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A nonlinear eigenvalue equation whose solution is an “effective potential” is used to study the

. ground states of one-dimensional systems (such as the Frenkel-Kontorova model) whose Hamiltoni-
an Hl is a sum of terms V(u,)+ W (u, . —u,), where the u, are real and i/ is periodic. The pro-
cedure is not limited to convex W, and it yields the ground-state energy aid orbit, in contrast to

metastable or unstable states, and some information about “soliton’’ defects.

[t can be generalized to

H asum of K (x,..(,X,), where the arguments may be multidimensional. Nu nerical solutions of the
eigenvalue problem are used to work out phase diagrams for W a parabola, and various choices of

V. With ¥ a cosine plus a small admixture of a

second or third harmonic with the proper sign, we

find first-order transitions between states of the same winding number o but different symmetry. A
piecewise parabolic ¥ with continuous first derivative_can yield sliding states.(invariant circles) with

rational . . o

I. INTRODUCTION

In recent years there has been an extensive study of
phases and phase transitions in systems in which there are
two natural length scales, such as the spacing between
atomic planes and the pitch of the helix in a system with
helical magnetization, whose ratio changes as a function
of temperature or some other parameter and can “lock”
onto a rational number corresponding to a ‘“commensu-

rate” state, or pass more or less smoothly through a series

of values associated with an “incommensurate” state.! —*

As usual in theoretical physics, one way to study these
systems is to consiruct mathematical models which are
sufficiently complex to mimic the phenomena of interest
while also sufficiently simple to allow an exact analysis or
a well-defined series of approximations. One of the sim-
plest models of this type is the ground state of an infinite
one-dimensional system of atoms with energy

H=3 [V )+ Wty —teg_)] 5 1.1
n

where u, is the position of the nth atom, ¥V is a periodic
potential of period 1,
Vil+u)=V(u), (1.2)

and W is a potential energy linking nearest neighbors; for

example,
W)=+ —v)? (1.3)

is often employed. The two length scales are the period of

¥ and the distance ¥ between atoms in the ground state if |

V were equal to zero. These compete in determining the

average separation between neighboring atoms, or *wind-

ing number”
Un) (1.4)

which can be a coraplicated function of ¥ and the ampli-
tude K of the potential V. For example, it is believed that

w=<un+1_

34

o as a function of ¥ viill for a typical V exhibit a “devil’s
staircase” in which ezch rational value of @ is Iocked in
over some finite interval-of ¢ values.”~’

This model, along with various generalizations, has
been discussed extensively in the literature. Some of the
more recent work is described in Refs. 6 through 24.
Finding its ground stzte is not easy, and the only case we
are aware of where this has been done analytically is when
V is a “scalloped” potential of repeating parabolas.”-?4—26
A common attack on the problem is to employ the force
equilibrium equations

0H /9u,=0 (1.5)

to generate a nonlinear area-preserving map, and then to

study this mapping numerically or to find general

theorems applying to such maps. The map obtained using
(1.3) and Va constant times —cos(27u) is often called the

“standard map” and has been studied extensive-
1y.!014=1827-35 However, the fact that (1.5) also holds for
metastable and unstasle states means that the mapping
problem is in some sense more complex than the ground-
state problem, as Aub:'y%!? has emphasized. Whereas it is
certainly possible to make a numerical comparison of the
energies of different orbits for this map, there seems to be
no other general prccedure which will distinguish the
ground state from oth:r equilibrium states.

In order that the mapping corresponding to (1.5) be sin--
gle valued, it is necessary that W be a strictly convex
function. Aubry®~!° has used the convexity of W and
certain (not very restrictive) conditions on ¥ to prove a
number of properties about the ground state of (1.1) even
when it cannot be obtained explicitly. [Mather’®3* has
obtained some of thes¢: results (and others) independently.]
He has then used thes: propert1 esina numencal approach
to finding the ground state.’

In this paper we present yet another approach to study-
ing the ground state of (1.1) using an “effective potential”
satisfying a nonlinear elgenva.lue equat1on derived in Sec.
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III below. (A preliminary account has appeared else-
where.’®) Its main advantage is that unlike approaches
based on (1.5) it singles out the ground state, and unlike
Aubry’s procedures it works for both convex and noncon-
vex W. Its main disadvantage is that one must solve a
functional equation, in general by numerical methods. In
actual applications we have found it useful to combine the
effective potential method with other numerical pro-
cedures, as noted in Sec. VI of this paper.

The effective potential arises rather naturally as the
zero-temperature limit of an appropriate transfer operator
(“matrix”), and in this form it has appeared earlier in the
literature.?” So far as we know, however, ours is the first
attempt to exploit the properties of the eigenvalue equa-
tion in a systematic way to study the properties of the
ground state of (1.1). This general type of eigenvalue
problem arises in other fields of applied mathematics, and
the book of Cuninghame-Green®® is a useful reference.
While his results do not cover our specific problem (which
involves continuous functions), they are a useful guide and
do apply directly to the discrete approximations which we
use in numerical studies.

The effective potential approach can be applied to vari-
ous generalizations of (1.1). From an abstract point of
view it is convenient to write

H=3K(x, 1:%) (1.6)

where K is a continuous real-valued function whose argu-
ments reside in a compact metric space. This form in-
cludes, for example, the mean-field approximation to the
axial next-nearest-neighbor Ising (ANNNI) model,!7>3%40
with the x; being points inside a two-dimensional square.
While some of the general definitions in this paper em-
ploy (1.6), all of the applications presented in this paper
are restricted to (1.1), i.e.,

Ku' u)=V{u"Y+Wlu' —u) . (1.7

(Section II shows how to deal with the fact that the vari-
ables u and u’ are not in a compact space.)

An outline of the rest of the paper is as follows. The
appropriate notion of “ground state” for an infinite sys-
tem is developed in Sec. II. In Sec. IIT we derive the
minimization eigenvalue equation and discuss some of its
properties. Associated with this equation is a (one-
dimensional) map, some of whose properties are discussed
in Sec. IV. This section also shows how to calculate the
excitation energy of some simple defect structures. Our
numerical procedure for solving the eigenvalue problem is
the subject of Sec. V. Sections II and IV are somewhat
technical and can be omitted in a first reading.

Several specific cases involving a harmonic W, (1.3), are
considered in Sec. VI: ¥ a cosine potential, a cosine po-
tential perturbed by adding a second harmonic, and a
piecewise parabolic potential with continuous first deriva-
tive. The last two cases yield phase diagrams with transi-
tions between states with the same winding number but
different symmetry, analogous to those found in Ref. 24
in a finite electric field. '

WEIREN CHOU AND ROBERT B. GRIFFITHS 34

II. MINIMUM-ENERGY (ENTHALPY) STATES
AND GROUND STATES

We are interested in the states of lowest energy of (1.1)
or {1.6) for an infinite chain, — 00 <7 < o, and some care
is needed in the definition since the total energy is in gen-
eral infinite. Following Aubry,'”® we call {u,} a
“minimum-energy configuration” if for any p <gq,

g—1
z [V(uj+1)+ W(uj+1—uj)] (2.1)
j=p

will remain constant or increase if u, . ,up 2, ..., 854

are altered in any way, with u, and u, fixed. That is to
say, the change in energy in altering a finite number of u’s
is always positive or zero.

Next define a2 “minimum-enthalpy configuration” as
one in which for any choice of p <g, (2.1) can only in-
crease or remain constant if u,,y,...,u,_ are altered
by any amount and u, is changed by adding an integer
{positive, negative, or zero). One can visualize this as a
change in which the gth atom and all its neighbors to the
right, i.e., all u, for n>gq, shift their positions by the
same integer amount. Given that V is periodic and W de-
pends only on differences, the change in (2.1) can plausi-
bly be said to represent the change in energy in such a sit-
uation. Allowing changes of this type is roughly analo-
gous to employing a constant pressure ensemble in statis-
tical mechanics, which suggests the term enthalpy.

