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Lattice distortions of a two-dimensional array of one-dimensional classwal Heisenberg spin chains
with magnetoelastic coupling are studied in the limit of strong interchain elastic interactions. Exact
integration over the spin degrees of freedom leads to a temperature-dependent free-energy functional
of the elastic variables only. The equilibrium lattice structure is obtained from the ground state of
this free-energy functional and the phase diagram indicates the presence of a tricritical point. The
necessity of performing the calculations at constant pressure is stressed and it is shown that a dimer-
ized phase could be reached by applying pressure to certain magnetic materials, provided that there
exist positive second-neighbor elastic interactions. The consequences of lattice distortions on the
short-range magnetic order are studied by calculating the wave-number-dependent magnetic suscep-
tibility. It is found that the dominant short-range magnetic order is of period four in the dimerized

lattice phase.

I. INTRODUCTION

Magnetoelasticity and magnetostriction have been the
subject of much theoretical and experimental research for
more than 30 years. One long-standing controversy con-
cerns the order of the magnetic transition in the presence
of a magnetoelastic coupling. In order to obtain a reliable
answer to this problem, renormahzatlon-group calcula-
tions have been performed by Sak,! Bergman and Halpe-
rin,2 de Moura et al.,> and many others.* By the
Wikson-Kadanoff momentum shell integration technique
on an elastic continuum Hamiltonian, it has been found
by € expansion that the order of the transition depends
mostly on the constraints (constant volume or constant
pressure), the rotational symmetry of the elastic continu-
um, and the boundary conditions. Unfortunately, this
kind of continuum approach, although quite successful
for handling the g =0 instabilities, is not suited to deal
with instabilities near the zone boundaries. In this paper
we shall study a simple microscopic model in which such
instabilities are produced by a magnetoelastic coupling;
we show that these may induce new magnetic short-range
order at finite temperature 7" and possibly new magnetic
phases at T =0.

The model consists of one-dimensional (1D) classical
Heisenberg spin chains interacting with three-dimensional
(3D) elastic variables. It will be shown that, even if the
1D interacting spin system cannot sustain long-range
magnetic order at finite T, it can create, by means of a
magnetoelastic coupling, nonuniform lattice instabilities
and thus a phase transition at finite T for elastic variables
interacting in three dimensions. This lattice distortion
will in turn affect the short-range magnetic order and
thus its long-range order at T'=0 in the distorted lattice
phase. In particular, it will be shown that the dominant
short-range magnetic order in a dimerized phase is of
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period 4 (the spin configuration: tti{i{tt...). In this
way, the magnetoelastic coupling changes the form of the
long-range and short-range order present in the bare lat-
tice and the bare 1D magnetic system.

The analogue of this model for Ising chains has been
treated by Pytte.® Our approach differs greatly from his
since we cannot convert our classical Heisenberg model to
a pseudo spin problem. Nevertheless, our results are quite
similar to his. However, in addition, we show that a
dimerized phase could be reached by applying pressure in
certain magnetic materials, provided that there exist posi-
tive second-neighbor elastic interactions. It will become
clear that there cannot be any nonuniform lattice distor-
tion in a translationally invariant 1D spin system on a 3D
lattice with only first-neighbor interactions present, since
the lattice free energy is then simply a sum of bond-free
energies. In addition to this, we shall investigate the
short-range magnetic order in the presence of a lattice dis-
tortion by a calculation of the wave-number-dependent
magnetic susceptibility,

This problem has been treated previously by Penson
et al.%” for an mcompress1ble chain. Our results show
that such an approach is not justified for magnetoelastic
problems since the integration over the spin variables
yields, in general, an equivalent pressure term. Therefore,
for experimental applicability, calculations should be per-
formed at constant pressure. Nevertheless, we recover
their results in the limit of very large second-neighbor
elastic interactions compared to the first-neighbor elastic
interactions since the chains are then incompressible. Our
approach also differs in that we did not make a Landau
expanswn of the bond-free energy W(x), as did Penson
et al.,%" noting that each term A” of such an expansion is
mulnphed by (J;/kpT)", where J; is the first derivative
of the exchange integral evaluated at the equilibrium bond
length. It is easily verified that such an expansion is ha-
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zardous since we are interested in the limit kp7T <<J;. In
fact, it is mathematically "easier, and of course more
rigorous, to work with the exact form of W (x).

