Home Browse Search Subscriptions Help
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 34, 4710–4718 (1986)

[Issue 7 – October 1986 ]

Previous article | Next article | Issue 7 contents ]

Add to article collection View Page Images or PDF (712 kB)


Lattice distortions and short-range magnetic order in classical magnetoelastic Heisenberg chains

M. Marchand, A. Caillé, and R. Pépin
Département de Physique et Centre de Recherche en Physique du Solide, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
Received 7 April 1986

Lattice distortions of a two-dimensional array of one-dimensional classical Heisenberg spin chains with magnetoelastic coupling are studied in the limit of strong interchain elastic interactions. Exact integration over the spin degrees of freedom leads to a temperature-dependent free-energy functional of the elastic variables only. The equilibrium lattice structure is obtained from the ground state of this free-energy functional and the phase diagram indicates the presence of a tricritical point. The necessity of performing the calculations at constant pressure is stressed and it is shown that a dimerized phase could be reached by applying pressure to certain magnetic materials, provided that there exist positive second-neighbor elastic interactions. The consequences of lattice distortions on the short-range magnetic order are studied by calculating the wave-number-dependent magnetic susceptibility. It is found that the dominant short-range magnetic order is of period four in the dimerized lattice phase.

©1986 The American Physical Society

URL: http://publish.aps.org/abstract/PRB/v34/p4710
PACS: 75.10.Hk


Add to article collection View Page Images or PDF (712 kB)

Previous article | Next article | Issue 7 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. J. Sak, Phys. Rev. B 10, 3957 (1974).
  2. D. J. Bergman and B. I. Halperin, Phys. Rev. B 13, 2145 (1976).
  3. M. A. de Moura, T. C. Lubensky, Y. Imry and A. Aharony, Phys. Rev. B 13, 2176 (1976).
  4. See Ref. 2 for an additional list of references.
  5. E. Pytte, Phys. Rev. B 10, 2039 (1974).
  6. K. A. Penson, A. Holz and K. H. Bennemann, Phys. Rev. B 13, 433 (1976).
  7. K. A. Penson, A. Holz and K. H. Bennemann, J. Chem. Phys. 65, 5024 (1976).
  8. J. W. Bray, L. V. Interrante, I. S. Jacobs, and J. C. Bonner, Extended Linear Chains Compounds, edited by J. S. Miller (Plenum, New York, 1982), Vol. 3, pp. 353 – 415, and references therein.
  9. We should mention for the meticulous reader that, after the decomposition xj+2 -xj =vj+1 +vj, we have made the approximation sumN-1^vj=2j =^sumN-2^vj=1j =^sumN-1^vj=1j valid for N >> 1.
  10. This can be easily shown by minimization of H with respect to the Fourier components of the bond variables vj.
  11. G. Beni and P. Pincus, J. Chem. Phys. 57, 3531 (1972).
  12. Here and henceforth, partial fe / partialy is symbolized by partialy fe.
  13. Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972).
  14. For example, for J0 app -10 (in units of J21 /2 K1 ), A app 0.9, and J1 app 100 K/ Å, the applied pressure needed to get into the dimerized phase is estimated to be the order of 1 kbar for chains having cross sections of (10 Å )2.
  15. M. E. Fisher, Am. J. Phys. 32, 343 (1964).
  16. T. Janssen and J. A. Tjon, Phys. Rev. B 25, 3767 (1982).
  17. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970).


Add to article collection View Page Images or PDF (712 kB)

Previous article | Next article | Issue 7 contents ]

Home  | Browse  | Search  | Subscriptions  | Help  ]

E-mail: prola@aps.org