In the minimum-enthalpy condition, W in (1.1) can be
replaced by

W*(y)= rr:’iln Wim+y), (2.2)
assuming (as we shall) that the minimum over all integers
m exists. The reason is that if for any nearest-neighbor
separation u, —u,_;, W has a value greater than W™, the
energy {enthalpy) can be lowered by shifting all the u,
with #n>p by the same integer amount. Thus a
minimum-enthalpy state relative to ¥ is also one relative
to W*, and the converse is also true, since a minimum-
enthalpy state for W™ can be changed into one for W by
altering each nearest-neighbor distance by a suitable in-
teger.
It follows from (2.2) that W* is periodic,

W*(14+p)=W*(y) (2.3)

and hence given any minimum-enthalpy configuration
{u,} for W*, another can be constructed by adding an ar-
bitrary (n-dependent) integer to each u,. Thus in search-
ing for such configurations one may assume that every u,

belongs to the interval
O<u, <1 2.4)

which should be thought of as a circle (1 the same point
as 0). This circle is a compact metric space with the obvi-
ous choice of metric,

du',u)=minf{ |u'—u |, |u'—u—1],|u'—u+1]|}.
(2.5)

For the more general case (1.6), a minimum-energy config-



uration is simply a configuration {x,}, —oc0 <n < oo,
such that for every p <gq,

2 K (x4 1,%) - 2.6)
remains constant or increases if x, ,1,%, 42, . . . ;X4 _1 ar®

altered in any way while x, and x, are held fixed. The
previous discussion referring to (1.1) agrees with this if we
set

K(y,x)=V(y) 4 W*(y —x), 2.7)

except that the minimum- -energy configuration is now
what we previously called a minimum- enthalpy configura-
tion.

As in the general case it is more natural to think of K
as an energy rather than an enthalpy, and this is the com-
mon terminology im lattice models where n labels the lat-
tice site, we shall hereafter employ the term minimum-

energy configuration to refer to what we earlier termed a

minimum-enthalpy configuration for (1.1).

In what follows, we shall always assume that D is a
compact metric space and K is a continuous (real-valued)
function on D XD. [Note that (1.1) with W replaced by
W*, the u, confined to the circle (2.4), and K given by
(2.7) satisfies this continuity condition if both ¥ and W¥W*
are continuous, and that in most cases of interest—in par-
ticular for W given by (1.3)—the continuity of W* is im-
plied by the continuity of W.] One can then show that
the energy per particle

g—1
A= lim lim (g—p)~"' ¥ K(xj p%))

P—>—wg—w j=p

2.8

exists for any minimum-energy configuration {x;} and is
independent of which minimum-energy configuration is
considered, i.e., A depends only on K. A ground-state con-
figuration { x,} is defined in terms of

K(y,x)=K (y,x)— (2.9)
by the condition that for any p <g,
q—1 __ .
2 K(xj+lyxj)=A(xq7xp) » (2-10)
J=p
where
L
A(x',x)=inf | ¥ K(y; 1.y} po=xy1=x' 2.11)

and [ is allowed to be any positive integer, and the
Y1,Y2, - - - »V1_1 can be chosen arbitrarily. That is to say,
{x,} is a ground state provided the energy of any finite
segment (from p to q) expressed in terms of K cannot be
lowered by replacing this with another segment of (possi-
bly) different length which has the same end pomts (xp
and xq) As K differs from K by a constant, it is clear
that a ground state is a minimum-energy configuration,
but the converse is in general not true.

Given any configuration {yp, ], its excitation energy A
relative to the ground state is defined by the formula
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p—1 _
> Ky uy) =AW,y _,) (2.12)

j=-r

Al{y,})= lim

b—

The quantity in large parentheses is obviously non-
negative, and can be shown to be monotone nondecreasing
in p. Hence the limit exists, though it may be + . A
confipuration is a ground state if and only if A=0. States
which are minimume-energy configurations but not ground
states typically contain a defect*!~* (sometimes called a
“domain wall,” “soliton,” ‘“kink,” “discommensuration”)
which cannot be eliminated by displacing a finite number
of atoms. For such configurations A may be thought of
as the defect energy.
A configuration {u,} is periodic provided there are in-
tegers P and Q such that for »n any integer,
pro=P+u, . (2.13)
The smallest positive Q for which this equation holds is
the period, and the wir ding number is
o=P/Q . (2.14)
In the more general case of a configuration {x,} of ele-
ments drawn from D, 2.13) is replaced by
XnpQ=ZX, , (2.15)
and the winding number o is in general undefined.
A periodic minimum-energy configuration {x,} is

necessarlly a ground siate, and A, (2.8), can be obtained by
averaging over a cycle,

Q-1
A=0713 K(x;y1%)) . (2.16)

j=0

Consequently

o-—1_
z K(xj+1,xj)=()
j=0

(2.17)

and from this one can infer the result that for any p and
q,

8(xp,%4)=0, (2.18)
where 8 is defined by
8(x',x)=A(x",x)--Alx,x") , (2.19)

and is always a non-negative quantity.

For later purposes :t is useful to define a pure ground
state {x,} as one in vhich (2.18) holds for any p and g.
Such a state may or may not be periodic, and there can be
ground states which ae not pure ground states. What we
term a pure ground st:ite seems to be much the same thing
as Aubrys ground state,'’ though we have not studied
this in detail, and as his approach uses a somewhat dif-
ferent starting point and technical conditions, a direct
comparison is not simple.
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III. MINIMIZATION EIGENVALUE EQUATION

A. Derivation of the equation: Effective potentials
R, S,and F

Consider the problem of finding the ground state for a
system of atoms with interactions given by (1.1). As a
first step in the derivation of the eigenvalue equation (3.3)
below it is useful to consider a system of only two parti-
cles, the first moving in a periodic potential

Ull+u)=U(u) (3.1)

and the second in the potential V, with the two connected
by a spring with potential energy W, see Fig. 1. For a
fixed position u’ of the second atom, the minimum energy
of the combined system is

U )=FUlu)=V(u)+min[Wu'—u)+U)],

(3.2)

where the right-hand side defines the action of the non-
linear functional transformation %" acting on U.

In the particular case in which U=V, #'V(u') is the
minimum energy of two atoms in a common potential ¥,
connected by a spring, provided the second atom is fixed
at u’. Similarly, if the functional transformation is iterat-
ed n times, # ™V is the minimum energy of a chain of n
atoms in the potential ¥ provided the right-most atom is
at a specified position. Note that ¥ ™V has the same
periodicity as ¥. Thus as n tends to infinity it is plausible
that ¥V and ¥V differ by nA, where A is the ground-state
energy per particle, plus a term of order 1.

Rather than looking at iterates of ¥, it is convenient to
search for a solution to the nonlinear eigenvalue equation

FRw)=A4+Ru"Y=V(u')+min[W(u'—u)+R(u)],

(3.3

where we impose the requirement that R have the same
periodicity as V,

R(14+u)=R(u). (3.4

We shall call R the “effective potential.” It is at once
clear from (3.3) that

K "R =nA-+R , (3.5)

and thus R has the following property. If a finite chain
of n atoms connected by springs is placed in a potential
¥, but the left-most atom is in a potential R rather than
¥, the minimum energy of the entire system as a function
of the position of the right-most atom is given by R +nA.

FIG. 1. Potentials U(u)and V(u').
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Assuming that R is a bounded function, the energy per
particle of such a system will tend to A as n goes to infini-
ty, and thus A should be the average energy per particle in
any ground state, since placing the first atom in a poten-
tial R rather than V only changes the total energy by a
term of order 1.

One can think of R () as the effective potential acting
on or “seen by” the right-most atom in a semi-infinite
chain, Fig. 2(a), when it is fixed at a position u and the
other atoms are allowed to relax to a state of minimum
energy (or enthalpy). Hence R'(u) is the force which
must be applied (externally) to the end atom to hold it at
position u. This effective potential can only be defined up
to an additive constant, consistent with the fact that add-
ing a constant to any solution R of (3.3) yields another
solution.