The organization of this paper is as follows. By an ex-
act integration in spin space we derive, in Sec. IL, a free-
energy functional of the elastic variables only. The equili-
brium lattice structure will be obtained from the station-
ary configuration corresponding to the lowest minimum
of this free-energy functional, which we refer to as the
ground state. In Sec. III we show that since the ground
state is either uniform or dimerized, we only need two
variables to find them. In Sec. IV we present the phase
diagram for the lattice structure and show how the dimer-
ized phase cdn be reached at low temperatures for some
magnetic materials by means of a positive applied pres-
sure. In Sec. V we investigate the kind of short-range
magnetic order present upon lattice distortion, by calcu-
lating the wave-number-dependent magnetic susceptibili-
ty. Finally, the main results are discussed and summa-
rized in Sec. VL '

II. EXACT FREE-ENERGY FUNCTIONAL
OF ELASTIC VARIABLES

In order to study the form of the lattice distortion that
occurs in a two-dimensional array of classical Heiseriberg
spin chains coupled together by means of elastic interac-
tions, it is important to avoid unnecessary complications.
.Thus we assume that all the elastic interchain couplings
are identical and sufficiently strong to achieve a 3D
structural long-range order with all the elastic variables in
phase with their interchain nearest neighbors. In this case
the identical distortion (if any) of each chain can only be
modulated along one direction and all the transverse elas-
tic couplings need not be included in the Hamiltonian.

This kind of elastic anisotropy can be found in certain .

quasi-one-dimensional magnetic systems® that have a
high-temperature structural rearrangement which pre-
pares the softening of the lattice in one particular direc-
tion without softening in the other two directions. There-
fore, as a model for this physical problem, we propose the
following one-dimensional translationally invariant Ham-
iltonian H for N atoms:

N-—1 N-—-1
H=K1 E (uj+1—uj—a1)2+p 2 (uj+1—uj)
j=1 j=1

N-—2 - - .
+K2 2 (;uj_,_z——uj—Zaz)z
j=1

N—1
+ 2 J(u).,_]—uj)SJ'SJ_H ’ (2-1)
j=1

where the u;’s describe the absolute locations of the atoms
along the chains under the external pressure (or tension) p.
The equilibrium distance a; of positive first-neighbor
elastic interactions (K;) could, in general, be different
from the half-equilibrium distance a, of the paositive
second-neighbor term K,. These atoms also possess clas-
sical spin degrees of freedom which are described by a 3D
Heisenberg unit vector S; interacting with first neighbors
through the exchange integral J, which is a function of
the atom’s spacing.
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J(u;1—u;) is expanded around the first-neighbor
equilibrium distance a; and only the linear part is kept:
J(Uj+1—uj)=J(a1)-?-(uj_i.l—uj—'al)fl(al) (2.2)
where J'(a;) is the first derivative of J(x) evaluated at
x =a;. Making use of thz simple gauge transformation,
uj=ja,+x; , (2.3)

and rewriting (2.1) in terms of x; with the linear approxi-
mation (2.2), we obtain® (apart from a constant indepen-
dent of the degrees of freedom)

N-—1 S N1
H=K1 2 (xj_H-—xj)z-l-P 2 (xj+1—xj)
j=1 i=1 .

N—2
+Ky 3 (xj40-%;8
=

N-1 :
~- 2 [JO_(xj-l-l_xj)JI]Sj'Sj+1 . 2.4
j=1
where Jo=J(a,y), Ji=—J'(ay), and P=p

—8K,(a;—ay). Note that the misfit (a;—a;) of the
elastic interactions simply renormalizes the pressure term.
However, if the magnetoelastic coefficient J, is zero, the
spins decouple totally from the elastic variables, and the
harmonic lattice, described by the first three terms on the
right-hand side of (2.4), has a uniform stable ground
state!® given by

Uj=Xj+1—xj=——P/.(2K1+8K2) .

