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A new method, involving the solution of a nonlinear eigenvalue equation, is proposed for finding
the ground-state configurations and energies of the Frenkel-Kontorova and similar one-
dimensional models which can show complicated transitions between commensurate and incom-
mensurate phases. It is used to show that a distinctive phase diagram can arise if a cosine potential

is perturbed by the addition of suitable harmonics.
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Commensurate-incommensurate phase transitions
pose a number of interesting and challenging theoreti-
cal problems.! One difficulty in studying them is the
scarcity of exactly solvable models. Even one-dimen-
sional, classical systems with nearest-neighbor interac-
tion at zero temperature and competing length scales
turn out to have a wealth of interesting properties
which are still not very well understood. (There is an
enormous literature on the subject; we refer the reader
to some of the more recent works.2"!!) This paper
describes a method for studying such one-dimensional
systems by use of a functional equation for an “‘effec-
tive potential,”” (8) below, and presents a new type of
phase diagram obtained by this means.

Consider a one-dimensional system of atoms with a
potential energy

H(u)) =3, [W oy — 1) + V)], (D)

where u, is the position of the nth atom, W is the po-
tential energy of a spring connecting two neighboring
atoms a distance y apart, and

V(u+1)=V(u) (2
is a periodic potential. The particular case

Wy =30—-v)2 (3)

V(u)=K(1—cos2mu)/(27)?, @

is often called the Frenkel-Kontoroval? model. The
problem is to find the ground-state energy per particle
A and the configuration of atoms in the ground
state(s) as a function of parameters such as y and K.
When K =0 the atoms will be regularly spaced with
separation v, whereas when K is sufficiently large they
will (unless v is half an odd integer) all be at minima
of the potential. Thus there are two competing length
scales, and at intermediate values of K a very complex
behavior can occur, with either commensurate phases
in which #, modulo 1 is a periodic function of n, or in-
commensurate phases.

A number of studies®-!! of the ground states of (1)
have been based upon searches for solutions to the
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equilibrium equations
0H/du,=0. 5)

In particular, it is possible to relate u,+; to u, and
through an area-preserving two-dimensional
map, which can then be studied numerically or by
methods applied to other dynamical systems.!*-1¢ Not
surprisingly, the mapping problem turns out to be just
as challenging as the original ground-state problem, or
even more so since not only the ground state but also
\(Ia)rious metastable and unstable configurations satisfy
6).

Our approach, by contrast, consists of looking for
configurations of atoms in which (1) is actually a
minimum in an appropriate sense, and thus resembles
some work of Aubry.2? It is based on the following
physical picture. Suppose that an atom moving in an
arbitrary periodic potential

Ulu+1)=U(w) (6)

is connected by a spring to a second atom moving in
the periodic potential V; see Fig. 1. For a fixed posi-
tion u’ of the second atom, the minimum energy of
the combined system is

Uw')=xUW)
=V(')+min, [ W (' —u)+ U], @)

Uy

where the expression in the second line defines the
nonlinear functional transformation %" In particular,
when U=V, ¥V (u’') is the minimum energy of two
atoms in the common potential ¥ connected by a
spring, provided that one of them is fixed at #’. Simi-

FIG. 1. The potentials U () and V' (u").
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FIG. 2. The effective potential R (u) for K =3, y=0.36. 5 /
. : 0.5} .
larly, if the functional transformation is iterated n :
times, % *V is the minimum energy of a chain of » /
atoms in the potential V, provided that the right-most o T L 1
atom is at a specified position. Note that ¥ "V has the 0 0.5 I 1.5 2
ul

same periodicity as ¥. Thus as » tends to infinity it is
plausible that ¥ and "V will differ by n\ plus some
oscillatory term of order 1. Rather than looking at
iterates of J7 it is convenient to search for a periodic
[R(u)=R(1+u)] solution to the nonlinear ‘“‘eigen-
value’’ equation

KR )=A+R(u)
=V(u') +min, [ W(u' —u)+R(u)]. (8)

Provided that V is continuous and periodic a /a Eq.
(2), and W is continuous and bounded below, one can
show that (8) always possesses a continuous periodic
solution R, and the corresponding A is unique (for
given ¥ and W). In addition, the (in general one-to-
many) map

u=1(u’) C)]

obtained by noting which « minimizes the right-hand
side of (8) can be employed to generate a ground-state
configuration of atoms {u,}. (More details will be
given in a later publication.) Another procedure for
obtaining Eq. (8) is to consider a transfer matrix and
take the limit as the temperature goes to zero.!”