There is a corresponding effective potential S(u) for
the left-most atom in a semi-infinite chain extending to
the right, Fig. 2(b), which satisfies the equation

A+Sw)=V{(u)+ min[S(u")+W(u'—u)] (3.6)
and the periodicity condition
S(1+u)=S(u). (3.7

An atom in a doubly infinite chain, Fig. 2(c), will then ex-
perience an effective potential

F(u)=R (u)+Su)—V(u), (3.8)

where ¥V must be subtracted on the right-hand side to
avoid counting it twice. In particular one expects F to
take its minimum value whenever u is a point in some
ground-state configuration. The value of F at other
points can be useful in calculating defect energies, see Sec.
IVD. [In cases in which (3.3) or (3.6) have multiple solu-
tions for R and S, apart from the trivial addition of a
constant, the effective potential F will depend in a non-
trivial way on the choice of R and S on the right-hand
side of (3.8).]

B. Minimization eigenvalue equation
as the zero-temperature limit
of a transfer operator or “matrix”

An alternative derivation for (3.3) begins with a finite
temperature Gibbs distribution for a system with Hamil-
tonian (1.1), assuming that the u, are bounded so that in-
tegrals exist. As is well known, the statistical properties
of such a state can be obtained using a transfer operator
(or matrix) which can be chosen in the form

E AT AVAVAVE
A\VAVAVAvE A

FIG. 2. Sketches showing the intuitive significance of the ef-
fective potentials: (a) R (u); (b) S'(u); (c) Flu).



 Plu' u)=exp{ —BIV )+ W (' —w)]} , (3.9)

where B is the inverse temperature. In particular, all the
thermodynamic properties are determined by the largest
eigenvalue which, by the Perron-Frobenius theorem, is
real and positive and corresponds to an eigenfunction
which (apart from a constant factor) is also real and posi-
tive. Hence the linear eigenvalue problem for this particu-
lar eigenvalue can be written in the form

f Plu',u)e TERW gy — o —Bhg—BRW)

Here A and R depend on j3, but it is plausible that as
B— + oo (zero temperature) they tend to finite limits. If
we suppose that in this limit the integral in (3.10) can be
approximated by the maximum value of the integrand, the
result is (3.3). A similar line of reasoning employing the
left rather than the right eigenfunction of T yields (3.6),
and indicates that for finite but large B, exp[ —BF(u)] is
(approximately) proportional to the probability of finding
a particle at position u.

While this approach to obtaining (3.3) is helpful in
some ways, and has been discussed in the previous litera-
ture,> it is not easy to make it mathematically rigorous,
and even for a simple intuitive understanding it is often
simpler to deal with (3.3) and (3.6) directly.

(3.10)

C. Geometrical construction for the minimization
transformation

The central nonlinear element in (3.3) is the minimiza-
tion operation

Rwh=%Rw)=min[W(u'—u)+Rw)]. (.11

There are two geomietrical perspectives which are helpful
in thinking about this.*> The first consists in noting that
for a fixed u, the graph of W(u'—u)+R (u) as a function’
of u' is simply the graph of the function W (u') displaced
horizontally (by an amount u) and vertically [by R (u)].
Then the right-hand side of (3.11) is the minimum or
lower envelope of these displaced graphs as illustrated in
Fig. 3, where the dashed curves are the original and dis-
placed graphs of W, and the solid line is the function R.
From this construction it is evident that if W is a continu-
ously differentiable function, R may possess an ‘“‘upward
kink” where its first derivative decreases discontinuously,
as in Fig. 4(a), but it cannot have a “downward kink,”
Fig. 4(b), where its first derivative increases discontinu-
ously.

The second perspective employs . S

u’

FIG. 3. Function K is a lower envelope of translations of W
(dashed curves).
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: (u)/ (b)

u ,

FIG. 4. Functions with (a) two upward kinks and (b) two
downward kinks.

u

w(u)=—Ww(—u), (3.12)

a function whose graph is obtained from that of W by a
LE§O° rotation about the origin (Fig. 5). The function
R(u’) can then be constructed by displacing the graph of
w horizontally by an emount u’ and then vertically until
it touches but does not cross the graph of R, as in Fig. 6.
This vertical displacerient is the value of R(u’). To see

that this conmstruction is correct, note that (3.11) is
equivalent to

R 4wlu—u") <R ), (3.11a)

with equality for at least one value of u. The left-hand
side of this inequality as a function of u is a formula for
the displaced graph c¢f w. Also note that if the point
where w crosses the ordinate is regarded as a fiducial
point rigidly attached io the graph of w (the solid circle in
Figs. 5 and 6), its locus for all the conditions in which the
displaced graph of w touches that of R in the manner
described above is the graph of R(u "}, apart from an addi-
tive constant.

D. Some properties of the effective potentials

Let us assume that V and W are continuous functions.
of their arguments, V is periodic, (1.2), and W* in (2.2) is
defined (ie., the minim am exists for all y) and continuous.
Then it can be shown that there is always some continu-
ous and periodic, in the sense of (3.4), function R which
satisfies (3.3), and the corresponding A is unique (for a
given ¥V and W). Similarly there is at least one continu-
ous function § satisfying (3.6) and (3.7), and the (unique)
A is the same as in (3.3). Furthermore, as long as one is
only considering periodic solutions of (3.3) and (3.6), W
may be replaced by W".

Even if ¥V and W h:ve continuous first derivatives, the
first derivatives of R and S need not be continuous. (For
an example, see Sec. VIA.) However, under this condi-.

FIG. 5. Graph of w is obtained from that of W by a 180° ro-

tation in agreement with 2q. (3.12).
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tion R and S cannot have downward kinks, as in Fig. 4(b),
as explained above in Sec. III C. '

It is obvious that adding a constant to some R satisfy-
ing (3.3) yields an equally good solution. However, there
may exist multiple solutions which are not related to each
other in this trivial manner, and which may be thought of
as corresponding to different possible “coexisting phases.”
The situation has been analyzed in some detail by
Cuninghame-Green® for the finite matrix analog of (3.3)
and (3.6), or their generalizations (3.16) and (3.17) in Sec.
IIIE. A complete discussion is outside the scope of the
present paper, but the following remarks will be needed
for some of the applications in Sec. VI.

If there can be multiple solutions to (3.3}, then the gen-
eral solution is of the form

Ru)=min[R, (u)+C,], (3.13)
124
where the R (u), a=1,2,... are “basis functions” corre-
sponding to different “pure phases,” and the C, are real
constants. [It is conceivable that an infinite number of
pure phases will be present, in which case the minimum in
(3.13) should be replaced by an infimum over a suitable
index set.] The same remarks about multiple solutions
apply to S, and whenever there are multiple solutions to
(3.3) there will be multiple solutions to (3.6}, and vice ver-
sa.
In the case of a symmetrical ¥,

Viwy=V(—u), (3.14)

a solution to (3.6) can be constructed from a solution to
(3.3), or vice versa, by setting

S(u)=R(—u). (3.15)

[When there are multiple solutions to either equation,
{3.15) need not necessarily yield the S (or the R) which is
relevant to a particular ground-state configuration under
study.]

E. Minimization equation for general X

The generalizations of (3.3} and (3.6) to the case of H of
the form (1.6) are

A+ R (y)=min[K(y,x)+R (x)], (3.16)

A+ L (x)=min[L (»)+K (3,x)] , (3.17)
¥y

where R and L are right and left eigenvectors of K, and x
and y are drawn from a common domain D. The coun-

wd

N i B
By
S__._.._.-Y;I7

FIG. 6. Geometrical construction for R(x’) using the dis-
placed graph wy of w.