Therefore there is no “built-in” instability in the bare lat-
tice. )

Now the central question we want to answer is the fol-
lowing: Is there any 3D structural order that can bifur-
cate from the uniform state when the harmonic lattice is
coupled through J; to the 1D Heisenberg chains? It is in-
formative to begin with a qualitative analysis of the effect
of the magnetoelastic coupling in order to understand the
physical origin of the effective lattice Hamiltonian ob-
tained below from an exact integration over the classical
spin degrees of freedora. Let us first define a bond-
dependent exchange integral, y;=Jo—Jv;, where
vj=X;y1—X; is the bonc| variable. From the Hamiltonian
(2.4) it can be seen that an increase in the absolute value
of y; always leads to a decrease in the energy of the mag-
netic term, regardless of the sign of the exchange integral.
In the presence of magnetoelastic coupling, y; changes as
a result of variations in the bond length. For small lattice
distortions, the dominant term is given by (2.2) and hence
the gain in magnetic energy depends linearly on the dis-
tortion. This linear dependence, combined with the quad-
ratic dependence of the clastic energy, gives rise to a new
equilibrium bond length. If the exchange integrals y; can
pass through zero, as in Fig. 6, then there can be two
equilibrium positions for each bond. Therefore, the total
energy of each bond will have the form of a double-well
potential and the net result is an “overscreening” of the
first-neighbor elastic interaction K; by the magnetoelastic
coupling. At finite temperature, this effect will be
smeared by 1D spin fluctuations and thus we expect that
the effective double-well bond energy will appear at a cer-
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tain critical temperature. However, if only first-nearest-
neighbor interactions were present, then the 3D lattice
structure would be driven, by J;, towards a uniformly dis-
torted array of linear chains. This explains the impor-
tance of the second-nearest-neighbor elastic interaction
K,. By restricting the variation in the second-nearest-
neighbor equilibrium distance, K, forces successive bond
lengths to alternate. Let us now return to a quantitative
analysis of this phenomena.

The 3D equilibrium lattice structure will then be the
ground state of the following (temperature-dependent) en-
ergy functional F, of the elastic variables obtained by in-
tegrating over the classical spin degrees of freedom,

dQ, dQy

41 4

where B=1/kgT, dQ;=7sin(6;)d0;d;, and (6;,¢;) are
the spherical polar angles of the unit vector S;. For-
tunately, (2.5) can be evaluated exactly because of the uni-
dimensionality of the spin interactions, the absence of an
external magnetic field, and the isotropy of the exchange
integrals. To perform these integrations, one expresses S;
with respect to S;,; during the integration over d{);
(starting with S;). We immediately find (apart from a
constant, independent of T, and of the elastic variables),

N—1 N—1 N—2
Fo=3 Wp)+B 3 »+C 3 (yj1+y)?, (2.6)
j=1 j=1 j=1

exp(—pBF, )= exp(—BH), (2.5)

where
W(y)=2"1p2—B~!In[sinh(By)/(By)] , 2.7
B=—(P/J))—2o(K|+4K;)/T?, (2.8)
and |
C=K,/2K, . 2.9)

All the energy quantities like y; are scaled by J 1/2K,.
W(y) is plotted in Fig. 1 for different temperatures
7=1/B. It is clear that W (y) becomes a double-well po-
tential for r< . At ¢ =0 it is described by the double
quadratic well

W) | r=o={ly —sgn(»)P—-1}/2,

where sgn(y)=+1 for y >0and —1 for y <0.

Therefore the effects of the 1D spin system on the elas-
. tic variables is twofold. Firstly, the first-neighbor elastic
interaction K is “overscreened,” so that if B =0, the uni-
form ground state of (2.6) bifurcates into a dimerized
ground state at 7=+ for C >0. Secondly, the pressure
term is renormalized for a nonzero value of J, giving the
linear (y<>—y) symmetry-breaking term B. Since mag-
netic materials have in general a nonzero value of Jy, it is
essential for physical realism to study the effects of the B
term. Furthermore, it is an experimentally accessible pa-
rameter that can be changed by varying the pressure p.
However, it is to be noticed that the symmetry-breaking
field B only affects the ¢ =0 part of the free energy F,.
This means that it cannot create, by itself, an instability of
periodicity other than the one included in the remaining
part of F, [in our case, W{(y) and C]. Nevertheless, it

(2.10)
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FIG. 1. The function W (y) for various values of the tem-
perature. Curves 1, 2, 3, and 4 are for 7=0.0, 0.15, 0.3333, and
2.0, respectively.

changes the y,_o part of the ground state, and hence
modifies the transition temperature. In fact, B can
suppress the transition completely if it is large enough. °

It is important to realize that it is the overscreening ef-
fect of the magnetoelastic coupling on X, that produces
the lattice instability and that a dimerization can occur
only in the presence of a positive K,. But it should be
mentioned once again that there is no instability in the
bare lattice even in the presence of K,. The instability
occurs because of the linear magnetoelastic coupling J;.
In the following sections we will find the 3D equilibrium
lattice structures, given by the ground state of F,, for
various values of B, C, and 7. This description, which is
essentially of the mean-field type, neglects fluctuations
out of these ground states and the results so obtained
should be realistic outside the critical region.