A straightforward numerical approach to the study
of (8) is to impose a grid of a hundred (or more or
less) equally spaced points in the unit interval and
then apply J to functions defined on these points. A
solution to (8) can be obtained by insertion of a first
approximation on the right-hand side to generate a
function which when averaged with the first gives the
second approximation, and so forth. The correspond-
ing map (9) can then be iterated to find a ground-state
configuration.

As an example, Fig. 2 shows R for K=3 and
v=0.36, under the assumptions (3) and (4), while
Fig. 3 shows the corresponding function 7. Note that
R is continuous but has a discontinuous first derivative
at the same points where 7 is discontinuous. This is
what one expects in a situation in which the ground
state is ‘“‘pinned” to the periodic potential, whereas
one expects R and 7 to be smooth functions when the
chain of atoms can “‘slide’’ under zero force.?°®
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FIG. 3. The mapping u=7{u’) corresponding to Fig. 2.

A portion of the phase diagram'® in the (y,K) plane
is shown in Fig. 4. One expects an infinite number of
“tongues’’ corresponding to commensurate phases
with different rational values of the winding number
(average separation between neighboring atoms), in
analogy with Aubry’s results for a potential V of re-
peating parabolas.!?

However, a very different type of phase diagram is
possible, as shown in Fig. 5, with a potential

Viu = [1+e—cos2mu —ecosdmrul, (10)

_K_
(2m)?
with €e=0.1. Note that the tongues are now split by
horizontal lines at which there is a ““first-order’’ transi-
tion between distinct ground states having the same
winding number. The phases marked A4 are similar to
those which arise with use of (4), whereas in those
marked B there is an atom located at u = %, the max-
imum of the potential. Our numerical studies, which
use the more conventional approach based on (5) in
addition to (8) in order to locate the transition points
precisely, strongly suggest that the number of such
horizontal bars increases with increasing Q for a ra-
tional winding number w=P/Q. There are special

FIG. 4. Phase diagram for the Frenkel-Kontorova model.
The numbers are values of the winding number w. The un-
labeled regions contain additional structure, as in Fig. 25 of
Ref. 1.
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FIG. 5. Phase diagram for V given by Eq. (10) with
€=0.1. The solid circles are some of the points on the
boundaries of w=0 and 0= % where horizontal bars accu-

mulate.

points on the boundaries of phases with rational
which are apparently points of accumulation of these
bars, and where the boundary has a discontinuous
slope. Figure 5 shows one such point on the boundary
of =0 and two on the boundary of w=%. At these
values of K the minimum-energy soliton (‘‘kink> or
“discommensuration’’) changes its character. It
seems likely that there are infinitely many such accu-
mulation points, and hence accumulation points of
these accumulation points.

The behavior shown in Fig. 5 does not depend on
the precise choice of €, but seems to be present for a
range of € values beginning at (but not including)
€ =0, whereas for € =0 we find diagrams topologically
similar to Fig. 4. Instead of a second harmonic, one
can add a third harmonic [replace 47 in (10) by 6]
and obtain a diagram similar to Fig. 5, with in this case
€ < 0. Thus the simple cosine (4) appears to be on
the borderline between two very different types of
behavior.

One advantage of (8) over alternative approaches to
the study of this class of problems is that there is ro
need that W in (1) be a convex function. Both the ap-
proach of Aubry®3 and those®-!! based directly on the
mapping associated with (6) make use of the convexity
of Win an important way. They are thus not immedi-
ately applicable to a case such as

W(y)=1—cos2mw(y —v), 11

which when combined with (4) is equivalent to a one-
dimensional classical xp model with a chiral interaction
placed in an external magnetic field (proportional to
K). We find that a numerical study based on the
minimization equation (8) works just as well with (11)

as (3) and yields a phase diagram which is significantly
different from cases in which W is convex. Details
will be reported in a later publication.

Whether or not W is convex, solving (8) yields the
ground state rather than a metastable or unstable state.
The main disadvantage in using (8) is that one must
solve for a function R which contains much more in-
formation than is present in the ground state. This ad-
ditional information is sometimes useful; for example,
in calculating the energies of the solitons which deter-
mine the range of y values over which some o is
stable.?

In summary, the functional equation (8) provides a
new tool for studying the ground states of systems of
the type (1), and the phase diagram in Fig. 5 illustrates
its utility.
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