WEIREN CHOU AND ROBERT B. GRIFFITHS 34

terpart of (3.8) is

F(x)=R(x)+L(x). (3.18)

The case where x and y take on only a finite number of
values, so that X is a square matrix, has been discussed at
length by Cuninghame-Green.*® In particular, he has
demonstrated the existence of left and right eigenvectors
and the uniqueness of the eigenvalue, and has provided a
constructive method for obtaining the eigenvalue and all
of the eigenvectors. The generalization of his work which
is most useful for our purposes is that in which D is a
compact metric space and K is a continuous real-valued
function on DX D. One can then show that (3.16) and
(3.17) possess continuous solutions R and L, and that A is
the same in both equations and unique. By using (2.7)
and by defining .

S{uw)=L (w)+V(u) (3.19)

one can show that (3.3) and (3.6) are indeed of the form
(3.16) and (3.17).

IV. MAPS AND ORBITS ASSOCIATED
WITH EFFECTIVE POTENTIALS

A. Mapsrand &

- Given a solution R to (3.3), the map 7(u') associated
with R is the set of points 4 where the minimum on the
right-hand side is actually achieved. There is at least one
such point but there may be more than one, so it is con-
venient to think of 7 as mapping points of the real line
onto nonempty subsets. Similarly, o(u) denotes the set of
points u' where the minimum on the right-hand side of
(3.6) is achieved, given some solution S. In terms of Fig.
2(a), T gives the position of -the atom just to the left of any
given atom in terms of the latter’s location; and similarly
in the situation in Fig. 2(b), o gives the position of the
atom to the right of any atom as a function of the loca-
tion of the latter. When there is more than one solution
to (3.3) (in a nontrivial sense) 7 depends on which solution
is employed, and of course the same comment applies to o
and the solutions of (3.6). Even when these solutions are
unique, 7 is not in general the inverse of o.

The periodicity of R, (3.4), and of S, (3.7), implies that

(4.1)
(4.2)

14+ uw)=14+7(u),
Co(l4u)=1+0(u) .
If in addition V'(u)is V(—u) and (3.15) applies, then

(u)=—oc(—u). (4.3)

(Note that the left and right sides of these equations are
sets.)

In the case of a general K, © and o are defined in the
same manner: 7(y) as the set of points where the
minimum in (3.16) is achieved, and o(x) the correspond-
ing set in (3.17).

B. Half orbits and orbits

The infinite sequence of points {u,} with
n=p,p —1,p —2;... (the numbering is chosen to increase
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from left to right in Fig. 2) is an R half orbit provided

u, _1E7(uy) 4.4)
or, equivalently,
ARu)=V{(u,)+Wl(u, —u,_1)+R(u, ;) 4.5)

for all n <p. Similarly {u,}, n >gq, is an S half orbit if
" (4.6)

U, 1€0(u,)
or, equivalently,
A"'i'bS'(un)=I/v(un)_"‘S’(un_*_1)_"I/Vv(un-]-l'—un) . (4~7}

Given a doubly infinite sequence {u,}, we shall call it an
R orbit if (4.4) or (4.5) holds for all n, — o < < o, and
an S orbit if (4.6) or (4.7) holds for every integer. The
same terminology for orbits and half orbits applies for a
general K, except that S is replaced by L, see (3.17), and
(4.5) and (4.7) are appropriately modified. Note that if
there is more than one solution to (3.3), in a nontrivial
sense, the R orbit(s) will in general depend on which R is
chosen.

Given our basic assumption that D is compact and X is
continuous (the latter is implied by the continuity of V'
and W¥*), one can show that an R orbit is always a
ground state, and that every pure ground state is an R or-
bit, for every R sztisfying the minimization eigenvalue
equation. The same statement holds for L or S orbits.
Furthermore there is always at least one pure ground
state. Given any ground state, there is some solution R to

(3.3) or (3.16) such that this ground state is an R orbit.

" By combining (4.5) and (4.7) one sees that F is constant
at all points on a configuration which is both an R and an
S orbit, and consequently on the points of any pure
ground state. When R and S are unique up to additive
constants (“single phase”), this constant is the minimum
value of F, and F is strictly larger than its minimum at
any point which is not part of a ground state. Thus, in
particular, if there is only one phase and if F is a con-
stant, every point has the property that there is at least
one ground-state configuration which includes it. This

can arise if there is a sliding state {Sec. VI), but in some

other cases as well.

Half orbits (R, S, or L), in contrast to orbits, can be be-
gun at any initial point ug. One’s intuition, see Figs. 2(a)
or 2(b), suggests that as | n | — w0, the half orbit will tend
to look more and more like an orbit, and indeed this can
be proved, provided “tend” is understood in a suitable
weak sense. In our numerical studies (Sec. V), we use
iterations of 7 to find the ground-state configuration.

C. Special properties of convex W

Let us assume that ¥V and W in (3.3) are continuously
differentiable functions, that W is strictly convex (i.e., its
derivative is a monotone strictly increasing function), and
that W(y) tends to + w as |y |—>o Then one can

show that u <u' implies that
u)<(u'), (4.8)

ie., all elements in the left set are strictly smaller than
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those in the right. This condition together with (4.1) is all
that is needed to demonstrate the existence of a unique
winding number o, (1.4), by an easy extension of the stan-
dard argument.

The relationship of R orbits and ground states dis-
cussed previously (Sec. IVB) then implies that every
ground state has -a well-defined winding number (since it
is an R orbit for some R), and if there are several distinct
ground states for a given ¥V and W, they all have the same
winding number (equal to that of some pure ground state
which is an R orbit for every R). It is also clear that half
orbits have the same winding number as the ground state.
[Note that o satisfies (4.8), and pure ground states are also
S or L orbits.] We suspect that minimum-energy config-
urations have the sane winding number as the ground
state(s) for the same 7 and W, but have not established
this. Note that Aubry'® has established the existence of a
winding number under somewhat different technical con-
ditions.

In the special case where R has a continuous first
derivative (under the conditions given above for ¥ and
W), m(u) is an ordinary single-valued, continuous, and
monotone strictly increasing function. Similarly, if S has
a continuous first derivative, o(u') has these same proper-
ties.

D. Excitation energies for certain defects

A knowledge of th: effective potentials R, S, and F
makes it possible to compute the excitation energy A, see
(2.12), of certain types of defects. We shall define a type-1
defect as a configuraton {#,} in which there is some /
such that the semi-infinite configuration with » <! is an
R half orbit, and that with n > is an S half orbit. An ex-
ample is shown in Fig. 7(b). Note that 7%; is the end point
of both half orbits. In a type-II defect, as in Fig. 8(b), the
atoms with n </ const tute an R half orbit and those with
#>1--1 an S half ortit, so that the end points 7,7, of
the two half orbits are nearest nsighbors.

The defect energy can be computed if we assume, as

suggested in Figs. 7 and 8, that as | n | — «o both half or-
bits approach the pos tions of the atoms belonging to a
single ground state {«, }. That is to say, for p sufficiently
large, and with an apypropriate renumbering of the atoms
if necessary,

(4.9)

with a negligible error. Here m is the number of atoms
added to form the defect (m can be negative). Then using
(2.10) to (2.12), we see “hat A will be given by

AT AV
\WAVAVAVaY

FIG. 7. Type-I defect (b) obtained by adding an atom to the
ground state in (a). The solid circle is the atom %;.

U_p=U_p; Upytm=Up ,
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p+m—1__ p=1 _
j=—p =—p

(4.10)

Suppose the defect is type I with the end atom common
to both half orbits at /=0. Then for j <0, we have

R(7) =K, _)+R(#;_y) , 4.11)
and for j >0,
L(Hf)=L(ﬁj+1)+K(Ej+l’Ej) . (4.12)

Note in addition that the ground state {u,} is an R orbit,
so that

A=R(T)—=R(T _p)+L(to)—L (T, 4, )

—[R(4,)—R(u_,)1=F(@o)—F,, , (4.13)

where we have used (3.18), and F,, denotes the value of F
everywhere on the ground state, in particular at
u,=i,m. An analogous calculation yields the expres-
sion

A=R(7@o)+L (#,)+K(i,,dg)—A—F,

=R(y)+S(T@ )+ W@, —iig) —A—F, (4.14)

for a type-II defect, where % and %, are the end points of
the R and S half orbits, respectively. [One can also derive
(4.13) and (4.14) by imagining adding or deleting a parti-
cle, reconnecting the springs, and letting the other parti-
cles relax. However, the relaxation may produce unex-
pected results, which is why we prefer the derivation
given above.]