IIIl. REDUCTION TO TWO DEGREES OF FREEDOM

For B =0, the ground state of F, is easily found. It is
the uniform state y;=0 for r> 1 and it bifurcates to a
double degenerate dimerized state for 7< % and C>0.
Therefore, in this translationally invariant model, the pos-
itive second-neighbor elastic term is essential to stabilize
the dimerized state. Without any next-nearest-neighbor
interactions, F, is reduced to a sum of bond-free energies
and the ground state is either a uniform state if # has a
single nondegenerate minimum (e, for 7>+ or 7<+
and Bs0) or a random deformed state which is
2(N —1)-fold degenerate if W has 2 degenerate minima
(i.e, for 7< 3 and B =0). This result is to be contrasted
with the behavior predicted for the quantum spin-Peierls
transition®!! where dimerization results from 2k nesting
of the quasifermions and is present even in the absence of
the second-neighbor elastic term.



For nonzero value of B, the ground state is modified by
a uniform distortiori and the dimerized instability will
manifest itself at 7<<+. As already mentioned, the B
term cannot produce an instability of different periodicity
than the one involved in W and C. Therefore the ground
state of F, is always either uniform or dimerized. Then,
without loss of generality, we only need two independent
variables y, and y,, the two exchange integral value of
* adjacent bonds, to describe the equilibrium lattice struc-
ture {y;}=(y1,¥2,¥1,¥2, - - - ). It is double degenerate if y,
is different than y, (in the dimerized state). Therefore,
the ground state of the free energy may be found by
minimizing f, =F, /{N —1) which reads

Fe=2"fu0 D) +£u0)1-CO1 -2, (3.0

where f,(y), the free energy per bond in the uniform state
y1=Y2=), is given by ﬁ

fuP)=W(y)+By +-4Cp? . (3.2)
The extremum conditions' 3, f, =0 and 3,,f, =0 give

y1—y2=L(By1)—L(By,), (3.32)

Y1+y2=A[L(By)+L(By)1+2¢ , (3.3b)

where A4 =(148C)"!, g=—A4B, and L (x)= coth(x)
—1/x is the Langevin function. Since K, >0 and K; >0,
A is constrained tc the interval [0,1]. In the uniform.
state, (3.3) reduces to

y=AL(By)+g . G4

Since f, is a function of only two independent vari-
ables, stability of the extrema of f, is assured by requir-
ing!? that

af,’al’fe aylayzfe

>0 (3.§a)

2 .
aylayz_fe ay%.fe -

and

a;%fe >0, (3.5b)

where all the derivatives are evaluated at the solations
(y1,¥2) of (3.3). Ccnsequently, a solution of (3.3) is a lo-
cal minimum of £, only if

7+ AL'(By1)L'(By,)—7(1+ A)[L"(By)

+L'(By,)]/2>0 13.6a)

and ‘ '
L'(By))<r(14+47172, (3.6b)
whére L'(x) is the first derivative of L (x). For the uni-

form state y; =y, =y, the stability conditions (3.5) reduce
to 82 2f,, >0. Using (3.2), this can be written as

7> AL'(By) . (3.7)

In summary, for a given set of (1,g,4), the ground state
is the configuration of lowest energy f, amongst the uni-
form states [satisfying (3.4) under the stability constraint
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(3.7)] or the dimerized states [satisfying (3.3) under the
constraints (3.6)].

IV. PHASE DIAGRAM
FOR THE LATTICE STRUCTURE

At T =0, Egs. (3.3) and (3.4), subject to the constraints
(3.6) and (3.7) are easily solved to obtain the phase dia-
gram in Fig. 2. Since W{(y) has two minima, two uni-
form states are obtained: y;=y,=yV =4 +g, which is
stable for g > —4, and y; =y, =y~ =—A4 +g, which is
stable for g < 4. A doubly degenerate dimerized state
(y1,y2)=(g+1,g —1) is stable for —1 < g <1 and is the
absolute ground state for (4 —1)/2<g <(1—A4)/2. Be-
cause of large metastable regions in parameter space, all
transitions would be accompanied by hysteresis effects
around the first-order transitions at g =+(1—4)/2 where
the uniform state bifurcates discontinuously to an alter-
nating (i.e., single-bond ferromagnetic and the other anti-
ferromagne’uc) dimerized state. The dependence of the
phase diagram on the ratio of next-nearest- to nearest-
neighbor elastic interactions is obtained by varying A.
For example, if A =1 (€ =0) the ground state is always
uniform but there is a discontinuous change of chain

" length (first-order transit.on) at g =0.

