ai, B2,..., etc., in turn. The last
equation becomes a consistency condition which must be
satisfied since the a and B which appear in this equation
have already been determined from the previous equations
of the set (5). If it is not satisfied, ag is chosen to be a
different value between 0 and # and the process repeated
until the consistency condition is finally satisfied. Keffer
determined analytically the functional dependence of ay
on / and is given as follows:

sinZay = {1+ [1 — (b6 %/a?)1sinh2Qai)} 71 ,
with
al=20+2—¢2
()
b2=2p(E2=0) .

We now describe and discuss the results which are plotted
in the figures. The first layer of spins is called the zeroth
layer and the rest of the layers are numbered consecutive-
ly. The even-numbered layers are the ¢ layers. The odd-
numbered layers are the B layers. We also let ay be the
angle which a spin in the 2/th layer makes with the z axis,
with a similar definition for 83;+;. The angle between a
and B in two neighboring layers is very closely equal to
180°. Therefore, we have plotted only a as a function of
the numbered layer. This follows the convention of Mills
and Keffer.

The curve labeled A in Fig. 1 is a plot of Keffer’s ap-
proximate analytical result reproduced as Egq. (6).
Keffer’s result is for a semi-infinite crystal, i.e., for an
infinite number of layers. Note that the spins in the
zeroth layer (surface layer) are perpendicular to the mag-
netic field, while the spins gradually line up with the field
as one moves towards the interior of the crystal. For the
values of { and & chosen, almost complete alignment is at-
tained by the 100th layer. This spin structure is called the
SSF state. This state is obtained for only a narrow range
of values of ¢ and & The value of & for curve A4 is
0.14000. For a slightly greater value of £(=0.1407), we
obtain curve B. Note that all of the spins in the deeper
layers are beginning to turn perpendicular to the magnetic
field. As the field is increased even further, this turning
sweeps throughout the crystal until a value of & approxi-
mately equal to 0.1408 is reached. At this value « be-
comes imaginary in Eq. (6) because a becomes imaginary.
Of course, there is a solution for any values of { and &, but

= —2Esinao+ ¢sin(2ag) ,
=2E&sinB; — &sin(2B8;) ,

)
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it does not have the character assumed by Mills and
Keffer. Curves C and D in Fig. 1 are the computer-
generated exact solutions to the Mills-Keffer equations.
Curve D is an exact solution calculated for £=0.14000
which is to be compared with curve A, Keffer’s approxi-
mate analytical result. The two curves are quantitatively
and qualitatively quite different. Both Mills and Keffer
deduce that the spin in the surface layer is perpendicular
to the magnetic field while the exact result gives that the
spin is very close to 180°, The numerical results also indi-
cate that as the number of layers increase, the spin in the
surface layer approaches 180° as a limit. We have deter-
mined also the energy of our magnetic states per double
layer in units of Hg. For curve D this energy is
—1.008066. For a slightly larger value of £ =0.141 24 we
obtain curve C, which still has the character of a surface
spin-flop state with energy equal to —1.008140. Note
that the energy has decreased when & increases in this
range of H. But at £=0.14125 the minimum energy state
is not the SSF state but the SF state with the energy in-
creasing to — 1.007 5006.

In Fig. 2 we have plotted a vs [ for the case when there
is a constant applied magnetic field on the first six layers
with zero field on the rest of the layers. The total number
of layers is 98. Again both curves have {=0.01. When
E=0.2 (curve 4) the minimum-energy structure is an
SSF state with the energy equal to —1.0009762. When

FIG. 1.

A, Keffer’s analytical result for ¢=0.01 and
£=0.1400; B, same as A except &=0.1407; C, exact solution for
¢=0.01 and £=0.14000; D, same as C except £=0.14124.
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FIG. 2. Plot of spin angle vs even-numbered layer when
external magnetic field is confined to the first six layers of a 98-
layer crystal, with {=0.01. Curve 4, £=0.2. Curve B, £=0.21.

£=0.21 the SSF state goes through a maximum before
the spin angle drops to zero on the other surface. It is in-
teresting to note that the energy of this state (curve B)
has increased to —0.9957 but is greater than the fully
aligned state for the same value of the external magnetic
field. It would appear that the SSF state is at a saddle
point in the energy while the aligned state is a true
minimum. Further analysis is warranted using for exam-
ple the Morse critical-point theory. :

Mills’s model of a semi-infinite antiferromagnetic crys-
tal permits other spin structures in which the energy is at
least a relative minimum. For example, in Fig. 3 is a plot
of a vs / for a minimum energy structure in which a goes
negative. The calculations were also done in double pre-
cision so it does not appear that a going negative as the re-
sult of the propagation of any error. We have observed
many minima of the kind seen in Fig. 3 and it appears
that stable spin waves would develop around such
minimum energy structures. We should point out that
Egs. (2) and (3) yield only extrema in the energy E. If
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FIG. 3. Another SSF state not described by Keffer’s analyti-
cal result. £=0.01 and £=0.1415. The number of layers is 258
and the energy is —1.0062. Magnetic field has same value on
all of the layers.

the choice were only between a relative minimum or a rel-
ative maximum it would be easy to determine which it is
by calculating E for values of a and § in the close proxim-
ity to the values which give the minimum energy. Ifit is a
saddle point, a random number process to calculate E in
the near vicinity could mistakenly indicate a relative
minimum (or maximum). For example, if your choice of
az; and By + solved all of the equations in (2) and (3) ex-
cept one, the corresponding value of E would not be an ex-
tremum although it might appear to be one as you ob-
served in a random manner the values of E in the neigh-
borhood. All of our results were obtained for a crystal in
which one side is bound by an « layer and the other side is
bound by a B layer. In order to discount the possibility
that an error was propagated through the equations as we
passed from one side of the crystal to the other side we
also solved the equations by starting from the opposite
side. Finally, we mention that the model appears to have
a richness of solutions which was unanticipated.
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