Note that (4.13) and (4.14) do not by themselves specify
the values of #g, or @iy and #,. One can sometimes use
symmetry in order to make a plausible guess, but in gen-
eral the minimal-energy excitation for a given m must be
found by minimizing A with respect to %, (and #; for
type II) subject to the constraint that the configuration of
atoms is of the appropriate sort—in particular, that they
form suitable half orbits. _

An important special case is that in which W is a har-
monic potential (1.1), or

W(u' —w)=—+(u'"—uP—yu'—u),

ignoring the y¥2/2, which does not affect A. One fre-
quently finds (Sec. VI) that for a given V, @ is constant
over a range of y values and within this range the
ground-state orbit {u,} is independent of y. [This is
plausible because for this W, ¥ does not appear in the

(a)

|
AVAVAVAVAVS

FIG. 8. Type-II defect (b) obtained by adding an atom to the
ground state in (a). The two solid circles denote the atom %; and

Ty 41-

{4.15)
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area-preserving map based on the équilibrium equations
(1.5).] If we assume the same is true for one of the defect
states discussed above, then over this range of y values

dA/dy=mow , 4.16)

where m is the number of additional atoms [see (4.9)].
The derivation is as follows: The quantity K depends on
v both through (4.15) and because A depends on y.
Indeed, if the ground-state configuration {u,} does not
depend on ¥, (4.15), which omits a ¢2/2 term, implies that
dA/dy is —o. The dependence of A on ¥ can then be
found from (4.10). The y-dependent contributions to the
two sums from the W part of K exactly cancel because of
(4.9), but the dependence of K on A does not cancel for

" m=~0, and this yields (4.16).

V. NUMERICAL METHOD FOR SOLVING
THE MINIMIZATION EIGENVALUE EQUATION

The minimization eigenvalue equation (3.3) can some-
times be solved analytically (see examples in Sec. VID),
but in general must be attacked numerically. We do this

by first restricting » and u’ to a set of N (= 100) discrete

values uniformly distributed on the interval [0,1):
u=I(/N, with i=0,1,...,N—1. The resulting finite
matrix problem can be solved (in principle) by the
methods of linear programming, see the discussion in
Chap. 25 of Ref. 38, but we have instead employed a
minor modification of the following iteration procedure.

Let R‘©(u) be any function (e.g., R ®=V), and define
R jteratively by means of the equation

RUHV() = L[ H# R+ R -C; , (5.1)

where Clj is a constant chosen so that the minimum value
of RU+1 ig zero. The iteration is continued until

max | F RV (u)—RV(u) | (5.2)
u
is less than some specified value, typically 10~*, where &
is defined in terms of % by
FR(u)=R(u)— min ¥R (u) . (5.3)
) u
This final RY (typically 20 to 30 iterates are required)
is the numerical approximation for R, and the minimum
value of # R is the numerical approximation for A. As

" V{u)=V(—u) for the cases we have considered, we set

S(u) equal to R(—u) [see (3.15)]. The value of u for
which the minimum is (3.3) actually occurs gives the
discrete version of the map (u’) (Sec. IV A).

The ground-state orbit is obtained by iterating T start-
ing at some arbitrary value of #' and continuing until an
earlier value is repeated. This cycle yields the period and
the winding number. The starting value of u’ does not
seem to matter except near a phase transition where R can
be a “mixture,” see (3.13), of functions R, corresponding
to the “pure phases.” In this case the starting value of u’
determines which of the ground states is reached by iterat-
ing 7. An example will be given in Sec. VIC.

We found that a simple iteration scheme, in which the
right-hand side of (5.1) is replaced by
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¥ RN u)— " (5.4)

does not work in general, as it fails to converge. On the
other hand, (5.1) always converges, but the rate of conver-
gence varies somewhat. It is particularly slow near a

first-order phase transition (the horizontal bars of Sec..

VIC and the pinching points of Sec. VID), or when the
final R function has lots of upward kinks, or when the
strength K characterizing the potential V, see (6.1), (6.8),
and (6.9), is small. . =

VI. SPECIFIC APPLICATIONS
A. Sinusoidal ¥ and harmonic W(FrenkelfKontorova model)

1. Solutions to the minimization eigenvalue equation,
and the phase diagram

The system (1.1) with
V(u)=[K /(2m)*][1—cos(2mu)] ,
W)=+ —v)?, - (62)

is often called the Frenkel-Kontorova model.*’” There
have been a number of previous
ground state of this
methods, 101418343548 owever, only Ying*® has con-
structed a phase diagram, which in some respects is al-
most surely in error.

Our approach was to solve the minimization elgenvalue
equation numerically, as explained in Sec. V, for a large
number of ¥ and K values. Typically we used a grid of
N=100 points. As an example, Fig. 9 shows the effective
potential R for the case ¥ =0.36, K=3, and Fig. 10 shows
the corresponding 7. The winding number o is 3 Note
that the function R is continuous, but has upward kinks
at the same points where 7 is discontinuous. There are
three of these discontinuities in every period, but only two
of the corresponding kinks in R are readily visible in the
figure. The points where 7 is discontinuous are also
points where it takes multiple values, at the top and bot-
tom of the discontinuity. The appearance of kinks in R
and discontinuities in T is a sign that the ground state is
“pinned, »%15 j e., the atoms.cannot slide along the poten-
tial while remaining in the ground state.

By evaluating o for different ¥ and K (see Sec. V), we
constructed the phase diagram in Fig. 11. Only a few of
the regions corresponding to rational values of @ with
small denominators are shown. Presumably there is -a
separate “tongue”—most of them extremely narrow-—for

ol ' -
1
0.5 o 1.5 2
u

FIG. 9. Effective potential R(«) for K=3 and y=0.36 in
Egs. (6.1) and (6.2).

(6.1)

studies of the
model using a variety of
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FIG. 10. Mapping u =7(u’) corresponding to Fig. 9.

every rational value of », and these fill up, to some extent,
the regions between tiose whose winding numbers are
shown explicitly. The result appears to have the same to-
pological structure which Aubry?® found in the case of a
scalloped potential V' (consisting of repeated parabolas), -
though the dependence of the widths of the tongues on K
at small K is clearly different. We did not find any triple
points, in contrast to Ying. 8 As a function of y at fixed
K, one expects @ to show a “devil’s staircase” behavior,
nd this is supported by the numerical calculations at

=1, shown in Fig. 12.

Our numerical approach was less successful for small
values of K: The iteration procedure for R took longer to
converge, and the results were less reliable. However,
was never radically ditferent from what one would sup-
pose to be a reasonable value. (Better precision could of
course be obtained with larger values of N.)

2. Defect excitation energies

It is plausible that the edges of a tongue associated with
a particular rational winding number w, Fig. 11, come
about when the energy of one of the defect siructures of
the sort shown in Figs. 7 and 8 goes to zero. Since the
corresponding excitaticn energy A varies linearly with v,
(4.16), in the case of a harmonic W, (6.2), it should suffice
to evaluate R at a single value of y for a particular K,
within the region wheze this @ is stable, in order to find
both the left and right cdges of the tongue at this K

We employed this procedure for ©=0, 3, and +, and

2

"~ FIG. 11. Phase diagram corresponding to Egs. (6.1) and (6.2).

The numbers are values of the winding number w. The unla-
beled regions contain adcitional structure as in Fig, 25 of Ref.