At finite temperature T Egs. (3.3), (3.4), (3.6), and (3.8)
are solved numerically. A typical phase diagram for the
value A =% is presented in Fig. 3. A tricritical point
separating the regions of first- and second-order transi-
tions is obtained. At "=0, the results of Fig. 2 are
recovered. In Appendix A, the calculation of the exact
position of the tricritical point as function of 4 is present-
ed. The results are plotted in Fig. 4. For 4 =0 (C infin-
ite), we obtain 77=0.237 38(6), in agreement with the re-
sult of Penson et al.%" for the incompressible chain.
Phase diagrams for diffzrent values of A4 are plotted in
Fig. 5. The tricritical points were obtained using Appen-

. dix A. The dimerized region collapses on the g =0 line as

4 goes to 1, indicating the absence of a dimerized state
for K,=0. Since the phase diagrams are symmetric with
respect to an inversion of g, only the parts g >0 are
shown. On the other hand, the solutions (y;,y,) become
(—y2,—y1) upon an inversion of g and (y,—y) at g =0
(for C >0).

The dominant feature of Fig. 5 is that the dimerized

(g+l,g-1)

FIG. 2. The T =0 phese diagram and stability regions for
the two uniform phases (y * and y~) and the dimerized (doubly

~ degenerate) state (y;,;)=(g +1,8 —1). The dotted lines indi-

cate metastable states and the solid lines the ground states.
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FIG. 3. Phase diagram and stability regions for 4 =—;—. The
ground state is a dimerized state in region D and a uniform
state in regions M and U. The dimerized state is metastable in
region M. The large dot represents a tricritical point above
which the transition is second order and below which it is first
order.

" phase is possible only for < +and |g | smaller than a
value which is a function of 4: |g| <(1—4)/2 for
T =0. The pressure needed to be in the dimerized region
depends on the type of magnetic material. Four different
types of magnetoelastic materials with nonzero value of
Jy are located on a typical curve (see Fig. 6) of the ex-
change integral versus first-neighbor distance. Recall that

" Jo and J; are, respectively, the value of the exchange in-

tegral and negative value of the gradient evaluated at a;.

Since g =Jo+AP/J;, a positive applied pressure could

drive materials of type 2 and 4 of Fig. 6 into the dimer-

ized phase by lowering the absolute value of g. The order

of magnitude of the pressure needed depends on J,, J,,

and A. A rough estimate'* indicates that it is quite acces-

sible for a system that would have a presoftening mecha-
nism (small K;) at a higher temperature. Materials of
type 1 and 3 are driven further away from the dimerized
region by a positive applied pressure since the value of
| g | then increases. By the inverse argument, if a nega-
tive applied pressure (stretching the crystal) could be real-
ized experimentally, it would drive materials of type 1 and

3 into the dimerized phase and materials of type 2 and 4

away from it.

Figures 7(a), 8(a), and 9(a) illustrate the typical behavior
of the exchange integrals y as a function of g for r> 7y,

0.350 5
0325
0.300
0275
0.250

0.225 3 : : : :
00 02 04 06 asA 10

Tr

FIG. 4. Temperature 7r of the tricritical poinf as a function
of 4.
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FIG. 5. The phase diagram for different values of A4:
4 =0.0, 0.15, 0.30, 0.45, 0.60, 0.75, and 0.90, for curves 1, 2, 3,
4, 5, 6, and 7, respectively. The dotted lines are first-order tran-
sitions and the solid lines are second-order ones. The dimerized
state is the ground state in the region below the curve for a
given A. The large dots are tricritical points.

T=7r, and 7<Tr. These results are numerical solutions
of (3.3), (3.4), (3.6), and (3.7). Again, only the part g >0
is shown [recall that (y;,y,) becomes (—y,,—y;) upon
changing g into —g]. For g >0, the uniform state has an
antiferromagnetic exchange integral whereas it has a fer-
romagnetic exchange integral for g <0. This uniform
state bifurcates into the dimerized state at some critical
value of g (given in Fig. 5), continuously for 7> 7 and

+ discontinuously for 7 < 7y to two values of y in the dimer-

ized state. Numerically, a continuous increase in the
jump of y, —y, starting at zero for r=7; and going to 2
at 7=0 is observed. These figures represent either dila-
tion of contraction (relative to a;) of the bonds, depend-
ing on the sign of J; for a given material. For example, if
J1>0, an increase of y represents a decrease in bond
length whereas it is an increase for J; <0. Note also that
since J; enters in g, an increase of g represents an in-
crease of p for J; >0 but a decrease of p for J; <0.

FIG. 6. Schematic representation of the exchange integral y
as a function of the nearest-neighbor distance x. The dots
represent the actual value of y at the first-neighbor elastic in-
teraction equilibrium distance a, for four different types of
magnetic materials. We have Jo>0 and J; >0 for material 1,
Jo <0 and Jy >0 for material 2, J; <0 and J; <0 for material 3,
and finally, Jo >0 and J, <O for material 4.
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FIG. 7. (a) Bifurcation of the exchange integral y of the uni-
form state to two values (represented by the upper branch and
the lower branch) in the dimerized state. A4 =0.3 and
7=0.29> 7. (b) Calculations of Xy from the solution (a). The
solid line is for k =r/2, the dashed line for k =, and the
dotted-dashed line for k =0.

V. SHORT-RANGE MAGNETIC ORDER

A 1D spin system cannot sustain any long-range mag-
netic order. Nevertheless, we have shown that it can in-
duce a lattice instability in a 3D elastic crystal as a resuli
of magnetoelastic coupling. One convenient way 0 see
how this lattice instability in turn affects the short-range
magnetic order is by a study of the wave-number-
dependent magnetic susceptibility Xz. The value of k& for
which X has the largest value gives the dominant short-
range magnetic order period 27 /k present in the spin sys-

. R
y /j/ Pk
L (a)
_1:....1.,..1,...1.”
0.0 [oX] 0.2 03 g 04 T L
L5 - - SR
Xkof S .
00 N Rt
0.0 [eX] 0.2 Q3 . 04

g

FIG. 8. Sarae as Fig. 7 for r=77r=0.27778.
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FIG. 9. Same as Fig. 7 for 7=0.23 < 77.

tem. For example, if the maximum value of Xj is at
k =0 (k =) the dominznt short-range magnetic order is
ferromagnetic (antiferromagnetic). If it is at k =7/2, the -
dominant short-range order is of period 4 (the spin config-
uration: TTLLTTLLe"" ).
The wave-number-depandent static magnetic suscepti-
bility X is defined as the linear response of (S%);
Xy =3y, (SE Mh, =0 (5.1)

to a small external magnstic field (whose direction defines
the z axis). The additional contribution H,, to the Ham-
iltonian is

N +
Hext=_ 2 hJS]z="— 2 hka_k ’

(5.2)
j=1 k=—m
here we have used the Fourier series,
T .
hij=N"12 3 me™, (5.32)
k=—m
- .- Far
SI=N-12 3 Sie™. (5.3b)
k=—m .
Therefore, (5.1) gives the usual correlation function:
Xx=B(SES* )
¥ | .
=(B/N) S e *UI-m{(gisz ), (5.4)

Lm=1

where now { ) stands for the thermal average without

Hgy. It is shown in Appendix B that, for an arbitrary

configuration of exchange integrals {y;}, we have
' jAn—1

(8287,,0=3"1 [ L(—By)

I=j

(5.5

for n > 1 [{(S]? =+]" and L(x) is the Langevin func-

_ tion. Inserting (5.5) into (5.4) and making extensive use of

finite geometrical progressions, we obtain for a dimerized
chain {y;} =(y1,y2,y1,p; =+ ) of N spins:



4716

M. MARCHAND, A. CAILLE, AND R. PEPIN 34

(1+x2)xN—l_2x2

1
zQ2Z _ _
(SESTi) =5y (N—2)+ ;

2
x

Nt+——7
1—x? —X

-+c.c.

Li+L, [N—~1+xN+1—x2

(L \L)HV? 1—x2
where

b4 =(L1L2)1/2€ik .