- 1(b).
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FIG. 12. Winding number « as a function of y at K=1 (Fig.
11) showing a devil’s staircase structure.

found that it worked very well. For o=P/Q with Q
even, it is plausible that the defect of interest is of type I,
see Fig. 7, with the central atom at a potential minimum,
so that A is easily evaluated using (4.13). When @ is odd,
one expects a situation like that in Fig. 8, so it is plausible
that —if, is T, in {4.14). One must, however, still mini-
mize A with respect to this single parameter, which can
be a bit tricky for reasons discussed above in Sec. IV D.
The case w=0, see Fig. 13, turns out to be equivalent to
w=1, ie., the defect of interest is of type II, and the
boundary of the @ =0 region falls at y=A, where A is the
defect energy evaluated at y =0.

The phase boundaries determined in this manner were
indistinguishable from those computed previously by the
straightforward method of Sec. VIA 1 to within the accu-
racy of the latter, typically 0.002 in . Since the method
based on excitation energies requires only one solution of
the minimization eigenvalue equation for each K value,
for a given w, it requires less computation than a straight-
forward search. On the other hand, the latter is not based
on any assumption about the nature of the transition at
which a patticular phase terminates. The fact that the
two coincide in the present case provides numerical sup-
port for the idea that the limits of stability of the phases
with rational @ are determined by “solitons™ of the type
under discussion.

B. Comments on a special case of nonconvex W

An interesting example of a nonconvex W is provided
by the “chiral XY model” in which the angular variable
0, at site n, 0 <8, <2, is subject 1o an anisotropic poten-
tial

U.g Uy

FIG. 13. Type-II soliton defect for @ =0 (schematic).
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V(6,)=—K cos(p8,) , (6.3)

with p> O an integer, and the nearest-neighbor interaction
is

W (B, 41— 6y )=1—c08(6, 41—, —217) . 6.4)

So that the notation conforms to that used elsewhere in
this paper we let

Xp=p0,/2m, 6.5)
and define ; o
Vix,)=V(8,)=V(1+x,), (6.6)
W(x,,+1—x,,)=W(9,,+1——6,,)=W(p FXpp1—%p) .
(6.7

In the case p=1, K can be thought of as a “magnetic
field,” and the phase diagram shows important effects due
to the nonconvexity of W.* From their numerical stud-
ies of the case p=2, Banerjea and Taylor?! concluded that
only the convex part of W plays a role in determining the
ground state (at least for those values of K and y they
considered). We did some numerical studies for p=3 and
came to the same conclusion.

The fact that only the convex part of W need be con-
sidered in calculating the ground state for p >2 follows
from the fact that W, which by (6.7) has period p, can be
replaced by W*, (2.2). The relationship is indicated in
Fig. 14 for p=2: The smooth curves are the graphs of
W (y) and W (14-p), while their minimum W?*(y) is indi-
cated by the heavy line. (These are drawn for ¥ =0, but a
nonzero ¥ merely shifts the origin of y.) The latter is
convex between the upward kink points, and thus it could
have been obtained using (2.2) starting from a convex
function W, equal to W for —%g y g%, and defined
outside this interval by the dashed lines in Fig. 14, That
is, both W and W, inserted on the right-hand side of (2.2)
yield precisely the same W™*, and hence give rise to
equivalent ground state problems. The same construction
works for any p > 2.

There is, to be sure, one weak point in the above
analysis for p==2 though not for p>3: The second
derivative of W, and hence also of W_, actually vanishes
at y =i%, so that theorems (such as those of Aubry)
which demand that the second derivative of W be bound-
ed below by a positive constant might not apply. Hence it
would be nice if one could demonstrate that in a ground

FIG. 14. Heavy curve W*(y) is the minimum of the smooth
curves W(y) and W(1+4y). The convex function W_.(y) is ob-
tained by extending W*(p) for |y | >+ as indicated by the
dashed lines.
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state x,,;—x, will always stay a finite distance away
from “dangerous” values where W* has upward kinks.
This can, indeed, be shown to be the case, with an ap-’
propriate restriction on'V, using the geometrical construc-
tions introduced in Sec. IIIC. In particular, let w be the
function [see (3.12) and Fig. 5] obtained by rotating the
graph of W* in Fig. 14 by 180° about the origin. Then in
the construction in Fig. 6, the graph of w cannot make
contact with that of R at one of the downward kinks of
the former (corresponding to an upward kink of W*) if
the latter has no downward kinks. But if ¥ has no down-
ward kinks, R cannot have a downward kink, since it is,
by (3.3), the sum of V and a function ﬁ, (3.11), which
lacks downward kinks because of the geometrical con-
struction indicated in Fig. 3. It is not difficult to turn
these geometrical arguments into a formal procf as long
as K in (6.3) is finite, and thus the second derivative of ¥V
is bounded above. S

C. Perturbed sinusoidal ¥V and harmonic W

We now consider the effect of adding a small amount
of a second harmonic to the potential V of the Frenkel-
Kontorova model (6.1)

V(u)=[K /(2m)*][1—cos(2mu)+e(1—cos(4ru))] .
(6.8)

With € <0, the perturbation is “innocuous” in that the to-
pological properties of the phase diagram remain the same
as in Fig. 11. However, as soon as € is positive the1e are
important changes. -
Figure 15 shows a portlon of the phase diagram for
€=0.1. It was constructed in the same manner as Fig. 11,
by evaluating the minimization eigenvalue equation at a
large number of pcints in the y,K plane. The simple
tongues corresponding to rational values of @ are now
split by a series of horizontal bars at which there is a
phase transition beiween phases of the same winding
number but different symmetry. In particular, the phases
marked A are similar to those obtained with €=0, in
which the ground state may have an atom at the potential
minimum [as in Fig. 8(a)], but never an atom at the poten-

FIG. 15. Phase diagram corresponding to (6.2}, and (6.8) with
€==0.1. The solid circles are some of the points on the
boundaries of =0 and a)=—21- where horizontal bars accumu-

late.
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FIG. 16. Maximum value of K for which a horizontal bar
occurs in the phase diagram, as a function of € for o=+, L, L.

2 22 3> 4>
and +.

tial maximum. By contrast, in phase B there is always an
atom at the potential maximum. This means that when X
is sufficiently large the B-type phase cannot be stable (as-
suming the orbit is periodic), and this is indeed what we
find.

This new feature was checked in the following way.
The force equilibrium. equations (1.5) were solved for
atomic positions for various cheices of w, for phases hav-
ing symmetries corresponding to 4 and B. The energies
were then compared, and the values of K at which they
cross were obtained wth much higher precision than is
possible using (3.3) alone. We found that the correspond-
ing K values go to zero with €, Fig. 16, in a continuous
manner, and that the :rumber of bars increases with the
denominator Q of w=P/Q. Since solutions to the force
equilibrium equations need not yield the actual ground
state (even if the symraetry is appropriate), these results
were occasionally chected by solving (3.3) and using the

. corresponding R and 7 to generate the ground state.

The numerical studizs just mentioned strongly suggest
that the horizontal bars possess points of accumulation in
the y,K plane. Three >f these are indicated by solid cir-
cles in Fig. 15, one or. the boundary of the =0 phase
and two on the boundary of o= % We find numerically
that these accumulatior. points occur at the same values of
K at which the rmnunum -energy soliton in the corre-
sponding @ =0 and w=.5 2 phases changes 1ts character, as
indicated in the next paragraph.