2 1—x?

+c.c. |, (5.6)

(5.7)

L, .=L (—By1), Ly=L (—By,), and c.c stands for the complex conjugate of the preceding term. We recover the result of
Fisher'® for the uniform chain if L =L,. In the thermodynamic limit of N going to infinity, (5.6) reduces to

(1—L{Ly)[(14L{Ly)+(L{+Ljy)cos(k)] _

(SisZ,y=3""1

(1—L,L,)*+4L L, sinXk)

] . - (5.8)

In order to investigate the kind of singularity that occurs in Xy at T =0, we use the following asymptotic expansion: -

L(|x|>>D)=11—x"140(¥>). (5.9)
the T =0 limit of X; for the uniform chain becomes
. —aonet | [12(BY) ™ 4+ (By) 2]+ [(By)~ ' 1]cos(k)
li X=(3)‘[ , 5.10)
raos KT Y (By) 2+ sin’(k) : (

where the upper (lower) sign stands for the ferromagnetic
(antiferromagnetic) case. The only singularities in (5.10)
are for k=0 and k=w. For the antiferromagnetic
(y >0) case, we have

lim Xp_o=(6y)7", (5.11a)
T—0+

lim X;_,=2B%, (5.11b)
T—04 )

and for the ferromagnetic (y <0) case we have
) . 2m.

Tli‘?+ Xk—0=—75BY, (5.12;1)

lim Xp_r=—(6y)"". (5.12b)
T->0+4

Therefore, the dominant short-range magnetic order at
T =0+ is ferromagnetic or antiferromagnetic (depending
on the sign of y) for the uniform chain. For the dimer-
ized alternating (y; >0, y, <0) chain, (5.8) is singular at
T =0 only for k =m/2. Xy _r/, then reads

Tlirg)1+l'k=,/z=%ﬁzy1yz/(yz—y1) ) (5.13)
for (y;>0,y; <0). Therefore, the dominant short-range
magnetic order for the dimerized alternating chain is of
period 4. As a result of the magnetoelastic coupling, the
lattice distortion at T >0 has to produce a different
long-range magnetic order for the 1D spin chain at T =0.

For a nonalternating chain (y; and y, of the same sign)
Xy is singular at T'=0 only for k =0 (k. =) when y; <0
(y2>0). However, at T =0, we have seen in Sec. III that
the dimerized chain is always alternating. Thus the first-
order dimerization transition at g =2(1—4)/2 for T =0
is accompanied by a magnetic transition at the same value
of g.

At finite T the dimerized state is not necessarily alter-

nating, as shown in Figs. 7(a) and 8(a) when the uniform
state bifurcates continuously to a dimerized nonalternat-
ing state. We have to get deeper into the dimerized region
to obtain the alternating ground state. Some typical
finite- T results for X; are shown in Figs. 7(b), 8(b), and
9(b). The results were obtained from the numerical
evaluation of (5.8) with the (y,,p,) solutions of Figs. 7(a),
8(a), and 9(a). The immediate increase of Xy -, (in com-
parison with other k values) at the phase transition is
quite clear. As g goes to zero, k =/2 is definitely the
wave vector for which the magnetic susceptibility has the
largest value. This has been checked with other k values
not shown in Figs. 7, 8, and 9. Therefore, from these fig-
ures, it becomes clear that the dominant short-range mag-
netic order is of period 4 in the dimerized phase. When
the transition is continuous, one must go deeper in the
dimerized phase in order that the maximum of the mag-
netic susceptibility be located at k =7/2. As expected,
the maximum of X, is at k = in the uniform state when
g >0 since then the exchange integrals y are antifer-
romagnetic. Note that X;_,=X;—¢ at g =0 (i.e,, when
yi=—ya)

V1. CONCLUSION

We have shown that a three-dimensional lattice struc-
ture of one-dimensional classical spin chains can distort
itself in the presence of a magnetoelastic coupling. In
contrast with the quantum spin Peierls problem,!! a pos-
itive second-neighbor elastic interaction is needed to have
a dimerized ground state in a translationally invariant
Hamiltonian with first-neighbor spin-exchange interac-
tions. The action of 1D spin chains on the lattice struc-
ture is twofold. First, it screens the first-neighbor elastic
interactions; and second, it renormalizes the pressure term



for nonzero values of J,. Our calculations were pet-
formed at constant pressure. This approach has enabled
us to predict that a dimerized phase can be reached by ap-
plying pressure to the appropriate magnetic material.
Moreover we have shown, by a calculation of the

wave-number-dependent magnetic susceptibility, that the

dominant short-range magnetic order in the dimerized
phase is of period 4. This short-range order becomes a
long-range order at T =0. Therefore, the lattice distor-
tion produced by the magnetoelastic coupling has stron, gly
affected the magnetic propertles

Finally, let us stress that, in view of the work of Janssen
and Tjon,!® incommensurate ground states should occur
in this magnetoelastic problem if the bare lattice has
third-neighbor elastic interactions, their quartic double-
well first-neighbor term being replaced by W(x). Again,
the pressure term that paturally arises in this magneto-
elastic problem could not create by itself any instability at
another wave vector but would modify the equilibrium
states (by a ¢ =0 component) and change the phdse boun-
daries.
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APPENDIX A

In this appendix we show how to calculate the location
of the tricritical point by its temperature dependence as =
function of 4. Recall that at a tricritical point, a second-
order transition becomes first order. Therefore, the solu-
tion (y,y,=y;+€) does not fulfill the stability condi-
tions (3.6) as € goes to zero when the transition becomes
first order. To find the conditions under which this hap-
pens, we use the following expansion for small positive 8:

L(y)=L(x)4+8L"(x)++8L"(x)+6'8°L""(x)+ - -
(A1)
and rewrite (3.3) as
L(y)=L(x)+75, (A2)
where x =fy, and y =fy,=x +8. Then, we can write
=L"(x)+58L"(x)+6718°L""(x)+ - - - (A3)

Therefore, the stability condition (3.6b), to first order in §,
can be written as

(1—A)L'(x)+3(1+A)BL"(x) >0, (A4

which is always satisfied for 80 and 4 <1.
Using (A1), (A2), and (A3), the stability condition
(3.6a), to second order in 8, can be Wwritten as

82[3—1(1——A)L'(x)L"'(x)Tl—AL”(x)z] <0. " (AS)

Therefore, for a given A, the temperature 71 of the tri-
critical point is given by
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Tp=L'(x), (A6)
with x the solution of

3= M1 —A)L"(x)L""(x)+ AL"(x)*=0 . (A7)

The numerical solutions of (A7) with 7 given by (A6) are
plotted in Fig. 4.

APPRENDIX B

We consider the following classical Heisenberg Hamil-
tonian for an arbitrary collection of exchange integrals vy

B="3 ¥i8i°8j 41
=1
and want to calculate the correlation function

dQ dQ
(87874n)=2" lf 1"'_"I\L'S’Z*S'ZHCXP(—BH),

- (B1)

(B2)

where Z is the partition function for the Hamiltonian
(B1):

N-—-1
Z= IIII z (B3)
with
z;=(By;)~sinh(By;) . (B4)

Each integral in (B2), for I <j and I>j+n, gives z.
Therefore, (BZ) reduces to

aQ; dQ;

. TR 2oz
(sf. Sj J+n )= f 4mrz; 4n1zj . p S5 +n
jt+n—1
X exp | —B Z Y181°Si 41 (B5)
=j
By the spherical harmonics addition theorem,!” we have
exp( —Byjsf 'SJ'+1)= E A'Im(yj)YIm(ejr"Sj)
Lm )
X Yim (6 4156, 11) » (B6)
with the eigehvalues Apa(y;) given by : '
m +‘1 i
A (yj)=2a(—1)" | dxPy(x)exp[ ~By;x], (B7)
where Pj(x) are the Legendre polynomials. Since

%5 cos(6;)=(4m/3)12¥14(6;,¢;), the first integral in

-

X eXp(—BY; tn—18j4n—1"Sj4n) » (B8)

cos(t)j 4p)

by (B6), (B7), and the orthonormalization of the spherical
harmonics Y},,, becomes: ‘
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I=(127)" 1/27t1o(3>’j+n—1)1’10(6’j+n—1,¢’j+n.-1) (139)
Therefore, all the integrals for / >j in (BS) are the same
and the final result is easily obtained,

¢ JEn=1
(S3874)=3"" I [Arolo)/(4mz))]
I=j

(B10)
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which, by (B4) and (B7), bepomes

(8787 4n)=3"" H L("l3}’1)

(B11)
=) .
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