We assume that the cefect of interest always possesses a
point of reflection sym:metry. This point can occur either
at the maximum or milimum of ¥, and either there is or

!
i
Iu ]Ib
FIG. 17. Atoms at th: center of a minimum-energy soliton

defect indicating the diffsrent symmetry types 1,, Ip, I, and
II;. [Compare with Figs. 7(b} and 8(b).] .
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" \/ V \/
{a) (b) (c)

FIG. 18. Effective potential R for y=+ and K at the hor-
izontal bar of w=% (Fig. 15). The R corresponding to the pure

phases 4 and B is shown in (a) and (b), while (c) is the mixture
produced by our numerical procedure.

is not a particle at the symmetry point. These cases are
shown in Fig. 17, which indicates a notation for the dif-
ferent symmetry types. In the w=0 phase the minimum-
energy soliton changes from II, to I as K decreases
below the value indicated by the accumulation point. In
the @=+ phase the change is from I, to I, at the upper
point and then back to I, as K decreases through the
value of the lower point. Since one expects that the
minimum-energy soliton will determine the location of the
phase boundary, it is plausible that the latter will have a
discontinuous slope at the accumulation point. Our nu-
merical studies indicate such discontinuities which are,
however, quite small. There is evidence to suggest that in
the w==0 phase there are an infinite number of such accu-
mulation points as K tends to zero.*

' The horizontal bars separating the 4 and B types of
phase behave in many respects like first-order phase tran-
sitions. Thus the configuration changes discontinuously,
and so does (81 /3K),, upon crossing the bar. We have
studied the solutions to the minimization eigenvalue equa-
tion for the @=+ case and find the following behavior.
At y=+, there are distinct solutions R, and Rp as one
approaches the transition from larger- and smaller-K
values, respectively. For K very near the transition value
the solution we find, Fig. 18, is a mixture of these two [see
(3.13)] which is undoubtedly a reflection of the numerical
approximation procedure. Both of the pure ground states
are R orbits, and which of these is reached by iterating
the corresponding 7 map depends on the choice of the ini-
tial u’. However, as ¢ decreases towards the value at the
left edge of the bar, R, and Ry approach each other and
probably tend towards a comimon unique solution. Note
that the discontinuity in (8A/0K), remains constant, as
do the configurations for K just above and just below the
transition, over the entire range of y values included in
the bar. (Note that the phase diagram has a mirror sym-

FIG. 19. Piecewise parabolic potential ¥ (u) of (6.9).

metry at ¥ =, so the behavior for y > + mimics that for
Y<7.)

We also studied the case where (6.8) includes a third
harmonic rather than a second harmonic, i.e., 47 is re-
placed by 6m. In this case €>0 is innocuous (yields a
phase diagram like Fig. 11), whereas € <0 produces a dia-
gram which is similar to Fig. 15. However, it differs in
some details; in particular for a>=—;— there is only one
phase.

Phase diagrams which are similar to Fig. 15 in that
they contain horizontal bars representing first-order tran-
sitions between phases of different symmetry have been
noted by Aubry et al.?* for a mode in which ¥ is a scal-
loped potential (of repeating parabolas), but with two
atoms per “unit cell” and, in addition, a staggered electric
field. (See Fig. 11 of Ref. 24.) Our work shows that such
features can arise in even simpler models. Indeed the
original Frenkel-Kontorova model with ¥ a simple cosine
seems in some sense on the borderline between two very
different types of behavior, one being the simple tongues
found previously by Aubry,?’ and the other in which the
tongues are crossed by horizontal bars.

D. Piecewise parabolic ¥ and harmonic W; Numerical errors

1. Hamiltonian
In this model W is given by (6.2) and V by
Viu)=+Ku?, —r<u<+
=K/16—*K(u—+)?, +<u<3 (6.9)

and for other values of u by periodicity, ¥ (1+4-u)=V(u).
Thus V is piecewise parabolic with a continuous first
derivative and a second derivative which is discontinuous
at u =—«%, %—, %, etc. See Fig. 19.

TABLE L. Five closed-form solutions to the minimization eigenvalue equation for ¥ given by (6.9).

Vertices: (é,r(u))

No. Y K @

1 0 + 0 (— 3= h (= —1h T35 h (5 — 1)

2 ™ ™ 0 (== (=% — 33 (i) (o — 1)
3 1 4 0 (0, —h (i h(1,—%)

4 £ 3 T (=2 — 3 b (=15 =35 (0, —35), (35,3 L (5 —37)
5 % 1 I (=% — 300, — 35, (55 W (5 — 55)
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FIG. 20. Derivative r of the effective potential R for (a) ex-
ample 1 and (b) example 5 in Table L.

2. Some exact solutions for the effective potential R

Because ¥V has such a simple form it is possible in some_
cases to find explicit solutions to the minimization eigen-
value equation (3.3). Some examples are given in Table L.
As the graph of

r(u)=dR /du

is piecewise linear (in these examples) and periodic with
period 1, it can be reconstructed from the end points;
(u,r(¢)), of the straight-line segments listed in the
column labeled “vertices.” Examples 1 and 5 are sketched
in Fig. 20. Note that in examples 1 and 2, r is discontinu-
ous at the point where R has an upward kink. In exam-
ples 3, 4, and 5, r is continuous, so R has no kinks and F
is constant. (These represent somewhat special points in
the phase diagram; see below.)

(6.10)

3. Phase diagram and pinching points

Figure 21 shows the phase diagram in the y,K plane
constructed using numerical solutions to the minimization
eigenvalue equation along with closed-form solutions,
some of which are listed in Table I. As in Fig. 15, one
finds transitions between phases of different symmeiry for
a given rational w; A and B have the same significance as
in Sec. VIC above. _

However, these transitions take place at single “pinch-

OA

FIG. 21. Phase diagram corresponding to (6.2) and (6.9). The
solid circles are some of the accumulation points of the pinching
points separating phases 4 and .B.
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ing points” rather thsn along horizontal bars of finite
width in the y,K plane. At the pinching point there is a

" sliding ground state in the sense that every atom can be

simultaneously and cortinuously displaced to the right, in
such a manner that tie whole configuration remains a
ground state, until each atom is in the position formerly
occupied by its right-hand neighbor. Thus the ground
state is infinitely degenerate. The fact that this can occur

for rational & seems to reflect the piecewise parabolic
" property of ¥, which means that the equilibrium equa-

tions are actually (inhcmogeneous) linear equations in the
atomic positions as long as these do not move past points
where V"'(u) is discontinuous. The situation is somewhat

-reminiscent of the Kolmogorov-Amold-Moser (KAM)

trajectories,?%:31,33,51 the proof of whose existence

demands, however, a higher degree of differentiability
than is present in a piecewise parabolic V.

Given such a sliding mode it is impossible to produce a
soliton by adding or cleleting a particle since the other -
particles will simply relax into a new periodic orbit.
Equivalently, the defect energy for adding or deleting a
particle is zero, and heace by the discussion in Sec. VIA,
the interval in ¥ over which this o is the ground state
should be zero.

The area-preserving map associated with the equilibri-
um equations (1.5) depends on K but not on y, and the
transition from 4 to I at a pinching point occurs in the
following way. For K near the transition value, there is a

- hyperbolic periodic ortit intertwined with an elliptic orbit

of the same period. These become part of an invariant
circle as K passes thrcugh the transition, and emerge on
the other side with the- previous hyperbolic orbit now el-
liptical and vice versa. The ground state corresponds to

" the hyperbolic orbit, cnsistent with the expectation that

an elliptic orbit cannst be a ground state when V .is
smooth and W is convax and twice differentiable.?2 (In
the present case V is 1ot smooth, but the corresponding
orbits only pass throush the points where ¥’ is discon-
tinuous when K has its transition value.)

As is the case of the bars in Fig. 185, it is more efficient
to locate the pinching points in Fig. 21 by solving the
force equilibrium equations than by finding a solution to
the minimization eigervalue equation. They can best be
found by looking for z ground state such that for the K
and @ of interest, a particle falls precisely on each of the
“division points” wher:: ¥"'(u) is discontinuous, as in Fig.
22. By assigning the particles at the division points to the
parabolic arc lying to'its right, it is evident that 'a dis-
placement of the whol: configuration in which each atom
moves to the position reviously occupied by its neighbor
to its right carries the system into a ground state of the

FIG. 22. Example of it ground state giving rise to a pinching
point in the phase diagiam of Fig. 21. The solid circles are
atoms lying precisely at the points where ¥*(u) is discontinu-
ous.,
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same energy. The linearity of the equilibrium equations
{see above) then guarantees that the intermediate configu-
rations have the same energy.

The pinching points of phases with w= P/Q, Q<13,
are plotted in the w,X plane in Fig. 23. The points appear
to lie on various curves which terminate on accumulation
points. For example, the sequence (1/n, K,,), with K, the
largest X for a pinching point for w-l/n, converges to
o=0, K = 3 , with the asymptotic behavior

4 _K,~3"" (6.11)
We suspect that at K ==+, every » is an accumulation
point of pinching points, though we expect there to be lots
of accumulation points at other values of K as well. Fig-
ure 23 also suggests the presence of some self-similar
structures, but this needs to be confirmed by further
study.

Corresponding to these accumulation points in the w,K
plane there should be accumulation points in the y,K
plane on the boundaries of phases with rational values of
. Examples 3 and 4 in Table I, on the right and Ileft
edges of the w=0 and w=- regions, respectively, in Fig.
21 are of this type. These also appear to correspond to
sliding ground states, but in a sense which is somewhat
more complex than that described earlier. Thus in exam-
ple 3 in Table I, there is a ground-state configuration in
which u, =0 for all n, and another ground state in which
the atoms are disposed in the fashion shown in Fig. 13.
That is to say, there is a soliton defect, but its excitation
energy A, (2.12), is zero. Furthermore this soliton is a
sliding ground state in the sense that the atoms can simul-
taneously and continuously be displaced till each reaches
the position formerly occupied by its right-hand neighbor
while the configuration remains a ground state. Thus the
soliton itself is not pinned but can move with zero energy
change.

As K passes through the value corresponding to one of
these accumulation points, one expects a change in the
symmetry of the minimum-energy soliton, just as noted
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previously in Sec. VIC. Indeed, in the o =0 phase the
minimum-energy soliton is of type II, (Fig. 17) for K > +
and of type I, for + <K <+, while for o= the type is
I, for K >+, and then I, down to K=092. Using a
closed-form solution for R at =0 we have (as explained
in Sec. VIA) calculated the phase boundary of the =0
region for K > 1+ assuming that this is determined by the
vy value where the energy of the corresponding soliton
goes to zero, with results in agreement with the numerical
calculations. (At smaller K values it is more difficult to
construct the closed-form solution for R.)

The existence of sliding ground states for rational
values of w implies that the width in ¥ of the region cor-
responding to this w in the phase diagram must go to zero
at the corresponding K, as noted earlier. This is con-
sistent with our numerical solutions of the minimization
eigenvalue equation, but the latter are not precise enough
to tell us how the width shrinks to zero as K approaches
the pinching point, so that the precise form shown in Fig.
21 should not be taken too seriously. The numerical stud-
ies do indicate that upon approaching the pinching point
from either phase 4 or B, the R function approaches a
common limit, and this limit has, as expected, a continu-
ous first derivative (no kinks), and the corresponding F is
constant. Note that example 5 in Table I is the closed-
form solution at the pinching point for @=+. Despite
the uniqueness of R, the phase transition at a pinching
point is “first order” in the sense that (81 /3K), is discon-
tinuous (the same as at one of the bars in Fig. 15) due to
the discontinuous change in the configuration going from
phase 4 to phase B.

4. Dependence of numerical errors on grid size

We checked the accuracy of our numerical procedures
(Sec. V), and in particular their dependence on the size
h =1/N of the grid imposed on the unit interval, by com-
paring the resulting R and A with the exact quantities R,
and A, for the cases listed in Table I. Two measures of
error,

8R =max |R(u)—R.(u)]| ,
u

(6.12)

AR=N""S[R(u)—R, )P,
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FIG. 23. Pinching points in the o=P/Q,K plane for Q <13.
The large solid circles correspond to the accumulation points
shown in Fig. 21. There are many other accumulation points.

2
34

-2 -3/,
10 10 s
1072 1074

3R AR
10-* 107}
107® 107
}O-O 1 I IO-T 1 1
107 107® 10" 107 0 jlond
h h

FIG. 24. Errors in R produced by the finite grid for exam-
ples 1 to 5 of Table I. Example 5 produces irregular results for

valu_es of h smaller_ than those shown here.
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FIG. 25. Errors in A produced by the finite grid for examples
4 and 5 of Table I.

where both R and R, have the same minimum value of
zero, are plotted against A in Fig. 24. Both vary as h?
apart from example 5, which also shows a resonance
phenomenon which we do not understand. The error in A
has the same behavior, Fig. 25, though it is zero in the
(exceptional) case in which the ground-state orbit lies on
points of the grid.

VII. CONCLUSION

The method of effective potentials as developed in this
paper provides a useful and apparently new approach to
the problem of calculating the ground states of one-
dimensional systems with short-range interactions. In
principle it yields both the ground-state energy and the
corresponding particle configuration without the ambigui-
ties associated with metastable (or unstable) states which
arise in approaches based on solving the force equlhbnum
equations. It works both for a convex nearest-neighbor
interaction W and in the nonconvex case. And, in addi-
tion, it can be used to calculate the energies of certam
types of defect configurations.

While the effective potential approach can be used to
establish certain abstract mathematical results (such as the
existence of a ground state), it also turns out to be a useful
tool for numerical analysis of the ground-state phase dia-
grams of these systems. In particular, the diagrams in
Figs. 11, 15, and 21 were constructed primarily by numer-
ical solutions of the functional equation (3.3). All of these
diagrams represent new results, and while the general to-
pological features in Fig. 11 are not unexpected on the
basis of previous calculations for other choices of V, the
bars and pinching points in Figs. 15 and 21 were not anti-
cipated in advance of the numerical calculations.

Once the general features of the phase diagram have
been established using the effective potential method, fur-
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ther refinements can te made by a numerical solution of
the force equilibrium ::quations for a periodic orbit. The
latter provides more accurate answers for the positions of
the atoms in a periodi: ground state (and thus for the en-
ergy) than can be obtained using a relative coarse grid for
solving (3.3), and with much less computation. We have,
in particular, used the equilibrium equations to find the
precise K values for the bars and pinching points in Figs.
15 and 21.

To be sure, the numerical procedures we have used to -
solve the minimization eigenvalue equation are relatively
primitive and leave niuch room for improvement. The
use of a simple grid'of points on the unit interval is
roughly comparable tc employing a trapezoid rule for nu-
merical integration. Agtempts to improve on this need to
take account of the fact that while the eigenfunction R is
continuous, it can hav:> upward kinks, as in Fig. 9. While
the minimum in (3.3) dannot occur at such kinks, their ex-
istence complicates the problem of representing the func-
tion by its values at a finite number of points. The direct
approach of simply using many more points in the grid
demands a more efficient way of solving (3.3) than the

~ simple iteration methoi of (5.1),

The minimization eigenvalue equation can also be em-
ployed, in principle, to study incommensurate phases:
There is no requirement that the ground state be periodic
in order to use (3.3). lHowever, there are obvious difficul-
ties which face an attempt to study such phases by numer-
ical methods, and thus far we have not tried to deal with
these. ’

There are a number of other one-d1mens1ona1 systems
of short-range charact:r to which the methods of this pa-
per should be applicatle. The case of a chiral XY model
in a magnetlc field, the p=1 case in Sec. VIB, is an in-
teresting situation in which the nonconvex nature of W
creates interesting feztures in the phase diagram. The
mean-field approximarion to the ANNNI model presents
a greater challenge, as in this case each x, in (1.6) liesin a
two-dimensional square, making numerical computations
based on discretization more difficult.

There are some problems of a purely mathematical
character connected 'with the minimization eigenvalue
problem, (3.16) or (3.1'7), in the case where the variables x
and y are continuous. For example, the structure of the
space of solutions has been worked out by Cuninghame-
Green in the case in v/hich K is a finite matrix, and this
needs to be appropriat:ly generalized. In addition, the ef-
fective potential approach should prove useful for proving
certain mathematical properties about the ground states of
systems of the type (1.1) and (1.6) even when these cannot
be obtained explicitly.
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